mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-22 16:43:03 +01:00
Import re2 version 2019-08-01.
This commit is contained in:
parent
28e18749ff
commit
65f003da0d
5
extern/re2/.gitignore
vendored
Normal file
5
extern/re2/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
*.pyc
|
||||
*.orig
|
||||
core
|
||||
obj/
|
||||
benchlog.*
|
179
extern/re2/.travis.yml
vendored
Normal file
179
extern/re2/.travis.yml
vendored
Normal file
@ -0,0 +1,179 @@
|
||||
language: cpp
|
||||
sudo: false
|
||||
dist: trusty
|
||||
script:
|
||||
- make
|
||||
- make test
|
||||
matrix:
|
||||
include:
|
||||
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-4.8
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-4.8 CXX=g++-4.8"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-4.9
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-4.9 CXX=g++-4.9"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-5
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-5 CXX=g++-5"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-6
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-6 CXX=g++-6"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-7
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-7 CXX=g++-7"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-8
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-8 CXX=g++-8"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
packages:
|
||||
- g++-9
|
||||
env:
|
||||
- MATRIX_EVAL="CC=gcc-9 CXX=g++-9"
|
||||
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-precise-3.5
|
||||
packages:
|
||||
- clang-3.5
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-3.5 CXX=clang++-3.5"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-precise-3.6
|
||||
packages:
|
||||
- clang-3.6
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-3.6 CXX=clang++-3.6"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-precise-3.7
|
||||
packages:
|
||||
- clang-3.7
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-3.7 CXX=clang++-3.7"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-precise-3.8
|
||||
packages:
|
||||
- clang-3.8
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-3.8 CXX=clang++-3.8"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-precise-3.9
|
||||
packages:
|
||||
- clang-3.9
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-3.9 CXX=clang++-3.9"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-trusty-4.0
|
||||
packages:
|
||||
- clang-4.0
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-4.0 CXX=clang++-4.0"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- llvm-toolchain-trusty-5.0
|
||||
packages:
|
||||
- clang-5.0
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-5.0 CXX=clang++-5.0"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- sourceline: 'deb https://apt.llvm.org/trusty/ llvm-toolchain-trusty-6.0 main'
|
||||
key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key'
|
||||
packages:
|
||||
- clang-6.0
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-6.0 CXX=clang++-6.0"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- sourceline: 'deb https://apt.llvm.org/trusty/ llvm-toolchain-trusty-7 main'
|
||||
key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key'
|
||||
packages:
|
||||
- clang-7
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-7 CXX=clang++-7"
|
||||
- os: linux
|
||||
addons:
|
||||
apt:
|
||||
sources:
|
||||
- ubuntu-toolchain-r-test
|
||||
- sourceline: 'deb https://apt.llvm.org/trusty/ llvm-toolchain-trusty-8 main'
|
||||
key_url: 'https://apt.llvm.org/llvm-snapshot.gpg.key'
|
||||
packages:
|
||||
- clang-8
|
||||
env:
|
||||
- MATRIX_EVAL="CC=clang-8 CXX=clang++-8"
|
||||
|
||||
before_install:
|
||||
- eval "${MATRIX_EVAL}"
|
13
extern/re2/AUTHORS
vendored
Normal file
13
extern/re2/AUTHORS
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
# This is the official list of RE2 authors for copyright purposes.
|
||||
# This file is distinct from the CONTRIBUTORS files.
|
||||
# See the latter for an explanation.
|
||||
|
||||
# Names should be added to this file as
|
||||
# Name or Organization <email address>
|
||||
# The email address is not required for organizations.
|
||||
|
||||
# Please keep the list sorted.
|
||||
|
||||
Google Inc.
|
||||
Samsung Electronics
|
||||
Stefano Rivera <stefano.rivera@gmail.com>
|
239
extern/re2/BUILD
vendored
Normal file
239
extern/re2/BUILD
vendored
Normal file
@ -0,0 +1,239 @@
|
||||
# Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# Bazel (http://bazel.io/) BUILD file for RE2.
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
|
||||
config_setting(
|
||||
name = "darwin",
|
||||
values = {"cpu": "darwin"},
|
||||
)
|
||||
|
||||
config_setting(
|
||||
name = "windows",
|
||||
values = {"cpu": "x64_windows"},
|
||||
)
|
||||
|
||||
config_setting(
|
||||
name = "windows_msvc",
|
||||
values = {"cpu": "x64_windows_msvc"},
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "re2",
|
||||
srcs = [
|
||||
"re2/bitmap256.h",
|
||||
"re2/bitstate.cc",
|
||||
"re2/compile.cc",
|
||||
"re2/dfa.cc",
|
||||
"re2/filtered_re2.cc",
|
||||
"re2/mimics_pcre.cc",
|
||||
"re2/nfa.cc",
|
||||
"re2/onepass.cc",
|
||||
"re2/parse.cc",
|
||||
"re2/perl_groups.cc",
|
||||
"re2/prefilter.cc",
|
||||
"re2/prefilter.h",
|
||||
"re2/prefilter_tree.cc",
|
||||
"re2/prefilter_tree.h",
|
||||
"re2/prog.cc",
|
||||
"re2/prog.h",
|
||||
"re2/re2.cc",
|
||||
"re2/regexp.cc",
|
||||
"re2/regexp.h",
|
||||
"re2/set.cc",
|
||||
"re2/simplify.cc",
|
||||
"re2/stringpiece.cc",
|
||||
"re2/tostring.cc",
|
||||
"re2/unicode_casefold.cc",
|
||||
"re2/unicode_casefold.h",
|
||||
"re2/unicode_groups.cc",
|
||||
"re2/unicode_groups.h",
|
||||
"re2/walker-inl.h",
|
||||
"util/flags.h",
|
||||
"util/logging.h",
|
||||
"util/mix.h",
|
||||
"util/mutex.h",
|
||||
"util/pod_array.h",
|
||||
"util/rune.cc",
|
||||
"util/sparse_array.h",
|
||||
"util/sparse_set.h",
|
||||
"util/strutil.cc",
|
||||
"util/strutil.h",
|
||||
"util/utf.h",
|
||||
"util/util.h",
|
||||
],
|
||||
hdrs = [
|
||||
"re2/filtered_re2.h",
|
||||
"re2/re2.h",
|
||||
"re2/set.h",
|
||||
"re2/stringpiece.h",
|
||||
],
|
||||
copts = select({
|
||||
":windows": [],
|
||||
":windows_msvc": [],
|
||||
"//conditions:default": ["-pthread"],
|
||||
}),
|
||||
linkopts = select({
|
||||
# Darwin doesn't need `-pthread' when linking and it appears that
|
||||
# older versions of Clang will warn about the unused command line
|
||||
# argument, so just don't pass it.
|
||||
":darwin": [],
|
||||
":windows": [],
|
||||
":windows_msvc": [],
|
||||
"//conditions:default": ["-pthread"],
|
||||
}),
|
||||
visibility = ["//visibility:public"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "testing",
|
||||
testonly = 1,
|
||||
srcs = [
|
||||
"re2/testing/backtrack.cc",
|
||||
"re2/testing/dump.cc",
|
||||
"re2/testing/exhaustive_tester.cc",
|
||||
"re2/testing/null_walker.cc",
|
||||
"re2/testing/regexp_generator.cc",
|
||||
"re2/testing/string_generator.cc",
|
||||
"re2/testing/tester.cc",
|
||||
"util/pcre.cc",
|
||||
],
|
||||
hdrs = [
|
||||
"re2/testing/exhaustive_tester.h",
|
||||
"re2/testing/regexp_generator.h",
|
||||
"re2/testing/string_generator.h",
|
||||
"re2/testing/tester.h",
|
||||
"util/benchmark.h",
|
||||
"util/pcre.h",
|
||||
"util/test.h",
|
||||
],
|
||||
deps = [":re2"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "test",
|
||||
testonly = 1,
|
||||
srcs = ["util/test.cc"],
|
||||
deps = [":testing"],
|
||||
)
|
||||
|
||||
load(":re2_test.bzl", "re2_test")
|
||||
|
||||
re2_test(
|
||||
"charclass_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"compile_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"filtered_re2_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"mimics_pcre_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"parse_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"possible_match_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"re2_arg_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"re2_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"regexp_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"required_prefix_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"search_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"set_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"simplify_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"string_generator_test",
|
||||
size = "small",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"dfa_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"exhaustive1_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"exhaustive2_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"exhaustive3_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"exhaustive_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
re2_test(
|
||||
"random_test",
|
||||
size = "large",
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "benchmark",
|
||||
testonly = 1,
|
||||
srcs = ["util/benchmark.cc"],
|
||||
deps = [":testing"],
|
||||
)
|
||||
|
||||
cc_binary(
|
||||
name = "regexp_benchmark",
|
||||
testonly = 1,
|
||||
srcs = ["re2/testing/regexp_benchmark.cc"],
|
||||
deps = [":benchmark"],
|
||||
)
|
152
extern/re2/CMakeLists.txt
vendored
Normal file
152
extern/re2/CMakeLists.txt
vendored
Normal file
@ -0,0 +1,152 @@
|
||||
# Copyright 2015 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# Old enough to support Ubuntu Trusty.
|
||||
cmake_minimum_required(VERSION 2.8.12)
|
||||
|
||||
if(POLICY CMP0048)
|
||||
cmake_policy(SET CMP0048 NEW)
|
||||
endif()
|
||||
|
||||
project(RE2 CXX)
|
||||
include(CTest)
|
||||
|
||||
option(BUILD_SHARED_LIBS "build shared libraries" OFF)
|
||||
option(USEPCRE "use PCRE in tests and benchmarks" OFF)
|
||||
|
||||
# CMake seems to have no way to enable/disable testing per subproject,
|
||||
# so we provide an option similar to BUILD_TESTING, but just for RE2.
|
||||
option(RE2_BUILD_TESTING "enable testing for RE2" ON)
|
||||
|
||||
set(EXTRA_TARGET_LINK_LIBRARIES)
|
||||
|
||||
if(CMAKE_CXX_COMPILER_ID MATCHES "MSVC")
|
||||
if(MSVC_VERSION LESS 1900)
|
||||
message(FATAL_ERROR "you need Visual Studio 2015 or later")
|
||||
endif()
|
||||
if(BUILD_SHARED_LIBS)
|
||||
# See http://www.kitware.com/blog/home/post/939 for details.
|
||||
cmake_minimum_required(VERSION 3.4)
|
||||
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
|
||||
endif()
|
||||
# CMake defaults to /W3, but some users like /W4 (or /Wall) and /WX,
|
||||
# so we disable various warnings that aren't particularly helpful.
|
||||
add_compile_options(/wd4100 /wd4201 /wd4456 /wd4457 /wd4702 /wd4815)
|
||||
# Without a byte order mark (BOM), Visual Studio assumes that the source
|
||||
# file is encoded using the current user code page, so we specify UTF-8.
|
||||
add_compile_options(/utf-8)
|
||||
elseif(CYGWIN OR MINGW)
