8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-31 12:43:02 +01:00
firebird-mirror/src/common/classes/alloc.cpp

397 lines
13 KiB
C++
Raw Normal View History

/*
* PROGRAM: Client/Server Common Code
* MODULE: alloc.cpp
* DESCRIPTION: Memory Pool Manager (based on B+ tree)
*
* The contents of this file are subject to the Interbase Public
* License Version 1.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy
* of the License at http://www.Inprise.com/IPL.html
*
* Software distributed under the License is distributed on an
* "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
* or implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code was created by Inprise Corporation
* and its predecessors. Portions created by Inprise Corporation are
* Copyright (C) Inprise Corporation.
*
* Created by: Nickolay Samofatov <skidder@bssys.com>
*
* All Rights Reserved.
* Contributor(s): ______________________________________.
*/
#include "alloc.h"
#include <new>
// Size in bytes, must be aligned according to ALLOC_ALIGNMENT
#define MIN_EXTENT_SIZE 100
// Must be a power of 2
#define ALLOC_ALIGNMENT 4
#define ALIGN(X) ((X+ALLOC_ALIGNMENT-1) & ~(ALLOC_ALIGNMENT-1))
#define FB_MAX(M,N) ((M)>(N)?(M):(N))
namespace Firebird {
// Helper function to reduce code size, since many compilers
// generate quite a bit of code at the point of the throw.
static void pool_out_of_memory()
{
// FIXME: this is a temporary solution until we switch out of using STL exceptions
throw std::bad_alloc();
}
void* MemoryPool::external_alloc(size_t size) {
// This method is assumed to throw exceptions in case it cannot alloc
return malloc(size);
}
void MemoryPool::external_free(void *blk) {
::free(blk);
}
MemoryPool* MemoryPool::createPool() {
size_t alloc_size = FB_MAX(
// This is the exact initial layout of memory pool in the first extent //
ALIGN(sizeof(MemoryExtent))+
ALIGN(sizeof(MemoryPool))+
ALIGN(sizeof(MemoryBlock))+
ALIGN(sizeof(FreeBlocksTree::ItemList))+
ALIGN(sizeof(MemoryBlock))+
ALLOC_ALIGNMENT,
// ******************************************************************* //
MIN_EXTENT_SIZE);
char* mem = (char *)external_alloc(alloc_size);
if (!mem) pool_out_of_memory();
((MemoryExtent *)mem)->next = NULL;
MemoryPool* pool = new(mem+ALIGN(sizeof(MemoryExtent))) MemoryPool(mem, mem +
ALIGN(sizeof(MemoryExtent)) + ALIGN(sizeof(MemoryPool)) + ALIGN(sizeof(MemoryBlock)));
MemoryBlock *hdr = (MemoryBlock*) (mem+ALIGN(sizeof(MemoryExtent))+ALIGN(sizeof(MemoryPool)));
hdr->pool = pool;
hdr->used = true;
hdr->last = false;
hdr->type = TYPE_LEAFPAGE;
hdr->length = ALIGN(sizeof(MemoryBlock))+ALIGN(sizeof(FreeBlocksTree::ItemList));
hdr->prev = NULL;
MemoryBlock *blk = (MemoryBlock *)(mem+ALIGN(sizeof(MemoryExtent))+
ALIGN(sizeof(MemoryPool))+ALIGN(sizeof(MemoryBlock))+
ALIGN(sizeof(FreeBlocksTree::ItemList)));
int blockLength = alloc_size - (ALIGN(sizeof(MemoryExtent))+
ALIGN(sizeof(MemoryPool))+ALIGN(sizeof(MemoryBlock))+ALIGN(sizeof(FreeBlocksTree::ItemList))+
ALIGN(sizeof(MemoryBlock)));
blk->pool = pool;
blk->used = false;
blk->last = true;
blk->type = 0;
blk->length = blockLength;
blk->prev = hdr;
BlockInfo temp = {blk, blockLength};
pool->freeBlocks.add(temp);
// This code may not work if tree factor is 2 (but if MIN_EXTENT_SIZE is large enough it will)
pool->spareLeaf = pool->alloc(sizeof(FreeBlocksTree::ItemList));
pool->spareNodes.add(pool->alloc(sizeof(FreeBlocksTree::NodeList)));
return pool;
}
void MemoryPool::deletePool(MemoryPool* pool) {
// Delete all extents now
MemoryExtent *temp = pool->extents;
while (temp) {
MemoryExtent *next = temp->next;
external_free(temp);
temp = next;
}
}
void* MemoryPool::alloc(size_t size, SSHORT type) {
if (internalAlloc) {
if (size == sizeof(FreeBlocksTree::ItemList))
// This condition is to handle case when nodelist and itemlist have equal size
if (sizeof(FreeBlocksTree::ItemList)!=sizeof(FreeBlocksTree::ItemList) || spareLeaf) {
void *temp = spareLeaf;
spareLeaf = NULL;
needSpare = true;
if (!temp) pool_out_of_memory();
return temp;
}
if (size == sizeof(FreeBlocksTree::NodeList)) {
