mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-25 00:43:03 +01:00
393 lines
12 KiB
C
393 lines
12 KiB
C
|
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
#ifndef UTIL_SPARSE_ARRAY_H_
|
||
|
#define UTIL_SPARSE_ARRAY_H_
|
||
|
|
||
|
// DESCRIPTION
|
||
|
//
|
||
|
// SparseArray<T>(m) is a map from integers in [0, m) to T values.
|
||
|
// It requires (sizeof(T)+sizeof(int))*m memory, but it provides
|
||
|
// fast iteration through the elements in the array and fast clearing
|
||
|
// of the array. The array has a concept of certain elements being
|
||
|
// uninitialized (having no value).
|
||
|
//
|
||
|
// Insertion and deletion are constant time operations.
|
||
|
//
|
||
|
// Allocating the array is a constant time operation
|
||
|
// when memory allocation is a constant time operation.
|
||
|
//
|
||
|
// Clearing the array is a constant time operation (unusual!).
|
||
|
//
|
||
|
// Iterating through the array is an O(n) operation, where n
|
||
|
// is the number of items in the array (not O(m)).
|
||
|
//
|
||
|
// The array iterator visits entries in the order they were first
|
||
|
// inserted into the array. It is safe to add items to the array while
|
||
|
// using an iterator: the iterator will visit indices added to the array
|
||
|
// during the iteration, but will not re-visit indices whose values
|
||
|
// change after visiting. Thus SparseArray can be a convenient
|
||
|
// implementation of a work queue.
|
||
|
//
|
||
|
// The SparseArray implementation is NOT thread-safe. It is up to the
|
||
|
// caller to make sure only one thread is accessing the array. (Typically
|
||
|
// these arrays are temporary values and used in situations where speed is
|
||
|
// important.)
|
||
|
//
|
||
|
// The SparseArray interface does not present all the usual STL bells and
|
||
|
// whistles.
|
||
|
//
|
||
|
// Implemented with reference to Briggs & Torczon, An Efficient
|
||
|
// Representation for Sparse Sets, ACM Letters on Programming Languages
|
||
|
// and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
|
||
|
//
|
||
|
// Briggs & Torczon popularized this technique, but it had been known
|
||
|
// long before their paper. They point out that Aho, Hopcroft, and
|
||
|
// Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
|
||
|
// 1986 Programming Pearls both hint at the technique in exercises to the
|
||
|
// reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
|
||
|
// exercise 8).
|
||
|
//
|
||
|
// Briggs & Torczon describe a sparse set implementation. I have
|
||
|
// trivially generalized it to create a sparse array (actually the original
|
||
|
// target of the AHU and Bentley exercises).
|
||
|
|
||
|
// IMPLEMENTATION
|
||
|
//
|
||
|
// SparseArray is an array dense_ and an array sparse_ of identical size.
|
||
|
// At any point, the number of elements in the sparse array is size_.
|
||
|
//
|
||
|
// The array dense_ contains the size_ elements in the sparse array (with
|
||
|
// their indices),
|
||
|
// in the order that the elements were first inserted. This array is dense:
|
||
|
// the size_ pairs are dense_[0] through dense_[size_-1].
|
||
|
//
|
||
|
// The array sparse_ maps from indices in [0,m) to indices in [0,size_).
|
||
|
// For indices present in the array, dense_[sparse_[i]].index_ == i.
|
||
|
// For indices not present in the array, sparse_ can contain any value at all,
|
||
|
// perhaps outside the range [0, size_) but perhaps not.
|
||
|
//
|
||
|
// The lax requirement on sparse_ values makes clearing the array very easy:
|
||
|
// set size_ to 0. Lookups are slightly more complicated.
|
||
|
// An index i has a value in the array if and only if:
|
||
|
// sparse_[i] is in [0, size_) AND
|
||
|
// dense_[sparse_[i]].index_ == i.
|
||
|
// If both these properties hold, only then it is safe to refer to
|
||
|
// dense_[sparse_[i]].value_
|
||
|
// as the value associated with index i.
|
||
|
//
|
||
|
// To insert a new entry, set sparse_[i] to size_,
|
||
|
// initialize dense_[size_], and then increment size_.