|
||||
# See https://stackoverflow.com/questions/38139631 for details.
|
||||
add_compile_options(-std=gnu++11)
|
||||
elseif(CMAKE_CXX_COMPILER_ID MATCHES "GNU|Clang")
|
||||
add_compile_options(-std=c++11)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
add_definitions(-DUNICODE -D_UNICODE -DSTRICT -DNOMINMAX)
|
||||
add_definitions(-D_CRT_SECURE_NO_WARNINGS -D_SCL_SECURE_NO_WARNINGS)
|
||||
elseif(UNIX)
|
||||
add_compile_options(-pthread)
|
||||
list(APPEND EXTRA_TARGET_LINK_LIBRARIES -pthread)
|
||||
endif()
|
||||
|
||||
if(USEPCRE)
|
||||
add_definitions(-DUSEPCRE)
|
||||
list(APPEND EXTRA_TARGET_LINK_LIBRARIES pcre)
|
||||
endif()
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
set(RE2_SOURCES
|
||||
re2/bitstate.cc
|
||||
re2/compile.cc
|
||||
re2/dfa.cc
|
||||
re2/filtered_re2.cc
|
||||
re2/mimics_pcre.cc
|
||||
re2/nfa.cc
|
||||
re2/onepass.cc
|
||||
re2/parse.cc
|
||||
re2/perl_groups.cc
|
||||
re2/prefilter.cc
|
||||
re2/prefilter_tree.cc
|
||||
re2/prog.cc
|
||||
re2/re2.cc
|
||||
re2/regexp.cc
|
||||
re2/set.cc
|
||||
re2/simplify.cc
|
||||
re2/stringpiece.cc
|
||||
re2/tostring.cc
|
||||
re2/unicode_casefold.cc
|
||||
re2/unicode_groups.cc
|
||||
util/rune.cc
|
||||
util/strutil.cc
|
||||
)
|
||||
|
||||
add_library(re2 ${RE2_SOURCES})
|
||||
add_library(re2::re2 ALIAS re2)
|
||||
|
||||
if(RE2_BUILD_TESTING)
|
||||
set(TESTING_SOURCES
|
||||
re2/testing/backtrack.cc
|
||||
re2/testing/dump.cc
|
||||
re2/testing/exhaustive_tester.cc
|
||||
re2/testing/null_walker.cc
|
||||
re2/testing/regexp_generator.cc
|
||||
re2/testing/string_generator.cc
|
||||
re2/testing/tester.cc
|
||||
util/pcre.cc
|
||||
)
|
||||
|
||||
add_library(testing STATIC ${TESTING_SOURCES})
|
||||
|
||||
set(TEST_TARGETS
|
||||
charclass_test
|
||||
compile_test
|
||||
filtered_re2_test
|
||||
mimics_pcre_test
|
||||
parse_test
|
||||
possible_match_test
|
||||
re2_test
|
||||
re2_arg_test
|
||||
regexp_test
|
||||
required_prefix_test
|
||||
search_test
|
||||
set_test
|
||||
simplify_test
|
||||
string_generator_test
|
||||
|
||||
dfa_test
|
||||
exhaustive1_test
|
||||
exhaustive2_test
|
||||
exhaustive3_test
|
||||
exhaustive_test
|
||||
random_test
|
||||
)
|
||||
|
||||
set(BENCHMARK_TARGETS
|
||||
regexp_benchmark
|
||||
)
|
||||
|
||||
foreach(target ${TEST_TARGETS})
|
||||
add_executable(${target} re2/testing/${target}.cc util/test.cc)
|
||||
target_link_libraries(${target} testing re2 ${EXTRA_TARGET_LINK_LIBRARIES})
|
||||
add_test(NAME ${target} COMMAND ${target})
|
||||
endforeach(target)
|
||||
|
||||
foreach(target ${BENCHMARK_TARGETS})
|
||||
add_executable(${target} re2/testing/${target}.cc util/benchmark.cc)
|
||||
target_link_libraries(${target} testing re2 ${EXTRA_TARGET_LINK_LIBRARIES})
|
||||
endforeach(target)
|
||||
endif()
|
||||
|
||||
set(RE2_HEADERS
|
||||
re2/filtered_re2.h
|
||||
re2/re2.h
|
||||
re2/set.h
|
||||
re2/stringpiece.h
|
||||
)
|
||||
|
||||
install(FILES ${RE2_HEADERS} DESTINATION include/re2)
|
||||
install(TARGETS re2 EXPORT re2Config ARCHIVE DESTINATION lib LIBRARY DESTINATION lib RUNTIME DESTINATION bin INCLUDES DESTINATION include)
|
||||
install(EXPORT re2Config DESTINATION lib/cmake/re2 NAMESPACE re2::)
|
2
extern/re2/CONTRIBUTING.md
vendored
Normal file
2
extern/re2/CONTRIBUTING.md
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
RE2 uses Gerrit instead of GitHub pull requests.
|
||||
See the [Contributing](https://github.com/google/re2/wiki/Contribute) wiki page.
|
41
extern/re2/CONTRIBUTORS
vendored
Normal file
41
extern/re2/CONTRIBUTORS
vendored
Normal file
@ -0,0 +1,41 @@
|
||||
# This is the official list of people who can contribute
|
||||
# (and typically have contributed) code to the RE2 repository.
|
||||
# The AUTHORS file lists the copyright holders; this file
|
||||
# lists people. For example, Google employees are listed here
|
||||
# but not in AUTHORS, because Google holds the copyright.
|
||||
#
|
||||
# The submission process automatically checks to make sure
|
||||
# that people submitting code are listed in this file (by email address).
|
||||
#
|
||||
# Names should be added to this file only after verifying that
|
||||
# the individual or the individual's organization has agreed to
|
||||
# the appropriate Contributor License Agreement, found here:
|
||||
#
|
||||
# http://code.google.com/legal/individual-cla-v1.0.html
|
||||
# http://code.google.com/legal/corporate-cla-v1.0.html
|
||||
#
|
||||
# The agreement for individuals can be filled out on the web.
|
||||
#
|
||||
# When adding J Random Contributor's name to this file,
|
||||
# either J's name or J's organization's name should be
|
||||
# added to the AUTHORS file, depending on whether the
|
||||
# individual or corporate CLA was used.
|
||||
|
||||
# Names should be added to this file like so:
|
||||
# Name <email address>
|
||||
|
||||
# Please keep the list sorted.
|
||||
|
||||
Dominic Battré <battre@chromium.org>
|
||||
Doug Kwan <dougkwan@google.com>
|
||||
Dmitriy Vyukov <dvyukov@google.com>
|
||||
John Millikin <jmillikin@gmail.com>
|
||||
Mike Nazarewicz <mpn@google.com>
|
||||
Nico Weber <thakis@chromium.org>
|
||||
Pawel Hajdan <phajdan.jr@gmail.com>
|
||||
Rob Pike <r@google.com>
|
||||
Russ Cox <rsc@swtch.com>
|
||||
Sanjay Ghemawat <sanjay@google.com>
|
||||
Stefano Rivera <stefano.rivera@gmail.com>
|
||||
Srinivasan Venkatachary <vsri@google.com>
|
||||
Viatcheslav Ostapenko <sl.ostapenko@samsung.com>
|
27
extern/re2/LICENSE
vendored
Normal file
27
extern/re2/LICENSE
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
// Copyright (c) 2009 The RE2 Authors. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Google Inc. nor the names of its
|
||||
// contributors may be used to endorse or promote products derived from
|
||||
// this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
extern/re2/README
vendored
Normal file
38
extern/re2/README
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
This is the source code repository for RE2, a regular expression library.
|
||||
|
||||
For documentation about how to install and use RE2,
|
||||
visit https://github.com/google/re2/.
|
||||
|
||||
The short version is:
|
||||
|
||||
make
|
||||
make test
|
||||
make install
|
||||
make testinstall
|
||||
|
||||
There is a fair amount of documentation (including code snippets) in
|
||||
the re2.h header file.
|
||||
|
||||
More information can be found on the wiki:
|
||||
https://github.com/google/re2/wiki
|
||||
|
||||
Issue tracker:
|
||||
https://github.com/google/re2/issues
|
||||
|
||||
Mailing list:
|
||||
https://groups.google.com/group/re2-dev
|
||||
|
||||
Unless otherwise noted, the RE2 source files are distributed
|
||||
under the BSD-style license found in the LICENSE file.
|
||||
|
||||
RE2's native language is C++.
|
||||
|
||||
A C wrapper is at https://github.com/marcomaggi/cre2/.
|
||||
An Erlang wrapper is at https://github.com/dukesoferl/re2/ and on Hex (hex.pm).
|
||||
An Inferno wrapper is at https://github.com/powerman/inferno-re2/.
|
||||
A Node.js wrapper is at https://github.com/uhop/node-re2/ and on NPM (npmjs.com).
|
||||
An OCaml wrapper is at https://github.com/janestreet/re2/ and on OPAM (opam.ocaml.org).
|
||||
A Perl wrapper is at https://github.com/dgl/re-engine-RE2/ and on CPAN (cpan.org).
|
||||
A Python wrapper is at https://github.com/facebook/pyre2/ and on PyPI (pypi.org).
|
||||
An R wrapper is at https://github.com/qinwf/re2r/ and on CRAN (cran.r-project.org).
|
||||
A Ruby wrapper is at https://github.com/mudge/re2/ and on RubyGems (rubygems.org).
|
6
extern/re2/WORKSPACE
vendored
Normal file
6
extern/re2/WORKSPACE
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
# Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# Bazel (http://bazel.io/) WORKSPACE file for RE2.