if (!spareNodes.getCount()) pool_out_of_memory();
void *temp = spareNodes[spareNodes.getCount()-1];
spareNodes.shrink(spareNodes.getCount()-1);
needSpare = true;
return temp;
}
assert(false);
}
// Lookup a block greater or equal than size in freeBlocks tree
size = ALIGN(size);
BlockInfo temp = {NULL, size};
void *result;
if (freeBlocks.locate(locGreatEqual,temp)) {
// Found large enough block
BlockInfo* current = &freeBlocks.current();
if (current->length-size < sizeof(MemoryBlock)+ALLOC_ALIGNMENT) {
// Block is small enough to be returned AS IS
current->block->used = true;
current->block->type = type;
result = current->block+1;
freeBlocks.fastRemove();
} else {
// Cut a piece at the end of block in hope to avoid structural
// modification of free blocks tree
current->block->length -= sizeof(MemoryBlock)+size;
MemoryBlock *blk = (MemoryBlock *)((char*)(current->block+1) + current->block->length);
blk->pool = this;
blk->used = true;
blk->last = current->block->last;
current->block->last = false;
blk->type = type;
blk->length = size;
blk->prev = current->block;
if (!blk->last)
((MemoryBlock *)((char*)(blk+1) + blk->length))->prev = blk;
// Update tree of free blocks
if (!freeBlocks.getPrev() || freeBlocks.current().length <= current->block->length)
current->length = current->block->length;
else {
// Tree needs to be modified structurally
bool res = freeBlocks.getNext();
assert(res);
BlockInfo temp = {current->block, current->block->length};
freeBlocks.fastRemove();
internalAlloc = true;
try {
freeBlocks.add(temp);
} catch(...) {
// Add item to the list of pending free blocks in case of critically-low memory condition
PendingFreeBlock* temp = (PendingFreeBlock *)(freeBlocks.getAddErrorValue().block+1);
temp->next = pendingFree;
pendingFree = temp;
}
internalAlloc = false;
}
result = blk+1;
}
} else {
// If we are in a critically low memory condition look up for a block in a list
// of pending free blocks. We do not do "best fit" in this case
PendingFreeBlock *itr = pendingFree, *prev = NULL;
while (itr) {
MemoryBlock *temp = (MemoryBlock *)itr-1;
if (temp->length >= size) {
if (temp->length-size < sizeof(MemoryBlock)+ALLOC_ALIGNMENT) {
// Block is small enough to be returned AS IS
temp->used = true;
temp->type = type;
// Remove block from linked list
if (prev)
prev->next = itr->next;
else
pendingFree = itr->next;
return itr;
} else {
// Cut a piece at the end of block
// We don't need to modify tree of free blocks or a list of
// pending free blocks in this case
temp->length -= sizeof(MemoryBlock)+size;
MemoryBlock *blk = (MemoryBlock *)((char*)(temp+1) + temp->length);
blk->pool = this;
blk->used = true;
blk->last = temp->last;
temp->last = false;
blk->type = type;
blk->length = size;
blk->prev = temp;
if (!blk->last)
((MemoryBlock *)((char*)(blk+1) + blk->length))->prev = blk;
return blk+1;
}
}
prev = itr;
itr = itr->next;
}
// No large enough block found. We need to extend the pool
size_t alloc_size = FB_MAX(sizeof(MemoryExtent)+sizeof(MemoryBlock)+size, MIN_EXTENT_SIZE);
MemoryExtent* extent = (MemoryExtent *)external_alloc(alloc_size);
if (!extent) pool_out_of_memory();
extent->next = extents;
extents = extent;
MemoryBlock *blk = (MemoryBlock *)(extent+1);
blk->pool = this;
blk->used = true;
blk->type = type;
blk->prev = NULL;
if (alloc_size-size < sizeof(MemoryBlock)+ALLOC_ALIGNMENT) {
// Block is small enough to be returned AS IS
blk->last = true;
blk->length = alloc_size - sizeof(MemoryExtent) - sizeof(MemoryBlock);
} else {
// Cut a piece at the beginning of the block
MemoryBlock *blk = (MemoryBlock *)(extent+1);
blk->last = false;
blk->length = size;
// Put the rest to the tree of free blocks
MemoryBlock *rest = (MemoryBlock *)((char *)blk + size);
rest->pool = this;
rest->used = false;
rest->last = true;
rest->length = alloc_size - sizeof(MemoryExtent) -
sizeof(MemoryBlock) - size - sizeof(MemoryBlock);
rest->prev = blk;
BlockInfo temp = {rest, rest->length};
internalAlloc = true;
try {
freeBlocks.add(temp);
} catch(...) {