|
||
|
//
|
||
|
// To make the sparse array as efficient as possible for non-primitive types,
|
||
|
// elements may or may not be destroyed when they are deleted from the sparse
|
||
|
// array through a call to resize(). They immediately become inaccessible, but
|
||
|
// they are only guaranteed to be destroyed when the SparseArray destructor is
|
||
|
// called.
|
||
|
//
|
||
|
// A moved-from SparseArray will be empty.
|
||
|
|
||
|
// Doing this simplifies the logic below.
|
||
|
#ifndef __has_feature
|
||
|
#define __has_feature(x) 0
|
||
|
#endif
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <stdint.h>
|
||
|
#if __has_feature(memory_sanitizer)
|
||
|
#include <sanitizer/msan_interface.h>
|
||
|
#endif
|
||
|
#include <algorithm>
|
||
|
#include <memory>
|
||
|
#include <utility>
|
||
|
|
||
|
#include "util/pod_array.h"
|
||
|
|
||
|
namespace re2 {
|
||
|
|
||
|
template<typename Value>
|
||
|
class SparseArray {
|
||
|
public:
|
||
|
SparseArray();
|
||
|
explicit SparseArray(int max_size);
|
||
|
~SparseArray();
|
||
|
|
||
|
// IndexValue pairs: exposed in SparseArray::iterator.
|
||
|
class IndexValue;
|
||
|
|
||
|
typedef IndexValue* iterator;
|
||
|
typedef const IndexValue* const_iterator;
|
||
|
|
||
|
SparseArray(const SparseArray& src);
|
||
|
SparseArray(SparseArray&& src);
|
||
|
|
||
|
SparseArray& operator=(const SparseArray& src);
|
||
|
SparseArray& operator=(SparseArray&& src);
|
||
|
|
||
|
// Return the number of entries in the array.
|
||
|
int size() const {
|
||
|
return size_;
|
||
|
}
|
||
|
|
||
|
// Indicate whether the array is empty.
|
||
|
int empty() const {
|
||
|
return size_ == 0;
|
||
|
}
|
||
|
|
||
|
// Iterate over the array.
|
||
|
iterator begin() {
|
||
|
return dense_.data();
|
||
|
}
|
||
|
iterator end() {
|
||
|
return dense_.data() + size_;
|
||
|
}
|
||
|
|
||
|
const_iterator begin() const {
|
||
|
return dense_.data();
|
||
|
}
|
||
|
const_iterator end() const {
|
||
|
return dense_.data() + size_;
|
||
|
}
|
||
|
|
||
|
// Change the maximum size of the array.
|
||
|
// Invalidates all iterators.
|
||
|
void resize(int new_max_size);
|
||
|
|
||
|
// Return the maximum size of the array.
|
||
|
// Indices can be in the range [0, max_size).
|
||
|
int max_size() const {
|
||
|
if (dense_.data() != NULL)
|
||
|
return dense_.size();
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Clear the array.
|
||
|
void clear() {
|
||
|
size_ = 0;
|
||
|
}
|
||
|
|
||
|
// Check whether index i is in the array.
|
||
|
bool has_index(int i) const;
|
||
|
|
||
|
// Comparison function for sorting.
|
||
|
// Can sort the sparse array so that future iterations
|
||
|
// will visit indices in increasing order using
|
||
|
// std::sort(arr.begin(), arr.end(), arr.less);
|
||
|
static bool less(const IndexValue& a, const IndexValue& b);
|
||
|
|
||
|
public:
|
||
|
// Set the value at index i to v.
|
||
|
iterator set(int i, const Value& v) {
|
||
|
return SetInternal(true, i, v);
|
||
|
}
|
||
|
|
||
|
// Set the value at new index i to v.
|
||
|
// Fast but unsafe: only use if has_index(i) is false.
|
||
|
iterator set_new(int i, const Value& v) {
|
||
|
return SetInternal(false, i, v);
|
||
|
}
|
||
|
|
||
|
// Set the value at index i to v.
|
||
|
// Fast but unsafe: only use if has_index(i) is true.