|
||||
workspace(name = "com_googlesource_code_re2")
|
98
extern/re2/benchlog/benchplot.py
vendored
Normal file
98
extern/re2/benchlog/benchplot.py
vendored
Normal file
@ -0,0 +1,98 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import argparse # for ArgumentParser
|
||||
import subprocess # for Popen
|
||||
import tempfile # for NamedTemporaryFile
|
||||
import os # for remove
|
||||
|
||||
class gnuplot(object):
|
||||
|
||||
output = "result.png"
|
||||
|
||||
script = """
|
||||
set terminal png size 1024, 768
|
||||
set output "{}.png"
|
||||
set title "re2 benchlog"
|
||||
set datafile separator ";"
|
||||
set grid x y
|
||||
set ylabel "MB/s"
|
||||
set autoscale
|
||||
plot """
|
||||
|
||||
template = """'{}' using 1:5:xticlabels(2) with linespoints linewidth 3 title "{}",\\\n"""
|
||||
|
||||
benchdata = dict()
|
||||
tempfiles = []
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
"""
|
||||
remove all temporary files
|
||||
"""
|
||||
|
||||
for filename in self.tempfiles:
|
||||
os.remove(filename)
|
||||
|
||||
def parse_re2_benchlog(self, filename):
|
||||
"""
|
||||
parse the input benchlog and return a dictionary contain bench data
|
||||
"""
|
||||
|
||||
benchdata = self.benchdata
|
||||
|
||||
with open(filename) as f:
|
||||
|
||||
for raw in f.readlines():
|
||||
|
||||
data = raw.split('\t')
|
||||
|
||||
if len(data) == 4:
|
||||
|
||||
data = data[0].split('/') + data[1:]
|
||||
data = list(map(str.strip, data))
|
||||
|
||||
if not benchdata.get(data[0]):
|
||||
benchdata[data[0]] = [ data[1:] ]
|
||||
else:
|
||||
benchdata[data[0]].append(data[1:])
|
||||
|
||||
def gen_csv(self):
|
||||
"""
|
||||
generate temporary csv files
|
||||
"""
|
||||
|
||||
for name, data in self.benchdata.items():
|
||||
|
||||
with tempfile.NamedTemporaryFile(delete=False) as f:
|
||||
|
||||
for index, line in enumerate(data):
|
||||
f.write('{};{}\n'.format(index, ';'.join(line)).encode())
|
||||
|
||||
self.tempfiles.append(f.name)
|
||||
self.script = self.script + self.template.format(f.name, name)
|
||||
|
||||
def run(self):
|
||||
self.gen_csv()
|
||||
script = self.script[:-3].format(self.output)
|
||||
command = subprocess.Popen(['gnuplot'], stdin=subprocess.PIPE)
|
||||
command.communicate(script.encode())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
parser = argparse.ArgumentParser(description='generate plots for benchlog')
|
||||
parser.add_argument('benchlog', type=str, help='benchlog generated by re2')
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
subprocess.Popen(['gnuplot'], stdin=subprocess.PIPE)
|
||||
except FileNotFoundError:
|
||||
print('you can install "gnuplot" to generate plots automatically')
|
||||
exit(1)
|
||||
|
||||
with gnuplot() as plot:
|
||||
plot.output = args.benchlog
|
||||
plot.parse_re2_benchlog(args.benchlog)
|
||||
plot.run()
|
155
extern/re2/benchlog/mktable
vendored
Normal file
155
extern/re2/benchlog/mktable
vendored
Normal file
@ -0,0 +1,155 @@
|
||||
#!/usr/bin/perl
|
||||
# XXX
|
||||
|
||||
sub table() {
|
||||
my ($name) = @_;
|
||||
print <<'EOF';
|
||||
<table border=0>
|
||||
<tr><th>System</th><th>PCRE</th><th>RE2</th></tr>
|
||||
EOF
|
||||
foreach my $sys (@sys) {
|
||||
my $ns_pcre = $data{$sys}->{sprintf($name, "PCRE")}->{'ns/op'};
|
||||
my $ns_re2 = $data{$sys}->{sprintf($name, "RE2")}->{'ns/op'};
|
||||
printf "<tr><td>%s</td><td>%.1f µs</td><td>%.1f µs</td></tr>\n", $sysname{$sys}, $ns_pcre/1000., $ns_re2/1000.;
|
||||
}
|
||||
print <<'EOF';
|
||||
<tr height=5><td colspan=3></td></tr>
|
||||
</table>
|
||||
EOF
|
||||
}
|
||||
|
||||
@sizes = (
|
||||
"8", "16", "32", "64", "128", "256", "512",
|
||||
"1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K",
|
||||
"1M", "2M", "4M", "8M", "16M"
|
||||
);
|
||||
|
||||
%color = (
|
||||
"PCRE" => "0.7 0 0",
|
||||
"RE2" => "0 0 1",
|
||||
);
|
||||
|
||||
$ngraph = 0;
|
||||
|
||||
sub graph() {
|
||||
my ($name) = @_;
|
||||
|
||||
my $sys = "wreck";
|
||||
my $base = sprintf("regexp3g%d", ++$ngraph);
|
||||
|
||||
open(JGR, ">$base.jgr") || die "open >$base.jgr: $!";
|
||||
printf JGR "bbox -20 -12 392 95\n";
|
||||
printf JGR "newgraph clip x_translate 0.25 y_translate 0.25\n";
|
||||
$ymax = 0;
|
||||
%lastx = ();
|
||||
%lasty = ();
|
||||
foreach my $who ("PCRE", "RE2") {
|
||||
printf JGR "newcurve pts\n";
|
||||
for(my $i=0; $i<@sizes; $i++) {
|
||||
my $key = sprintf("%s%s/%s", $name, $who, $sizes[$i]);
|
||||
my $val = $data{$sys}->{$key}->{'MB/s'};
|
||||
next if !defined($val);
|
||||
if($val > $ymax) {
|
||||
$ymax = $val;
|
||||
}
|
||||
$lastx{$who} = $i;
|
||||
$lasty{$who} = $val;
|
||||
printf JGR "$i %f (* %s *)\n", $val, $key;
|
||||
}
|
||||
my $color = $color{$who};
|
||||
printf JGR "marktype none color $color linethickness 2 linetype solid label : $who\n";
|
||||
}
|
||||
my $n = @sizes;
|
||||
printf JGR "xaxis min -1 max $n size 5 label : text size (bytes)\n";
|
||||
printf JGR " no_auto_hash_marks hash_labels fontsize 9\n";
|
||||
for($i=0; $i<@sizes; $i+=3) {
|
||||
printf JGR " hash_at $i hash_label at $i : $sizes[$i]\n";
|
||||
}
|
||||
my $y = 1;
|
||||
while(10*$y <= $ymax) {
|
||||
$y = 10*$y;
|
||||
}
|
||||
for($i=2; $i<=10; $i++) {
|
||||
if($i*$y > $ymax) {
|
||||
$y = $i*$y;
|
||||
last;
|
||||
}
|
||||
}
|
||||
foreach my $who ("PCRE", "RE2") {
|
||||
$x1 = $lastx{$who};
|
||||
$y1 = $lasty{$who};
|
||||
$x1 *= 1.01;
|
||||
my $v = "vjc";
|
||||
if($y1 < 0.05 * $y) {
|
||||
$v = "vjb";
|
||||
$y1 = 0.05 * $y;
|
||||
}
|
||||
printf JGR "newstring x $x1 y $y1 hjl $v : $who\n";
|
||||
}
|
||||
printf JGR "yaxis min 0 max $y size 1 label : speed (MB/s)\n";
|
||||
printf JGR " hash_labels fontsize 9\n";
|
||||
# printf JGR "legend defaults font Times-Roman fontsize 10 x 0 y $y hjl vjt\n";
|
||||
|
||||
system("jgraph $base.jgr >$base.eps"); # die "system: $!";
|
||||
system("gs -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dEPSCrop -sDEVICE=png16m -r100 -sOutputFile=$base.png -dBATCH -dQUIT -dQUIET -dNOPAUSE $base.eps");
|
||||
|
||||
printf "<img src=$base.png>\n"
|
||||
|
||||
}
|
||||
|
||||
sub skip() {
|
||||
while(<>) {
|
||||
if(/^<!-- -->/) {
|
||||
print;
|
||||
last;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@sys = ("r70", "c2", "wreck", "mini");
|
||||
%sysname = (
|
||||
"r70" => "AMD Opteron 8214 HE, 2.2 GHz",
|
||||
"c2" => "Intel Core2 Duo E7200, 2.53 GHz",
|
||||
"wreck" => "Intel Xeon 5150, 2.66 GHz (Mac Pro)",
|
||||
"mini" => "Intel Core2 T5600, 1.83 GHz (Mac Mini)",
|
||||
);
|
||||
|
||||
%func = (
|
||||
"table" => \&table,
|
||||
"graph" => \&graph,
|
||||
|
||||
);
|
||||
|
||||
foreach my $sys (@sys) {
|
||||
open(F, "benchlog.$sys") || die "open benchlog.$sys: $!";
|
||||
my %sysdat;
|
||||
while(<F>) {
|
||||
if(/^([A-Za-z0-9_\/]+)\s+(\d+)\s+(\d+) ns\/op/) {
|
||||
my %row;
|
||||
$row{"name"} = $1;
|
||||
$row{"iter"} = $2;
|
||||
$row{"ns/op"} = $3;
|
||||
if(/([\d.]+) MB\/s/){
|
||||
$row{"MB/s"} = $1;
|
||||
}
|
||||
$sysdat{$row{"name"}} = \%row;
|
||||
}
|
||||
}
|
||||
close F;
|
||||
$data{$sys} = \%sysdat;
|
||||
}
|
||||
|
||||
while(<>) {
|
||||
print;
|
||||
if(/^<!-- benchlog (\w+) -->/) {
|
||||
$func{$1}();
|
||||
skip();
|
||||
next;
|
||||
}
|
||||
if(/^<!-- benchlog (\w+) ([%\w]+) -->/) {
|
||||
$func{$1}($2);
|
||||
skip();
|
||||
next;
|
||||
}
|
||||
}
|
||||
|
1
extern/re2/doc/README.xkcd
vendored
Normal file
1
extern/re2/doc/README.xkcd
vendored
Normal file
@ -0,0 +1 @@
|
||||
xkcd.png is a cropped version of http://xkcd.com/208/
|
41
extern/re2/doc/mksyntaxgo
vendored
Normal file
41
extern/re2/doc/mksyntaxgo
vendored
Normal file
@ -0,0 +1,41 @@
|
||||
#!/bin/sh
|
||||
|
||||
set -e
|
||||
out=$GOROOT/src/regexp/syntax/doc.go
|
||||
cp syntax.txt $out
|
||||
sam -d $out <<'!'
|
||||
,x g/NOT SUPPORTED/d
|
||||
/^Unicode character class/,$d
|
||||
,s/[«»]//g
|
||||
,x g/^Possessive repetitions:/d
|
||||
,x g/\\C/d
|
||||
,x g/Flag syntax/d
|
||||
,s/.=(true|false)/flag &/g
|
||||
,s/^Flags:/ Flag syntax is xyz (set) or -xyz (clear) or xy-z (set xy, clear z). The flags are:\n/
|
||||
,s/\n\n\n+/\n\n/g
|
||||
,x/(^.* .*\n)+/ | awk -F' ' '{printf(" %-14s %s\n", $1, $2)}'
|
||||
1,2c
|
||||
// Copyright 2012 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// DO NOT EDIT. This file is generated by mksyntaxgo from the RE2 distribution.
|
||||
|
||||
/*
|
||||
Package syntax parses regular expressions into parse trees and compiles
|
||||
parse trees into programs. Most clients of regular expressions will use the
|
||||
facilities of package regexp (such as Compile and Match) instead of this package.
|
||||
|
||||
Syntax
|
||||
|
||||
The regular expression syntax understood by this package when parsing with the Perl flag is as follows.
|
||||
Parts of the syntax can be disabled by passing alternate flags to Parse.
|
||||
|
||||
.
|
||||
$a
|
||||
*/
|
||||
package syntax
|
||||
.
|
||||
w
|
||||
q
|
||||
!
|
42
extern/re2/doc/mksyntaxhtml
vendored
Normal file
42
extern/re2/doc/mksyntaxhtml
vendored
Normal file
@ -0,0 +1,42 @@
|
||||
#!/bin/sh
|
||||
|
||||
cp syntax.txt syntax.html
|
||||
sam -d syntax.html <<'!'
|
||||
,s/\&/\&/g
|
||||
,s/</\</g
|
||||
,s/>/\>/g
|
||||
,s!== (([^()]|\([^()]*\))*)!≡ <code>\1</code>!g
|
||||
,s!«!<code>!g
|
||||
,s!»!</code>!g
|
||||
,s! vim$! <font size=-2>VIM</font>!g
|
||||
,s! pcre$! <font size=-2>PCRE</font>!g
|
||||
,s! perl$! <font size=-2>PERL</font>!g
|
||||
,x g/NOT SUPPORTED/ s!^[^ ]+!<font color=#808080>&</font>!
|
||||
,s!NOT SUPPORTED!!g
|
||||
,s!(^[^ ]+) (.*)\n!<tr><td><code>\1</code></td><td>\2</td></tr>\n!g
|
||||
,s!.*:$!<b>&</b>!g
|
||||
,s!^$!<tr><td></td></tr>!g
|
||||
,x v/<tr>/ s!.*!<tr><td colspan=2>&</td></tr>!
|
||||
1,2c
|
||||
<html>
|
||||
<!-- AUTOMATICALLY GENERATED by mksyntaxhtml -->
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
|
||||
<title>RE2 regular expression syntax reference</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>RE2 regular expression syntax reference</h1>
|
||||
|
||||
<table border=0 cellpadding=2 cellspacing=2>
|
||||
<tr><td colspan=2>This page lists the regular expression syntax accepted by RE2.</td></tr>
|
||||
<tr><td colspan=2>It also lists syntax accepted by PCRE, PERL, and VIM.</td></tr>
|
||||
<tr><td colspan=2>Grayed out expressions are not supported by RE2.</td></tr>
|
||||
.
|
||||
$a
|
||||
</table>
|
||||
</body>
|
||||
</html>
|
||||
.
|
||||
w
|
||||
q
|
||||
!
|
36
extern/re2/doc/mksyntaxwiki
vendored
Normal file
36
extern/re2/doc/mksyntaxwiki
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
#!/bin/sh
|
||||
|
||||
cp syntax.txt syntax.wiki
|
||||
sam -d syntax.wiki <<'!'
|
||||
,s!`!`````!g
|
||||
,s!== (([^()]|\([^()]*\))*)!≡ `\1`!g
|
||||
,s!«!`!g
|
||||
,s!»!`!g
|
||||
,s! vim$! <font size="1">VIM</font>!g
|
||||
,s! pcre$! <font size="1">PCRE</font>!g
|
||||
,s! perl$! <font size="1">PERL</font>!g
|
||||
,s!(^[^ ]+) (.*)\n!`\1` \2\n!g
|
||||
,x g/NOT SUPPORTED/ s!^[^ ]+!<font color="#808080">&</font>!