// Add item to the list of pending free blocks in case of critically-low memory condition
PendingFreeBlock* temp = (PendingFreeBlock *)(freeBlocks.getAddErrorValue().block+1);
temp->next = pendingFree;
pendingFree = temp;
}
internalAlloc = false;
}
result = blk+1;
}
// Grow spare blocks pool if necessary
if (needSpare) {
try {
if (!spareLeaf)
spareLeaf = alloc(sizeof(FreeBlocksTree::ItemList), TYPE_LEAFPAGE);
while (spareNodes.getCount() <= freeBlocks.level)
spareNodes.add(alloc(sizeof(FreeBlocksTree::NodeList), TYPE_TREEPAGE));
needSpare = false;
// We do not try to add pending blocks here because it is REALLY unlikely
// that we'll be able to recover after critically low memory condition
// during alloc()
} catch(...) {
// We can recover after this
}
}
return result;
}
void MemoryPool::free(void *block) {
MemoryBlock *blk = (MemoryBlock *)block - 1, *prev;
// Try to merge block with preceding free block
if ((prev = blk->prev) && !prev->used) {
BlockInfo temp = {prev, prev->length};
if (freeBlocks.locate(temp)) {
freeBlocks.fastRemove();
} else {
// If we are in a critically-low memory condition our block could be in the
// pending free blocks list. Remove it from there
PendingFreeBlock *itr = pendingFree, *temp = (PendingFreeBlock *)(prev+1);
if (itr == temp)
pendingFree = itr->next;
else
{
while ( itr ) {
PendingFreeBlock *next = itr->next;
if (next==temp) {
itr->next = temp->next;
break;
}
itr = next;
}
}
assert(itr); // We had to find it somewhere
}
prev->length += blk->length + sizeof(MemoryBlock);
prev->last = blk->last;
if (!blk->last)
((MemoryBlock *)((char *)(blk+1)+blk->length))->prev = prev;
temp.length = prev->length;
internalAlloc = true;
try {
freeBlocks.add(temp);
} catch(...) {
// Add item to the list of pending free blocks in case of critically-low memory condition
PendingFreeBlock* temp = (PendingFreeBlock *)(freeBlocks.getAddErrorValue().block+1);
temp->next = pendingFree;
pendingFree = temp;
}
internalAlloc = false;
} else {
// Try to merge block with next free block
if (!blk->last) {
MemoryBlock *next = (MemoryBlock *)((char*)(blk+1)+blk->length);
if (!next->used) {
blk->length+=next->length+sizeof(MemoryBlock);
blk->last = next->last;
if (!next->last)
((MemoryBlock *)((char *)(next+1)+next->length))->prev = prev;
BlockInfo temp = {next, next->length};
if (freeBlocks.locate(temp)) {
freeBlocks.fastRemove();
} else {
// If we are in a critically-low memory condition our block could be in the
// pending free blocks list. Remove it from there
PendingFreeBlock *itr = pendingFree, *temp = (PendingFreeBlock *)(prev+1);
if (itr == temp)
pendingFree = itr->next;
else
{
while ( itr ) {
PendingFreeBlock *next = itr->next;
if (next==temp) {
itr->next = temp->next;
break;
}
itr = next;
}
}
assert(itr); // We had to find it somewhere
}
}
}
// Mark block as free and add it to freeBlocks array
blk->used = false;
BlockInfo temp = {blk, blk->length};
internalAlloc = true;
try {
freeBlocks.add(temp);
} catch(...) {
// Add item to the list of pending free blocks in case of critically-low memory condition
PendingFreeBlock* temp = (PendingFreeBlock *)(freeBlocks.getAddErrorValue().block+1);
temp->next = pendingFree;
pendingFree = temp;
}
internalAlloc = false;
}
// Grow spare blocks pool if necessary
if (needSpare) {
updateSpareBlocks: {
try {
if (!spareLeaf)
spareLeaf = alloc(sizeof(FreeBlocksTree::ItemList), TYPE_LEAFPAGE);
while (spareNodes.getCount() <= freeBlocks.level)
spareNodes.add(alloc(sizeof(FreeBlocksTree::NodeList), TYPE_TREEPAGE));
needSpare = false;
// Great, if we were able to restore free blocks tree operations after critically low
// memory condition then try to add pending free blocks to our tree
while (pendingFree) {
PendingFreeBlock *temp = pendingFree;
pendingFree = temp->next;
BlockInfo info = {(MemoryBlock*)temp-1, ((MemoryBlock*)temp)->length};
internalAlloc = true;
freeBlocks.add(info); // We should be able to do this because we had spare blocks
internalAlloc = false;
if (needSpare)
goto updateSpareBlocks;
}
} catch(...) {
// We can recover after this
}
}
}
}
} /* namespace Firebird */