|
||
|
iterator set_existing(int i, const Value& v) {
|
||
|
return SetExistingInternal(i, v);
|
||
|
}
|
||
|
|
||
|
// Get the value at index i.
|
||
|
// Fast but unsafe: only use if has_index(i) is true.
|
||
|
Value& get_existing(int i) {
|
||
|
assert(has_index(i));
|
||
|
return dense_[sparse_[i]].value_;
|
||
|
}
|
||
|
const Value& get_existing(int i) const {
|
||
|
assert(has_index(i));
|
||
|
return dense_[sparse_[i]].value_;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
iterator SetInternal(bool allow_existing, int i, const Value& v) {
|
||
|
DebugCheckInvariants();
|
||
|
if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
|
||
|
assert(false && "illegal index");
|
||
|
// Semantically, end() would be better here, but we already know
|
||
|
// the user did something stupid, so begin() insulates them from
|
||
|
// dereferencing an invalid pointer.
|
||
|
return begin();
|
||
|
}
|
||
|
if (!allow_existing) {
|
||
|
assert(!has_index(i));
|
||
|
create_index(i);
|
||
|
} else {
|
||
|
if (!has_index(i))
|
||
|
create_index(i);
|
||
|
}
|
||
|
return SetExistingInternal(i, v);
|
||
|
}
|
||
|
|
||
|
iterator SetExistingInternal(int i, const Value& v) {
|
||
|
DebugCheckInvariants();
|
||
|
assert(has_index(i));
|
||
|
dense_[sparse_[i]].value_ = v;
|
||
|
DebugCheckInvariants();
|
||
|
return dense_.data() + sparse_[i];
|
||
|
}
|
||
|
|
||
|
// Add the index i to the array.
|
||
|
// Only use if has_index(i) is known to be false.
|
||
|
// Since it doesn't set the value associated with i,
|
||
|
// this function is private, only intended as a helper
|
||
|
// for other methods.
|
||
|
void create_index(int i);
|
||
|
|
||
|
// In debug mode, verify that some invariant properties of the class
|
||
|
// are being maintained. This is called at the end of the constructor
|
||
|
// and at the beginning and end of all public non-const member functions.
|
||
|
void DebugCheckInvariants() const;
|
||
|
|
||
|
// Initializes memory for elements [min, max).
|
||
|
void MaybeInitializeMemory(int min, int max) {
|
||
|
#if __has_feature(memory_sanitizer)
|
||
|
__msan_unpoison(sparse_.data() + min, (max - min) * sizeof sparse_[0]);
|
||
|
#elif defined(RE2_ON_VALGRIND)
|
||
|
for (int i = min; i < max; i++) {
|
||
|
sparse_[i] = 0xababababU;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int size_ = 0;
|
||
|
PODArray<int> sparse_;
|
||
|
PODArray<IndexValue> dense_;
|
||
|
};
|
||
|
|
||
|
template<typename Value>
|
||
|
SparseArray<Value>::SparseArray() = default;
|
||
|
|
||
|
template<typename Value>
|
||
|
SparseArray<Value>::SparseArray(const SparseArray& src)
|
||
|
: size_(src.size_),
|
||
|
sparse_(src.max_size()),
|
||
|
dense_(src.max_size()) {
|
||
|
std::copy_n(src.sparse_.data(), src.max_size(), sparse_.data());
|
||
|
std::copy_n(src.dense_.data(), src.max_size(), dense_.data());
|
||
|
}
|
||
|
|
||
|
template<typename Value>
|
||
|
SparseArray<Value>::SparseArray(SparseArray&& src)
|
||
|
: size_(src.size_),
|
||
|
sparse_(std::move(src.sparse_)),
|
||
|
dense_(std::move(src.dense_)) {
|
||
|
src.size_ = 0;
|
||
|
}
|
||
|
|
||
|
template<typename Value>
|
||
|
SparseArray<Value>& SparseArray<Value>::operator=(const SparseArray& src) {
|
||
|
// Construct these first for exception safety.