|
||||
,s!NOT SUPPORTED!<font size="1">(&)</font>!g
|
||||
,s!(^[^ ]+) (.*)\n!<tr><td>\1</td><td>\2</td></tr>\n!g
|
||||
,s!.*:$!<b>&</b>!g
|
||||
,s!^$!<tr><td></td></tr>!g
|
||||
,x v/<tr>/ s!.*!<tr><td colspan="2">&</td></tr>!
|
||||
1,2c
|
||||
#summary I define UNIX as “30 definitions of regular expressions living under one roof.” —Don Knuth
|
||||
|
||||
<wiki:comment>
|
||||
GENERATED BY mksyntaxwiki. DO NOT EDIT
|
||||
</wiki:comment>
|
||||
|
||||
<table border="0" cellpadding="2" cellspacing="2">
|
||||
<tr><td colspan="2">This page lists the regular expression syntax accepted by RE2.</td></tr>
|
||||
<tr><td colspan="2">It also lists syntax accepted by PCRE, PERL, and VIM.</td></tr>
|
||||
<tr><td colspan="2">Grayed out expressions are not supported by RE2.</td></tr>
|
||||
.
|
||||
$a
|
||||
</table>
|
||||
.
|
||||
w
|
||||
q
|
||||
!
|
409
extern/re2/doc/syntax.html
vendored
Normal file
409
extern/re2/doc/syntax.html
vendored
Normal file
@ -0,0 +1,409 @@
|
||||
<html>
|
||||
<!-- AUTOMATICALLY GENERATED by mksyntaxhtml -->
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
|
||||
<title>RE2 regular expression syntax reference</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>RE2 regular expression syntax reference</h1>
|
||||
|
||||
<table border=0 cellpadding=2 cellspacing=2>
|
||||
<tr><td colspan=2>This page lists the regular expression syntax accepted by RE2.</td></tr>
|
||||
<tr><td colspan=2>It also lists syntax accepted by PCRE, PERL, and VIM.</td></tr>
|
||||
<tr><td colspan=2>Grayed out expressions are not supported by RE2.</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Single characters:</b></td></tr>
|
||||
<tr><td><code>.</code></td><td>any character, possibly including newline (s=true)</td></tr>
|
||||
<tr><td><code>[xyz]</code></td><td>character class</td></tr>
|
||||
<tr><td><code>[^xyz]</code></td><td>negated character class</td></tr>
|
||||
<tr><td><code>\d</code></td><td>Perl character class</td></tr>
|
||||
<tr><td><code>\D</code></td><td>negated Perl character class</td></tr>
|
||||
<tr><td><code>[[:alpha:]]</code></td><td>ASCII character class</td></tr>
|
||||
<tr><td><code>[[:^alpha:]]</code></td><td>negated ASCII character class</td></tr>
|
||||
<tr><td><code>\pN</code></td><td>Unicode character class (one-letter name)</td></tr>
|
||||
<tr><td><code>\p{Greek}</code></td><td>Unicode character class</td></tr>
|
||||
<tr><td><code>\PN</code></td><td>negated Unicode character class (one-letter name)</td></tr>
|
||||
<tr><td><code>\P{Greek}</code></td><td>negated Unicode character class</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Composites:</b></td></tr>
|
||||
<tr><td><code>xy</code></td><td><code>x</code> followed by <code>y</code></td></tr>
|
||||
<tr><td><code>x|y</code></td><td><code>x</code> or <code>y</code> (prefer <code>x</code>)</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Repetitions:</b></td></tr>
|
||||
<tr><td><code>x*</code></td><td>zero or more <code>x</code>, prefer more</td></tr>
|
||||
<tr><td><code>x+</code></td><td>one or more <code>x</code>, prefer more</td></tr>
|
||||
<tr><td><code>x?</code></td><td>zero or one <code>x</code>, prefer one</td></tr>
|
||||
<tr><td><code>x{n,m}</code></td><td><code>n</code> or <code>n</code>+1 or ... or <code>m</code> <code>x</code>, prefer more</td></tr>
|
||||
<tr><td><code>x{n,}</code></td><td><code>n</code> or more <code>x</code>, prefer more</td></tr>
|
||||
<tr><td><code>x{n}</code></td><td>exactly <code>n</code> <code>x</code></td></tr>
|
||||
<tr><td><code>x*?</code></td><td>zero or more <code>x</code>, prefer fewer</td></tr>
|
||||
<tr><td><code>x+?</code></td><td>one or more <code>x</code>, prefer fewer</td></tr>
|
||||
<tr><td><code>x??</code></td><td>zero or one <code>x</code>, prefer zero</td></tr>
|
||||
<tr><td><code>x{n,m}?</code></td><td><code>n</code> or <code>n</code>+1 or ... or <code>m</code> <code>x</code>, prefer fewer</td></tr>
|
||||
<tr><td><code>x{n,}?</code></td><td><code>n</code> or more <code>x</code>, prefer fewer</td></tr>
|
||||
<tr><td><code>x{n}?</code></td><td>exactly <code>n</code> <code>x</code></td></tr>
|
||||
<tr><td><code><font color=#808080>x{}</font></code></td><td>(≡ <code>x*</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>x{-}</font></code></td><td>(≡ <code>x*?</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>x{-n}</font></code></td><td>(≡ <code>x{n}?</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>x=</font></code></td><td>(≡ <code>x?</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Possessive repetitions:</b></td></tr>
|
||||
<tr><td><code><font color=#808080>x*+</font></code></td><td>zero or more <code>x</code>, possessive </td></tr>
|
||||
<tr><td><code><font color=#808080>x++</font></code></td><td>one or more <code>x</code>, possessive </td></tr>
|
||||
<tr><td><code><font color=#808080>x?+</font></code></td><td>zero or one <code>x</code>, possessive </td></tr>
|
||||
<tr><td><code><font color=#808080>x{n,m}+</font></code></td><td><code>n</code> or ... or <code>m</code> <code>x</code>, possessive </td></tr>
|
||||
<tr><td><code><font color=#808080>x{n,}+</font></code></td><td><code>n</code> or more <code>x</code>, possessive </td></tr>
|
||||
<tr><td><code><font color=#808080>x{n}+</font></code></td><td>exactly <code>n</code> <code>x</code>, possessive </td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Grouping:</b></td></tr>
|
||||
<tr><td><code>(re)</code></td><td>numbered capturing group</td></tr>
|
||||
<tr><td><code>(?P<name>re)</code></td><td>named & numbered capturing group</td></tr>
|
||||
<tr><td><code><font color=#808080>(?<name>re)</font></code></td><td>named & numbered capturing group </td></tr>
|
||||
<tr><td><code><font color=#808080>(?'name're)</font></code></td><td>named & numbered capturing group </td></tr>
|
||||
<tr><td><code>(?:re)</code></td><td>non-capturing group</td></tr>
|
||||
<tr><td><code>(?flags)</code></td><td>set flags within current group; non-capturing</td></tr>
|
||||
<tr><td><code>(?flags:re)</code></td><td>set flags during re; non-capturing</td></tr>
|
||||
<tr><td><code><font color=#808080>(?#text)</font></code></td><td>comment </td></tr>
|
||||
<tr><td><code><font color=#808080>(?|x|y|z)</font></code></td><td>branch numbering reset </td></tr>
|
||||
<tr><td><code><font color=#808080>(?>re)</font></code></td><td>possessive match of <code>re</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>re@></font></code></td><td>possessive match of <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>%(re)</font></code></td><td>non-capturing group <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Flags:</b></td></tr>
|
||||
<tr><td><code>i</code></td><td>case-insensitive (default false)</td></tr>
|
||||
<tr><td><code>m</code></td><td>multi-line mode: <code>^</code> and <code>$</code> match begin/end line in addition to begin/end text (default false)</td></tr>
|
||||
<tr><td><code>s</code></td><td>let <code>.</code> match <code>\n</code> (default false)</td></tr>
|
||||
<tr><td><code>U</code></td><td>ungreedy: swap meaning of <code>x*</code> and <code>x*?</code>, <code>x+</code> and <code>x+?</code>, etc (default false)</td></tr>
|
||||
<tr><td colspan=2>Flag syntax is <code>xyz</code> (set) or <code>-xyz</code> (clear) or <code>xy-z</code> (set <code>xy</code>, clear <code>z</code>).</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Empty strings:</b></td></tr>
|
||||
<tr><td><code>^</code></td><td>at beginning of text or line (<code>m</code>=true)</td></tr>
|
||||
<tr><td><code>$</code></td><td>at end of text (like <code>\z</code> not <code>\Z</code>) or line (<code>m</code>=true)</td></tr>
|
||||
<tr><td><code>\A</code></td><td>at beginning of text</td></tr>
|
||||
<tr><td><code>\b</code></td><td>at word boundary (<code>\w</code> on one side and <code>\W</code>, <code>\A</code>, or <code>\z</code> on the other)</td></tr>
|
||||
<tr><td><code>\B</code></td><td>not a word boundary</td></tr>
|
||||
<tr><td><code><font color=#808080>\G</font></code></td><td>at beginning of subtext being searched <font size=-2>PCRE</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\G</font></code></td><td>at end of last match <font size=-2>PERL</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\Z</font></code></td><td>at end of text, or before newline at end of text </td></tr>
|
||||
<tr><td><code>\z</code></td><td>at end of text</td></tr>
|
||||
<tr><td><code><font color=#808080>(?=re)</font></code></td><td>before text matching <code>re</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?!re)</font></code></td><td>before text not matching <code>re</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?<=re)</font></code></td><td>after text matching <code>re</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?<!re)</font></code></td><td>after text not matching <code>re</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>re&</font></code></td><td>before text matching <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>re@=</font></code></td><td>before text matching <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>re@!</font></code></td><td>before text not matching <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>re@<=</font></code></td><td>after text matching <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>re@<!</font></code></td><td>after text not matching <code>re</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\zs</font></code></td><td>sets start of match (= \K) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\ze</font></code></td><td>sets end of match <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%^</font></code></td><td>beginning of file <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%$</font></code></td><td>end of file <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%V</font></code></td><td>on screen <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%#</font></code></td><td>cursor position <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%'m</font></code></td><td>mark <code>m</code> position <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%23l</font></code></td><td>in line 23 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%23c</font></code></td><td>in column 23 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%23v</font></code></td><td>in virtual column 23 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Escape sequences:</b></td></tr>
|
||||
<tr><td><code>\a</code></td><td>bell (≡ <code>\007</code>)</td></tr>
|
||||
<tr><td><code>\f</code></td><td>form feed (≡ <code>\014</code>)</td></tr>
|
||||
<tr><td><code>\t</code></td><td>horizontal tab (≡ <code>\011</code>)</td></tr>
|
||||
<tr><td><code>\n</code></td><td>newline (≡ <code>\012</code>)</td></tr>
|
||||
<tr><td><code>\r</code></td><td>carriage return (≡ <code>\015</code>)</td></tr>
|
||||
<tr><td><code>\v</code></td><td>vertical tab character (≡ <code>\013</code>)</td></tr>
|
||||
<tr><td><code>\*</code></td><td>literal <code>*</code>, for any punctuation character <code>*</code></td></tr>
|
||||
<tr><td><code>\123</code></td><td>octal character code (up to three digits)</td></tr>
|
||||
<tr><td><code>\x7F</code></td><td>hex character code (exactly two digits)</td></tr>
|
||||
<tr><td><code>\x{10FFFF}</code></td><td>hex character code</td></tr>
|
||||
<tr><td><code>\C</code></td><td>match a single byte even in UTF-8 mode</td></tr>
|
||||
<tr><td><code>\Q...\E</code></td><td>literal text <code>...</code> even if <code>...</code> has punctuation</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td><code><font color=#808080>\1</font></code></td><td>backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\b</font></code></td><td>backspace (use <code>\010</code>)</td></tr>
|
||||
<tr><td><code><font color=#808080>\cK</font></code></td><td>control char ^K (use <code>\001</code> etc)</td></tr>
|
||||
<tr><td><code><font color=#808080>\e</font></code></td><td>escape (use <code>\033</code>)</td></tr>
|
||||
<tr><td><code><font color=#808080>\g1</font></code></td><td>backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\g{1}</font></code></td><td>backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\g{+1}</font></code></td><td>backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\g{-1}</font></code></td><td>backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\g{name}</font></code></td><td>named backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\g<name></font></code></td><td>subroutine call </td></tr>
|
||||
<tr><td><code><font color=#808080>\g'name'</font></code></td><td>subroutine call </td></tr>
|
||||
<tr><td><code><font color=#808080>\k<name></font></code></td><td>named backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\k'name'</font></code></td><td>named backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>\lX</font></code></td><td>lowercase <code>X</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>\ux</font></code></td><td>uppercase <code>x</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>\L...\E</font></code></td><td>lowercase text <code>...</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>\K</font></code></td><td>reset beginning of <code>$0</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>\N{name}</font></code></td><td>named Unicode character </td></tr>
|
||||
<tr><td><code><font color=#808080>\R</font></code></td><td>line break </td></tr>
|
||||
<tr><td><code><font color=#808080>\U...\E</font></code></td><td>upper case text <code>...</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>\X</font></code></td><td>extended Unicode sequence </td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td><code><font color=#808080>\%d123</font></code></td><td>decimal character 123 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%xFF</font></code></td><td>hex character FF <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%o123</font></code></td><td>octal character 123 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%u1234</font></code></td><td>Unicode character 0x1234 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\%U12345678</font></code></td><td>Unicode character 0x12345678 <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Character class elements:</b></td></tr>
|
||||
<tr><td><code>x</code></td><td>single character</td></tr>
|
||||
<tr><td><code>A-Z</code></td><td>character range (inclusive)</td></tr>
|
||||
<tr><td><code>\d</code></td><td>Perl character class</td></tr>
|
||||
<tr><td><code>[:foo:]</code></td><td>ASCII character class <code>foo</code></td></tr>
|
||||
<tr><td><code>\p{Foo}</code></td><td>Unicode character class <code>Foo</code></td></tr>
|
||||
<tr><td><code>\pF</code></td><td>Unicode character class <code>F</code> (one-letter name)</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Named character classes as character class elements:</b></td></tr>
|
||||
<tr><td><code>[\d]</code></td><td>digits (≡ <code>\d</code>)</td></tr>
|
||||
<tr><td><code>[^\d]</code></td><td>not digits (≡ <code>\D</code>)</td></tr>
|
||||
<tr><td><code>[\D]</code></td><td>not digits (≡ <code>\D</code>)</td></tr>
|
||||
<tr><td><code>[^\D]</code></td><td>not not digits (≡ <code>\d</code>)</td></tr>
|
||||
<tr><td><code>[[:name:]]</code></td><td>named ASCII class inside character class (≡ <code>[:name:]</code>)</td></tr>
|
||||
<tr><td><code>[^[:name:]]</code></td><td>named ASCII class inside negated character class (≡ <code>[:^name:]</code>)</td></tr>
|
||||
<tr><td><code>[\p{Name}]</code></td><td>named Unicode property inside character class (≡ <code>\p{Name}</code>)</td></tr>
|
||||
<tr><td><code>[^\p{Name}]</code></td><td>named Unicode property inside negated character class (≡ <code>\P{Name}</code>)</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Perl character classes:</b></td></tr>
|
||||
<tr><td><code>\d</code></td><td>digits (≡ <code>[0-9]</code>)</td></tr>
|
||||
<tr><td><code>\D</code></td><td>not digits (≡ <code>[^0-9]</code>)</td></tr>
|
||||
<tr><td><code>\s</code></td><td>whitespace (≡ <code>[\t\n\f\r ]</code>)</td></tr>
|
||||
<tr><td><code>\S</code></td><td>not whitespace (≡ <code>[^\t\n\f\r ]</code>)</td></tr>
|
||||
<tr><td><code>\w</code></td><td>word characters (≡ <code>[0-9A-Za-z_]</code>)</td></tr>
|
||||
<tr><td><code>\W</code></td><td>not word characters (≡ <code>[^0-9A-Za-z_]</code>)</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td><code><font color=#808080>\h</font></code></td><td>horizontal space </td></tr>
|
||||
<tr><td><code><font color=#808080>\H</font></code></td><td>not horizontal space </td></tr>
|
||||
<tr><td><code><font color=#808080>\v</font></code></td><td>vertical space </td></tr>
|
||||
<tr><td><code><font color=#808080>\V</font></code></td><td>not vertical space </td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>ASCII character classes:</b></td></tr>
|
||||
<tr><td><code>[[:alnum:]]</code></td><td>alphanumeric (≡ <code>[0-9A-Za-z]</code>)</td></tr>
|
||||
<tr><td><code>[[:alpha:]]</code></td><td>alphabetic (≡ <code>[A-Za-z]</code>)</td></tr>
|
||||
<tr><td><code>[[:ascii:]]</code></td><td>ASCII (≡ <code>[\x00-\x7F]</code>)</td></tr>
|
||||
<tr><td><code>[[:blank:]]</code></td><td>blank (≡ <code>[\t ]</code>)</td></tr>
|
||||
<tr><td><code>[[:cntrl:]]</code></td><td>control (≡ <code>[\x00-\x1F\x7F]</code>)</td></tr>
|
||||
<tr><td><code>[[:digit:]]</code></td><td>digits (≡ <code>[0-9]</code>)</td></tr>
|
||||
<tr><td><code>[[:graph:]]</code></td><td>graphical (≡ <code>[!-~] == [A-Za-z0-9!"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~]</code>)</td></tr>
|
||||
<tr><td><code>[[:lower:]]</code></td><td>lower case (≡ <code>[a-z]</code>)</td></tr>
|
||||
<tr><td><code>[[:print:]]</code></td><td>printable (≡ <code>[ -~] == [ [:graph:]]</code>)</td></tr>
|
||||
<tr><td><code>[[:punct:]]</code></td><td>punctuation (≡ <code>[!-/:-@[-`{-~]</code>)</td></tr>
|
||||
<tr><td><code>[[:space:]]</code></td><td>whitespace (≡ <code>[\t\n\v\f\r ]</code>)</td></tr>
|
||||
<tr><td><code>[[:upper:]]</code></td><td>upper case (≡ <code>[A-Z]</code>)</td></tr>
|
||||
<tr><td><code>[[:word:]]</code></td><td>word characters (≡ <code>[0-9A-Za-z_]</code>)</td></tr>
|
||||
<tr><td><code>[[:xdigit:]]</code></td><td>hex digit (≡ <code>[0-9A-Fa-f]</code>)</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Unicode character class names--general category:</b></td></tr>
|
||||
<tr><td><code>C</code></td><td>other</td></tr>
|
||||
<tr><td><code>Cc</code></td><td>control</td></tr>
|
||||
<tr><td><code>Cf</code></td><td>format</td></tr>
|
||||
<tr><td><code><font color=#808080>Cn</font></code></td><td>unassigned code points </td></tr>
|
||||
<tr><td><code>Co</code></td><td>private use</td></tr>
|
||||
<tr><td><code>Cs</code></td><td>surrogate</td></tr>
|
||||
<tr><td><code>L</code></td><td>letter</td></tr>
|
||||
<tr><td><code><font color=#808080>LC</font></code></td><td>cased letter </td></tr>
|
||||
<tr><td><code><font color=#808080>L&</font></code></td><td>cased letter </td></tr>
|
||||
<tr><td><code>Ll</code></td><td>lowercase letter</td></tr>
|
||||
<tr><td><code>Lm</code></td><td>modifier letter</td></tr>
|
||||
<tr><td><code>Lo</code></td><td>other letter</td></tr>
|
||||
<tr><td><code>Lt</code></td><td>titlecase letter</td></tr>
|
||||
<tr><td><code>Lu</code></td><td>uppercase letter</td></tr>
|
||||
<tr><td><code>M</code></td><td>mark</td></tr>
|
||||
<tr><td><code>Mc</code></td><td>spacing mark</td></tr>
|
||||
<tr><td><code>Me</code></td><td>enclosing mark</td></tr>
|
||||
<tr><td><code>Mn</code></td><td>non-spacing mark</td></tr>
|
||||
<tr><td><code>N</code></td><td>number</td></tr>
|
||||
<tr><td><code>Nd</code></td><td>decimal number</td></tr>
|
||||
<tr><td><code>Nl</code></td><td>letter number</td></tr>
|
||||
<tr><td><code>No</code></td><td>other number</td></tr>
|
||||
<tr><td><code>P</code></td><td>punctuation</td></tr>
|
||||
<tr><td><code>Pc</code></td><td>connector punctuation</td></tr>
|
||||
<tr><td><code>Pd</code></td><td>dash punctuation</td></tr>
|
||||
<tr><td><code>Pe</code></td><td>close punctuation</td></tr>
|
||||
<tr><td><code>Pf</code></td><td>final punctuation</td></tr>
|
||||
<tr><td><code>Pi</code></td><td>initial punctuation</td></tr>
|
||||
<tr><td><code>Po</code></td><td>other punctuation</td></tr>
|
||||
<tr><td><code>Ps</code></td><td>open punctuation</td></tr>
|
||||
<tr><td><code>S</code></td><td>symbol</td></tr>
|
||||
<tr><td><code>Sc</code></td><td>currency symbol</td></tr>
|
||||
<tr><td><code>Sk</code></td><td>modifier symbol</td></tr>
|
||||
<tr><td><code>Sm</code></td><td>math symbol</td></tr>
|
||||
<tr><td><code>So</code></td><td>other symbol</td></tr>
|
||||
<tr><td><code>Z</code></td><td>separator</td></tr>
|
||||
<tr><td><code>Zl</code></td><td>line separator</td></tr>
|
||||
<tr><td><code>Zp</code></td><td>paragraph separator</td></tr>
|
||||
<tr><td><code>Zs</code></td><td>space separator</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Unicode character class names--scripts:</b></td></tr>
|
||||
<tr><td><code>Arabic</code></td><td>Arabic</td></tr>
|
||||
<tr><td><code>Armenian</code></td><td>Armenian</td></tr>
|
||||
<tr><td><code>Balinese</code></td><td>Balinese</td></tr>
|
||||
<tr><td><code>Bamum</code></td><td>Bamum</td></tr>
|
||||
<tr><td><code>Batak</code></td><td>Batak</td></tr>
|
||||
<tr><td><code>Bengali</code></td><td>Bengali</td></tr>
|
||||
<tr><td><code>Bopomofo</code></td><td>Bopomofo</td></tr>
|
||||
<tr><td><code>Brahmi</code></td><td>Brahmi</td></tr>
|
||||
<tr><td><code>Braille</code></td><td>Braille</td></tr>
|
||||
<tr><td><code>Buginese</code></td><td>Buginese</td></tr>
|
||||
<tr><td><code>Buhid</code></td><td>Buhid</td></tr>
|
||||
<tr><td><code>Canadian_Aboriginal</code></td><td>Canadian Aboriginal</td></tr>
|
||||
<tr><td><code>Carian</code></td><td>Carian</td></tr>
|
||||
<tr><td><code>Chakma</code></td><td>Chakma</td></tr>
|
||||
<tr><td><code>Cham</code></td><td>Cham</td></tr>
|
||||
<tr><td><code>Cherokee</code></td><td>Cherokee</td></tr>
|
||||
<tr><td><code>Common</code></td><td>characters not specific to one script</td></tr>
|
||||
<tr><td><code>Coptic</code></td><td>Coptic</td></tr>
|
||||
<tr><td><code>Cuneiform</code></td><td>Cuneiform</td></tr>
|
||||
<tr><td><code>Cypriot</code></td><td>Cypriot</td></tr>
|
||||
<tr><td><code>Cyrillic</code></td><td>Cyrillic</td></tr>
|
||||
<tr><td><code>Deseret</code></td><td>Deseret</td></tr>
|
||||
<tr><td><code>Devanagari</code></td><td>Devanagari</td></tr>
|
||||
<tr><td><code>Egyptian_Hieroglyphs</code></td><td>Egyptian Hieroglyphs</td></tr>
|
||||
<tr><td><code>Ethiopic</code></td><td>Ethiopic</td></tr>
|
||||
<tr><td><code>Georgian</code></td><td>Georgian</td></tr>
|
||||
<tr><td><code>Glagolitic</code></td><td>Glagolitic</td></tr>
|
||||
<tr><td><code>Gothic</code></td><td>Gothic</td></tr>
|
||||
<tr><td><code>Greek</code></td><td>Greek</td></tr>
|
||||
<tr><td><code>Gujarati</code></td><td>Gujarati</td></tr>
|
||||
<tr><td><code>Gurmukhi</code></td><td>Gurmukhi</td></tr>
|
||||
<tr><td><code>Han</code></td><td>Han</td></tr>
|
||||
<tr><td><code>Hangul</code></td><td>Hangul</td></tr>
|
||||
<tr><td><code>Hanunoo</code></td><td>Hanunoo</td></tr>
|
||||
<tr><td><code>Hebrew</code></td><td>Hebrew</td></tr>
|
||||
<tr><td><code>Hiragana</code></td><td>Hiragana</td></tr>
|
||||
<tr><td><code>Imperial_Aramaic</code></td><td>Imperial Aramaic</td></tr>
|
||||
<tr><td><code>Inherited</code></td><td>inherit script from previous character</td></tr>
|
||||
<tr><td><code>Inscriptional_Pahlavi</code></td><td>Inscriptional Pahlavi</td></tr>
|
||||