|
||
|
PODArray<int> a(src.max_size());
|
||
|
PODArray<IndexValue> b(src.max_size());
|
||
|
|
||
|
size_ = src.size_;
|
||
|
sparse_ = std::move(a);
|
||
|
dense_ = std::move(b);
|
||
|
std::copy_n(src.sparse_.data(), src.max_size(), sparse_.data());
|
||
|
std::copy_n(src.dense_.data(), src.max_size(), dense_.data());
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template<typename Value>
|
||
|
SparseArray<Value>& SparseArray<Value>::operator=(SparseArray&& src) {
|
||
|
size_ = src.size_;
|
||
|
sparse_ = std::move(src.sparse_);
|
||
|
dense_ = std::move(src.dense_);
|
||
|
src.size_ = 0;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// IndexValue pairs: exposed in SparseArray::iterator.
|
||
|
template<typename Value>
|
||
|
class SparseArray<Value>::IndexValue {
|
||
|
public:
|
||
|
int index() const { return index_; }
|
||
|
Value& value() { return value_; }
|
||
|
const Value& value() const { return value_; }
|
||
|
|
||
|
private:
|
||
|
friend class SparseArray;
|
||
|
int index_;
|
||
|
Value value_;
|
||
|
};
|
||
|
|
||
|
// Change the maximum size of the array.
|
||
|
// Invalidates all iterators.
|
||
|
template<typename Value>
|
||
|
void SparseArray<Value>::resize(int new_max_size) {
|
||
|
DebugCheckInvariants();
|
||
|
if (new_max_size > max_size()) {
|
||
|
const int old_max_size = max_size();
|
||
|
|
||
|
// Construct these first for exception safety.
|
||
|
PODArray<int> a(new_max_size);
|
||
|
PODArray<IndexValue> b(new_max_size);
|
||
|
|
||
|
std::copy_n(sparse_.data(), old_max_size, a.data());
|
||
|
std::copy_n(dense_.data(), old_max_size, b.data());
|
||
|
|
||
|
sparse_ = std::move(a);
|
||
|
dense_ = std::move(b);
|
||
|
|
||
|
MaybeInitializeMemory(old_max_size, new_max_size);
|
||
|
}
|
||
|
if (size_ > new_max_size)
|
||
|
size_ = new_max_size;
|
||
|
DebugCheckInvariants();
|
||
|
}
|
||
|
|
||
|
// Check whether index i is in the array.
|
||
|
template<typename Value>
|
||
|
bool SparseArray<Value>::has_index(int i) const {
|
||
|
assert(i >= 0);
|
||
|
assert(i < max_size());
|
||
|
if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
|
||
|
return false;
|
||
|
}
|
||
|
// Unsigned comparison avoids checking sparse_[i] < 0.
|
||
|
return (uint32_t)sparse_[i] < (uint32_t)size_ &&
|
||
|
dense_[sparse_[i]].index_ == i;
|
||
|
}
|
||
|
|
||
|
template<typename Value>
|
||
|
void SparseArray<Value>::create_index(int i) {
|
||
|
assert(!has_index(i));
|
||
|
assert(size_ < max_size());
|
||
|
sparse_[i] = size_;
|
||
|
dense_[size_].index_ = i;
|
||
|
size_++;
|
||
|
}
|
||
|
|
||
|
template<typename Value> SparseArray<Value>::SparseArray(int max_size) :
|
||
|
sparse_(max_size), dense_(max_size) {
|
||
|
MaybeInitializeMemory(size_, max_size);
|
||
|
DebugCheckInvariants();
|
||
|
}
|
||
|
|
||
|
template<typename Value> SparseArray<Value>::~SparseArray() {
|
||
|
DebugCheckInvariants();
|
||
|
}
|
||
|
|
||
|
template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
|
||
|
assert(0 <= size_);
|
||
|
assert(size_ <= max_size());
|
||
|
}
|
||
|
|
||
|
// Comparison function for sorting.
|
||
|
template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
|
||
|
const IndexValue& b) {
|
||
|
return a.index_ < b.index_;
|
||
|
}
|
||
|
|
||
|
} // namespace re2
|
||
|
|
||
|
#endif // UTIL_SPARSE_ARRAY_H_
|