<tr><td><code>Inscriptional_Parthian</code></td><td>Inscriptional Parthian</td></tr>
|
||||
<tr><td><code>Javanese</code></td><td>Javanese</td></tr>
|
||||
<tr><td><code>Kaithi</code></td><td>Kaithi</td></tr>
|
||||
<tr><td><code>Kannada</code></td><td>Kannada</td></tr>
|
||||
<tr><td><code>Katakana</code></td><td>Katakana</td></tr>
|
||||
<tr><td><code>Kayah_Li</code></td><td>Kayah Li</td></tr>
|
||||
<tr><td><code>Kharoshthi</code></td><td>Kharoshthi</td></tr>
|
||||
<tr><td><code>Khmer</code></td><td>Khmer</td></tr>
|
||||
<tr><td><code>Lao</code></td><td>Lao</td></tr>
|
||||
<tr><td><code>Latin</code></td><td>Latin</td></tr>
|
||||
<tr><td><code>Lepcha</code></td><td>Lepcha</td></tr>
|
||||
<tr><td><code>Limbu</code></td><td>Limbu</td></tr>
|
||||
<tr><td><code>Linear_B</code></td><td>Linear B</td></tr>
|
||||
<tr><td><code>Lycian</code></td><td>Lycian</td></tr>
|
||||
<tr><td><code>Lydian</code></td><td>Lydian</td></tr>
|
||||
<tr><td><code>Malayalam</code></td><td>Malayalam</td></tr>
|
||||
<tr><td><code>Mandaic</code></td><td>Mandaic</td></tr>
|
||||
<tr><td><code>Meetei_Mayek</code></td><td>Meetei Mayek</td></tr>
|
||||
<tr><td><code>Meroitic_Cursive</code></td><td>Meroitic Cursive</td></tr>
|
||||
<tr><td><code>Meroitic_Hieroglyphs</code></td><td>Meroitic Hieroglyphs</td></tr>
|
||||
<tr><td><code>Miao</code></td><td>Miao</td></tr>
|
||||
<tr><td><code>Mongolian</code></td><td>Mongolian</td></tr>
|
||||
<tr><td><code>Myanmar</code></td><td>Myanmar</td></tr>
|
||||
<tr><td><code>New_Tai_Lue</code></td><td>New Tai Lue (aka Simplified Tai Lue)</td></tr>
|
||||
<tr><td><code>Nko</code></td><td>Nko</td></tr>
|
||||
<tr><td><code>Ogham</code></td><td>Ogham</td></tr>
|
||||
<tr><td><code>Ol_Chiki</code></td><td>Ol Chiki</td></tr>
|
||||
<tr><td><code>Old_Italic</code></td><td>Old Italic</td></tr>
|
||||
<tr><td><code>Old_Persian</code></td><td>Old Persian</td></tr>
|
||||
<tr><td><code>Old_South_Arabian</code></td><td>Old South Arabian</td></tr>
|
||||
<tr><td><code>Old_Turkic</code></td><td>Old Turkic</td></tr>
|
||||
<tr><td><code>Oriya</code></td><td>Oriya</td></tr>
|
||||
<tr><td><code>Osmanya</code></td><td>Osmanya</td></tr>
|
||||
<tr><td><code>Phags_Pa</code></td><td>'Phags Pa</td></tr>
|
||||
<tr><td><code>Phoenician</code></td><td>Phoenician</td></tr>
|
||||
<tr><td><code>Rejang</code></td><td>Rejang</td></tr>
|
||||
<tr><td><code>Runic</code></td><td>Runic</td></tr>
|
||||
<tr><td><code>Saurashtra</code></td><td>Saurashtra</td></tr>
|
||||
<tr><td><code>Sharada</code></td><td>Sharada</td></tr>
|
||||
<tr><td><code>Shavian</code></td><td>Shavian</td></tr>
|
||||
<tr><td><code>Sinhala</code></td><td>Sinhala</td></tr>
|
||||
<tr><td><code>Sora_Sompeng</code></td><td>Sora Sompeng</td></tr>
|
||||
<tr><td><code>Sundanese</code></td><td>Sundanese</td></tr>
|
||||
<tr><td><code>Syloti_Nagri</code></td><td>Syloti Nagri</td></tr>
|
||||
<tr><td><code>Syriac</code></td><td>Syriac</td></tr>
|
||||
<tr><td><code>Tagalog</code></td><td>Tagalog</td></tr>
|
||||
<tr><td><code>Tagbanwa</code></td><td>Tagbanwa</td></tr>
|
||||
<tr><td><code>Tai_Le</code></td><td>Tai Le</td></tr>
|
||||
<tr><td><code>Tai_Tham</code></td><td>Tai Tham</td></tr>
|
||||
<tr><td><code>Tai_Viet</code></td><td>Tai Viet</td></tr>
|
||||
<tr><td><code>Takri</code></td><td>Takri</td></tr>
|
||||
<tr><td><code>Tamil</code></td><td>Tamil</td></tr>
|
||||
<tr><td><code>Telugu</code></td><td>Telugu</td></tr>
|
||||
<tr><td><code>Thaana</code></td><td>Thaana</td></tr>
|
||||
<tr><td><code>Thai</code></td><td>Thai</td></tr>
|
||||
<tr><td><code>Tibetan</code></td><td>Tibetan</td></tr>
|
||||
<tr><td><code>Tifinagh</code></td><td>Tifinagh</td></tr>
|
||||
<tr><td><code>Ugaritic</code></td><td>Ugaritic</td></tr>
|
||||
<tr><td><code>Vai</code></td><td>Vai</td></tr>
|
||||
<tr><td><code>Yi</code></td><td>Yi</td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Vim character classes:</b></td></tr>
|
||||
<tr><td><code><font color=#808080>\i</font></code></td><td>identifier character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\I</font></code></td><td><code>\i</code> except digits <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\k</font></code></td><td>keyword character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\K</font></code></td><td><code>\k</code> except digits <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\f</font></code></td><td>file name character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\F</font></code></td><td><code>\f</code> except digits <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\p</font></code></td><td>printable character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\P</font></code></td><td><code>\p</code> except digits <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\s</font></code></td><td>whitespace character (≡ <code>[ \t]</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\S</font></code></td><td>non-white space character (≡ <code>[^ \t]</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code>\d</code></td><td>digits (≡ <code>[0-9]</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code>\D</code></td><td>not <code>\d</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\x</font></code></td><td>hex digits (≡ <code>[0-9A-Fa-f]</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\X</font></code></td><td>not <code>\x</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\o</font></code></td><td>octal digits (≡ <code>[0-7]</code>) <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\O</font></code></td><td>not <code>\o</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code>\w</code></td><td>word character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code>\W</code></td><td>not <code>\w</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\h</font></code></td><td>head of word character <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\H</font></code></td><td>not <code>\h</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\a</font></code></td><td>alphabetic <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\A</font></code></td><td>not <code>\a</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\l</font></code></td><td>lowercase <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\L</font></code></td><td>not lowercase <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\u</font></code></td><td>uppercase <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\U</font></code></td><td>not uppercase <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\_x</font></code></td><td><code>\x</code> plus newline, for any <code>x</code> <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Vim flags:</b></td></tr>
|
||||
<tr><td><code><font color=#808080>\c</font></code></td><td>ignore case <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\C</font></code></td><td>match case <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\m</font></code></td><td>magic <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\M</font></code></td><td>nomagic <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\v</font></code></td><td>verymagic <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\V</font></code></td><td>verynomagic <font size=-2>VIM</font></td></tr>
|
||||
<tr><td><code><font color=#808080>\Z</font></code></td><td>ignore differences in Unicode combining characters <font size=-2>VIM</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
<tr><td colspan=2><b>Magic:</b></td></tr>
|
||||
<tr><td><code><font color=#808080>(?{code})</font></code></td><td>arbitrary Perl code <font size=-2>PERL</font></td></tr>
|
||||
<tr><td><code><font color=#808080>(??{code})</font></code></td><td>postponed arbitrary Perl code <font size=-2>PERL</font></td></tr>
|
||||
<tr><td><code><font color=#808080>(?n)</font></code></td><td>recursive call to regexp capturing group <code>n</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?+n)</font></code></td><td>recursive call to relative group <code>+n</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?-n)</font></code></td><td>recursive call to relative group <code>-n</code> </td></tr>
|
||||
<tr><td><code><font color=#808080>(?C)</font></code></td><td>PCRE callout <font size=-2>PCRE</font></td></tr>
|
||||
<tr><td><code><font color=#808080>(?R)</font></code></td><td>recursive call to entire regexp (≡ <code>(?0)</code>) </td></tr>
|
||||
<tr><td><code><font color=#808080>(?&name)</font></code></td><td>recursive call to named group </td></tr>
|
||||
<tr><td><code><font color=#808080>(?P=name)</font></code></td><td>named backreference </td></tr>
|
||||
<tr><td><code><font color=#808080>(?P>name)</font></code></td><td>recursive call to named group </td></tr>
|
||||
<tr><td><code><font color=#808080>(?(cond)true|false)</font></code></td><td>conditional branch </td></tr>
|
||||
<tr><td><code><font color=#808080>(?(cond)true)</font></code></td><td>conditional branch </td></tr>
|
||||
<tr><td><code><font color=#808080>(*ACCEPT)</font></code></td><td>make regexps more like Prolog </td></tr>
|
||||
<tr><td><code><font color=#808080>(*COMMIT)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*F)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*FAIL)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*MARK)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*PRUNE)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*SKIP)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*THEN)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*ANY)</font></code></td><td>set newline convention </td></tr>
|
||||
<tr><td><code><font color=#808080>(*ANYCRLF)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*CR)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*CRLF)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*LF)</font></code></td><td></td></tr>
|
||||
<tr><td><code><font color=#808080>(*BSR_ANYCRLF)</font></code></td><td>set \R convention <font size=-2>PCRE</font></td></tr>
|
||||
<tr><td><code><font color=#808080>(*BSR_UNICODE)</font></code></td><td> <font size=-2>PCRE</font></td></tr>
|
||||
<tr><td></td></tr>
|
||||
</table>
|
||||
</body>
|
||||
</html>
|
452
extern/re2/doc/syntax.txt
vendored
Normal file
452
extern/re2/doc/syntax.txt
vendored
Normal file
@ -0,0 +1,452 @@
|
||||
RE2 regular expression syntax reference
|
||||
-------------------------------------
|
||||
|
||||
Single characters:
|
||||
. any character, possibly including newline (s=true)
|
||||
[xyz] character class
|
||||
[^xyz] negated character class
|
||||
\d Perl character class
|
||||
\D negated Perl character class
|
||||
[[:alpha:]] ASCII character class
|
||||
[[:^alpha:]] negated ASCII character class
|
||||
\pN Unicode character class (one-letter name)
|
||||
\p{Greek} Unicode character class
|
||||
\PN negated Unicode character class (one-letter name)
|
||||
\P{Greek} negated Unicode character class
|
||||
|
||||
Composites:
|
||||
xy «x» followed by «y»
|
||||
x|y «x» or «y» (prefer «x»)
|
||||
|
||||
Repetitions:
|
||||
x* zero or more «x», prefer more
|
||||
x+ one or more «x», prefer more
|
||||
x? zero or one «x», prefer one
|
||||
x{n,m} «n» or «n»+1 or ... or «m» «x», prefer more
|
||||
x{n,} «n» or more «x», prefer more
|
||||
x{n} exactly «n» «x»
|
||||
x*? zero or more «x», prefer fewer
|
||||
x+? one or more «x», prefer fewer
|
||||
x?? zero or one «x», prefer zero
|
||||
x{n,m}? «n» or «n»+1 or ... or «m» «x», prefer fewer
|
||||
x{n,}? «n» or more «x», prefer fewer
|
||||
x{n}? exactly «n» «x»
|
||||
x{} (== x*) NOT SUPPORTED vim
|
||||
x{-} (== x*?) NOT SUPPORTED vim
|
||||
x{-n} (== x{n}?) NOT SUPPORTED vim
|
||||
x= (== x?) NOT SUPPORTED vim
|
||||
|
||||
Implementation restriction: The counting forms «x{n,m}», «x{n,}», and «x{n}»
|
||||
reject forms that create a minimum or maximum repetition count above 1000.
|
||||
Unlimited repetitions are not subject to this restriction.
|
||||
|
||||
Possessive repetitions:
|
||||
x*+ zero or more «x», possessive NOT SUPPORTED
|
||||
x++ one or more «x», possessive NOT SUPPORTED
|
||||
x?+ zero or one «x», possessive NOT SUPPORTED
|
||||
x{n,m}+ «n» or ... or «m» «x», possessive NOT SUPPORTED
|
||||
x{n,}+ «n» or more «x», possessive NOT SUPPORTED
|
||||
x{n}+ exactly «n» «x», possessive NOT SUPPORTED
|
||||
|
||||
Grouping:
|
||||
(re) numbered capturing group (submatch)
|
||||
(?P<name>re) named & numbered capturing group (submatch)
|
||||
(?<name>re) named & numbered capturing group (submatch) NOT SUPPORTED
|
||||
(?'name're) named & numbered capturing group (submatch) NOT SUPPORTED
|
||||
(?:re) non-capturing group
|
||||
(?flags) set flags within current group; non-capturing
|
||||
(?flags:re) set flags during re; non-capturing
|
||||
(?#text) comment NOT SUPPORTED
|
||||
(?|x|y|z) branch numbering reset NOT SUPPORTED
|
||||
(?>re) possessive match of «re» NOT SUPPORTED
|
||||
re@> possessive match of «re» NOT SUPPORTED vim
|
||||
%(re) non-capturing group NOT SUPPORTED vim
|
||||
|
||||
Flags:
|
||||
i case-insensitive (default false)
|
||||
m multi-line mode: «^» and «$» match begin/end line in addition to begin/end text (default false)
|
||||
s let «.» match «\n» (default false)
|
||||
U ungreedy: swap meaning of «x*» and «x*?», «x+» and «x+?», etc (default false)
|
||||
Flag syntax is «xyz» (set) or «-xyz» (clear) or «xy-z» (set «xy», clear «z»).
|
||||
|
||||
Empty strings:
|
||||
^ at beginning of text or line («m»=true)
|
||||
$ at end of text (like «\z» not «\Z») or line («m»=true)
|
||||
\A at beginning of text
|
||||
\b at ASCII word boundary («\w» on one side and «\W», «\A», or «\z» on the other)
|
||||
\B not at ASCII word boundary
|
||||
\G at beginning of subtext being searched NOT SUPPORTED pcre
|
||||
\G at end of last match NOT SUPPORTED perl
|
||||
\Z at end of text, or before newline at end of text NOT SUPPORTED
|
||||
\z at end of text
|
||||
(?=re) before text matching «re» NOT SUPPORTED
|
||||
(?!re) before text not matching «re» NOT SUPPORTED
|
||||
(?<=re) after text matching «re» NOT SUPPORTED
|
||||
(?<!re) after text not matching «re» NOT SUPPORTED
|
||||
re& before text matching «re» NOT SUPPORTED vim
|
||||
re@= before text matching «re» NOT SUPPORTED vim
|
||||
re@! before text not matching «re» NOT SUPPORTED vim
|
||||
re@<= after text matching «re» NOT SUPPORTED vim
|
||||
re@<! after text not matching «re» NOT SUPPORTED vim
|
||||
\zs sets start of match (= \K) NOT SUPPORTED vim
|
||||
\ze sets end of match NOT SUPPORTED vim
|
||||
\%^ beginning of file NOT SUPPORTED vim
|
||||
\%$ end of file NOT SUPPORTED vim
|
||||
\%V on screen NOT SUPPORTED vim
|
||||
\%# cursor position NOT SUPPORTED vim
|
||||
\%'m mark «m» position NOT SUPPORTED vim
|
||||
\%23l in line 23 NOT SUPPORTED vim
|
||||
\%23c in column 23 NOT SUPPORTED vim
|
||||
\%23v in virtual column 23 NOT SUPPORTED vim
|
||||
|
||||
Escape sequences:
|
||||
\a bell (== \007)
|
||||
\f form feed (== \014)
|
||||
\t horizontal tab (== \011)
|
||||
\n newline (== \012)
|
||||
\r carriage return (== \015)
|
||||
\v vertical tab character (== \013)
|
||||
\* literal «*», for any punctuation character «*»
|
||||
\123 octal character code (up to three digits)
|
||||
\x7F hex character code (exactly two digits)
|
||||
\x{10FFFF} hex character code
|
||||
\C match a single byte even in UTF-8 mode
|
||||
\Q...\E literal text «...» even if «...» has punctuation
|
||||
|
||||
\1 backreference NOT SUPPORTED
|
||||
\b backspace NOT SUPPORTED (use «\010»)
|
||||
\cK control char ^K NOT SUPPORTED (use «\001» etc)
|
||||
\e escape NOT SUPPORTED (use «\033»)
|
||||
\g1 backreference NOT SUPPORTED
|
||||
\g{1} backreference NOT SUPPORTED
|
||||
\g{+1} backreference NOT SUPPORTED
|
||||
\g{-1} backreference NOT SUPPORTED
|
||||
\g{name} named backreference NOT SUPPORTED
|
||||
\g<name> subroutine call NOT SUPPORTED
|
||||
\g'name' subroutine call NOT SUPPORTED
|
||||
\k<name> named backreference NOT SUPPORTED
|
||||
\k'name' named backreference NOT SUPPORTED
|
||||
\lX lowercase «X» NOT SUPPORTED
|
||||
\ux uppercase «x» NOT SUPPORTED
|
||||
\L...\E lowercase text «...» NOT SUPPORTED
|
||||
\K reset beginning of «$0» NOT SUPPORTED
|
||||
\N{name} named Unicode character NOT SUPPORTED
|
||||
\R line break NOT SUPPORTED
|
||||
\U...\E upper case text «...» NOT SUPPORTED
|
||||
\X extended Unicode sequence NOT SUPPORTED
|
||||
|
||||
\%d123 decimal character 123 NOT SUPPORTED vim
|
||||
\%xFF hex character FF NOT SUPPORTED vim
|
||||
\%o123 octal character 123 NOT SUPPORTED vim
|
||||
\%u1234 Unicode character 0x1234 NOT SUPPORTED vim
|
||||
\%U12345678 Unicode character 0x12345678 NOT SUPPORTED vim
|
||||
|
||||
Character class elements:
|
||||
x single character
|
||||
A-Z character range (inclusive)
|
||||
\d Perl character class
|
||||
[:foo:] ASCII character class «foo»
|
||||
\p{Foo} Unicode character class «Foo»
|
||||
\pF Unicode character class «F» (one-letter name)
|
||||
|
||||
Named character classes as character class elements:
|
||||
[\d] digits (== \d)
|
||||
[^\d] not digits (== \D)
|
||||
[\D] not digits (== \D)
|
||||
[^\D] not not digits (== \d)
|
||||
[[:name:]] named ASCII class inside character class (== [:name:])
|
||||
[^[:name:]] named ASCII class inside negated character class (== [:^name:])
|
||||
[\p{Name}] named Unicode property inside character class (== \p{Name})
|
||||
[^\p{Name}] named Unicode property inside negated character class (== \P{Name})
|
||||
|
||||
Perl character classes (all ASCII-only):
|
||||
\d digits (== [0-9])
|
||||
\D not digits (== [^0-9])
|
||||
\s whitespace (== [\t\n\f\r ])
|
||||
\S not whitespace (== [^\t\n\f\r ])
|
||||
\w word characters (== [0-9A-Za-z_])
|
||||
\W not word characters (== [^0-9A-Za-z_])
|
||||
|
||||
\h horizontal space NOT SUPPORTED
|
||||
\H not horizontal space NOT SUPPORTED
|
||||
\v vertical space NOT SUPPORTED
|
||||
\V not vertical space NOT SUPPORTED
|
||||
|
||||
ASCII character classes:
|
||||
[[:alnum:]] alphanumeric (== [0-9A-Za-z])
|
||||
[[:alpha:]] alphabetic (== [A-Za-z])
|
||||
[[:ascii:]] ASCII (== [\x00-\x7F])
|
||||
[[:blank:]] blank (== [\t ])
|
||||
[[:cntrl:]] control (== [\x00-\x1F\x7F])
|
||||
[[:digit:]] digits (== [0-9])
|
||||
[[:graph:]] graphical (== [!-~] == [A-Za-z0-9!"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~])
|
||||
[[:lower:]] lower case (== [a-z])
|
||||
[[:print:]] printable (== [ -~] == [ [:graph:]])
|
||||
[[:punct:]] punctuation (== [!-/:-@[-`{-~])
|
||||
[[:space:]] whitespace (== [\t\n\v\f\r ])
|
||||
[[:upper:]] upper case (== [A-Z])
|
||||
[[:word:]] word characters (== [0-9A-Za-z_])
|
||||
[[:xdigit:]] hex digit (== [0-9A-Fa-f])
|
||||
|
||||
Unicode character class names--general category:
|
||||
C other
|
||||
Cc control
|
||||
Cf format
|
||||
Cn unassigned code points NOT SUPPORTED
|
||||
Co private use
|
||||
Cs surrogate
|
||||
L letter
|
||||
LC cased letter NOT SUPPORTED
|
||||
L& cased letter NOT SUPPORTED
|
||||
Ll lowercase letter
|
||||
Lm modifier letter
|
||||
Lo other letter
|
||||
Lt titlecase letter
|
||||
Lu uppercase letter
|
||||
M mark
|
||||
Mc spacing mark
|
||||
Me enclosing mark
|
||||
Mn non-spacing mark
|
||||
N number
|
||||
Nd decimal number
|
||||
Nl letter number
|
||||
No other number
|
||||
P punctuation
|
||||
Pc connector punctuation
|
||||
Pd dash punctuation
|
||||
Pe close punctuation
|
||||
Pf final punctuation
|
||||
Pi initial punctuation
|
||||
Po other punctuation
|
||||
Ps open punctuation
|
||||
S symbol
|
||||
Sc currency symbol
|
||||
Sk modifier symbol
|
||||
Sm math symbol
|
||||
So other symbol
|
||||
Z separator
|
||||
Zl line separator
|
||||
Zp paragraph separator
|
||||
Zs space separator
|
||||
|
||||
Unicode character class names--scripts:
|
||||
Adlam
|
||||
Ahom
|
||||
Anatolian_Hieroglyphs
|
||||
Arabic
|
||||
Armenian
|
||||
Avestan
|
||||
Balinese
|
||||
Bamum
|
||||
Bassa_Vah
|
||||
Batak
|
||||
Bengali
|
||||
Bhaiksuki
|
||||
Bopomofo
|
||||
Brahmi
|
||||
Braille
|
||||
Buginese
|
||||
Buhid
|
||||
Canadian_Aboriginal
|
||||
Carian
|
||||
Caucasian_Albanian
|
||||
Chakma
|
||||
Cham
|
||||
Cherokee
|
||||
Common
|
||||
Coptic
|
||||
Cuneiform
|
||||
Cypriot
|
||||
Cyrillic
|
||||
Deseret
|
||||
Devanagari
|
||||
Dogra
|
||||
Duployan
|
||||
Egyptian_Hieroglyphs
|
||||
Elbasan
|
||||
Elymaic
|
||||
Ethiopic
|
||||
Georgian
|
||||
Glagolitic
|
||||
Gothic
|
||||
Grantha
|
||||
Greek
|
||||
Gujarati
|
||||
Gunjala_Gondi
|
||||
Gurmukhi
|
||||
Han
|
||||
Hangul
|
||||
Hanifi_Rohingya
|
||||
Hanunoo
|
||||
Hatran
|
||||
Hebrew
|
||||
Hiragana
|
||||
Imperial_Aramaic
|
||||
Inherited
|
||||
Inscriptional_Pahlavi
|
||||
Inscriptional_Parthian
|
||||
Javanese
|
||||
Kaithi
|
||||
Kannada
|
||||
Katakana
|
||||
Kayah_Li
|
||||
Kharoshthi
|
||||
Khmer
|
||||
Khojki
|
||||
Khudawadi
|
||||
Lao
|
||||
Latin
|
||||
Lepcha
|
||||
Limbu
|
||||
Linear_A
|
||||
Linear_B
|
||||
Lisu
|
||||
Lycian
|
||||
Lydian
|
||||
Mahajani
|
||||
Makasar
|
||||
Malayalam
|
||||
Mandaic
|
||||
Manichaean
|
||||
Marchen
|
||||
Masaram_Gondi
|
||||
Medefaidrin
|
||||
Meetei_Mayek
|
||||
Mende_Kikakui
|
||||
Meroitic_Cursive
|
||||
Meroitic_Hieroglyphs
|
||||
Miao
|
||||
Modi
|
||||
Mongolian
|
||||
Mro
|
||||
Multani
|
||||
Myanmar
|
||||
Nabataean
|
||||
Nandinagari
|
||||
New_Tai_Lue
|
||||
Newa
|
||||
Nko
|
||||
Nushu
|
||||
Nyiakeng_Puachue_Hmong
|
||||
Ogham
|
||||
Ol_Chiki
|
||||
Old_Hungarian
|
||||
Old_Italic
|
||||
Old_North_Arabian
|
||||
Old_Permic
|
||||
Old_Persian
|
||||
Old_Sogdian
|
||||
Old_South_Arabian
|
||||
Old_Turkic
|
||||
Oriya
|
||||
Osage
|
||||
Osmanya
|
||||
Pahawh_Hmong
|
||||
Palmyrene
|
||||
Pau_Cin_Hau
|
||||
Phags_Pa
|
||||
Phoenician
|
||||
Psalter_Pahlavi
|
||||
Rejang
|
||||
Runic
|
||||
Samaritan
|
||||
Saurashtra
|
||||
Sharada
|
||||
Shavian
|
||||
Siddham
|
||||
SignWriting
|
||||
Sinhala
|
||||
Sogdian
|
||||
Sora_Sompeng
|
||||
Soyombo
|
||||
Sundanese
|
||||
Syloti_Nagri
|
||||
Syriac
|
||||
Tagalog
|
||||
Tagbanwa
|
||||
Tai_Le
|
||||
Tai_Tham
|
||||
Tai_Viet
|
||||
Takri
|
||||
Tamil
|
||||
Tangut
|
||||
Telugu
|
||||
Thaana
|
||||
Thai
|
||||
Tibetan
|
||||
Tifinagh
|
||||
Tirhuta
|
||||
Ugaritic
|
||||
Vai
|
||||
Wancho
|
||||
Warang_Citi
|
||||
Yi
|
||||
Zanabazar_Square
|
||||
|
||||
Vim character classes:
|
||||
\i identifier character NOT SUPPORTED vim
|
||||
\I «\i» except digits NOT SUPPORTED vim
|
||||
\k keyword character NOT SUPPORTED vim
|
||||
\K «\k» except digits NOT SUPPORTED vim
|
||||
\f file name character NOT SUPPORTED vim
|
||||
\F «\f» except digits NOT SUPPORTED vim
|
||||
\p printable character NOT SUPPORTED vim
|
||||
\P «\p» except digits NOT SUPPORTED vim
|
||||
\s whitespace character (== [ \t]) NOT SUPPORTED vim
|
||||
\S non-white space character (== [^ \t]) NOT SUPPORTED vim
|
||||
\d digits (== [0-9]) vim
|
||||
\D not «\d» vim
|
||||
\x hex digits (== [0-9A-Fa-f]) NOT SUPPORTED vim
|
||||
\X not «\x» NOT SUPPORTED vim
|
||||
\o octal digits (== [0-7]) NOT SUPPORTED vim
|
||||
\O not «\o» NOT SUPPORTED vim
|
||||
\w word character vim
|
||||
\W not «\w» vim
|
||||
\h head of word character NOT SUPPORTED vim
|
||||
\H not «\h» NOT SUPPORTED vim
|
||||
\a alphabetic NOT SUPPORTED vim
|
||||
\A not «\a» NOT SUPPORTED vim
|
||||
\l lowercase NOT SUPPORTED vim
|
||||
\L not lowercase NOT SUPPORTED vim
|
||||
\u uppercase NOT SUPPORTED vim
|
||||
\U not uppercase NOT SUPPORTED vim
|
||||
\_x «\x» plus newline, for any «x» NOT SUPPORTED vim
|
||||
|
||||
Vim flags:
|
||||
\c ignore case NOT SUPPORTED vim
|
||||
\C match case NOT SUPPORTED vim
|
||||
\m magic NOT SUPPORTED vim
|
||||
\M nomagic NOT SUPPORTED vim
|
||||
\v verymagic NOT SUPPORTED vim
|
||||
\V verynomagic NOT SUPPORTED vim
|
||||
\Z ignore differences in Unicode combining characters NOT SUPPORTED vim
|
||||
|
||||
Magic:
|
||||
(?{code}) arbitrary Perl code NOT SUPPORTED perl
|
||||
(??{code}) postponed arbitrary Perl code NOT SUPPORTED perl
|
||||
(?n) recursive call to regexp capturing group «n» NOT SUPPORTED
|
||||
(?+n) recursive call to relative group «+n» NOT SUPPORTED
|
||||
(?-n) recursive call to relative group «-n» NOT SUPPORTED
|
||||
(?C) PCRE callout NOT SUPPORTED pcre
|
||||
(?R) recursive call to entire regexp (== (?0)) NOT SUPPORTED
|
||||
(?&name) recursive call to named group NOT SUPPORTED
|
||||
(?P=name) named backreference NOT SUPPORTED
|
||||
(?P>name) recursive call to named group NOT SUPPORTED
|
||||
(?(cond)true|false) conditional branch NOT SUPPORTED
|
||||
(?(cond)true) conditional branch NOT SUPPORTED
|
||||
(*ACCEPT) make regexps more like Prolog NOT SUPPORTED
|
||||
(*COMMIT) NOT SUPPORTED
|
||||
(*F) NOT SUPPORTED
|
||||
(*FAIL) NOT SUPPORTED
|
||||
(*MARK) NOT SUPPORTED
|
||||
(*PRUNE) NOT SUPPORTED
|
||||
(*SKIP) NOT SUPPORTED
|
||||
(*THEN) NOT SUPPORTED
|
||||
(*ANY) set newline convention NOT SUPPORTED
|
||||
(*ANYCRLF) NOT SUPPORTED
|
||||
(*CR) NOT SUPPORTED
|
||||
(*CRLF) NOT SUPPORTED
|
||||
(*LF) NOT SUPPORTED
|
||||
(*BSR_ANYCRLF) set \R convention NOT SUPPORTED pcre
|
||||
(*BSR_UNICODE) NOT SUPPORTED pcre
|
||||
|
BIN
extern/re2/doc/xkcd.png
vendored
Normal file
BIN
extern/re2/doc/xkcd.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
26
extern/re2/kokoro/bazel.sh
vendored
Normal file
26
extern/re2/kokoro/bazel.sh
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
#!/bin/bash
|
||||
set -eux
|
||||
|
||||
cd git/re2
|
||||
|
||||
bazel clean
|
||||
bazel build --compilation_mode=dbg -- //:all
|
||||
bazel test --compilation_mode=dbg --test_output=errors -- //:all \
|
||||
-//:dfa_test \
|
||||
-//:exhaustive1_test \
|
||||
-//:exhaustive2_test \
|
||||
-//:exhaustive3_test \
|
||||
-//:exhaustive_test \
|
||||
-//:random_test
|
||||
|
||||
bazel clean
|
||||
bazel build --compilation_mode=opt -- //:all
|
||||
bazel test --compilation_mode=opt --test_output=errors -- //:all \
|
||||
-//:dfa_test \
|
||||
-//:exhaustive1_test \
|
||||
-//:exhaustive2_test \
|
||||
-//:exhaustive3_test \
|
||||
-//:exhaustive_test \
|
||||
-//:random_test
|
||||
|
||||
exit 0
|
25
extern/re2/kokoro/cmake.sh
vendored
Normal file
25
extern/re2/kokoro/cmake.sh
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
set -eux
|
||||
|
||||
cd git/re2
|
||||
|
||||
case "${KOKORO_JOB_NAME}" in
|
||||
*/windows-*)
|
||||
CMAKE_G_A_FLAGS=('-G' 'Visual Studio 14 2015' '-A' 'x64')
|
||||
;;
|
||||
*)
|
||||
CMAKE_G_A_FLAGS=()
|
||||
# Work around a bug in older versions of bash. :/
|
||||
set +u
|
||||
;;
|
||||
esac
|
||||
|
||||
cmake -D CMAKE_BUILD_TYPE=Debug "${CMAKE_G_A_FLAGS[@]}" .
|
||||
cmake --build . --config Debug --clean-first
|
||||
ctest -C Debug --output-on-failure -E 'dfa|exhaustive|random'
|
||||
|
||||
cmake -D CMAKE_BUILD_TYPE=Release "${CMAKE_G_A_FLAGS[@]}" .
|
||||
cmake --build . --config Release --clean-first
|
||||
ctest -C Release --output-on-failure -E 'dfa|exhaustive|random'
|
||||
|
||||
exit 0
|
1
extern/re2/kokoro/macos-bazel.cfg
vendored
Normal file
1
extern/re2/kokoro/macos-bazel.cfg
vendored
Normal file
@ -0,0 +1 @@
|
||||
build_file: "re2/kokoro/macos-bazel.sh"
|
4
extern/re2/kokoro/macos-bazel.sh
vendored
Normal file
4
extern/re2/kokoro/macos-bazel.sh
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
set -eux
|
||||
bash git/re2/kokoro/bazel.sh
|
||||
exit $?
|
1
extern/re2/kokoro/macos-cmake.cfg
vendored
Normal file
1
extern/re2/kokoro/macos-cmake.cfg
vendored
Normal file
@ -0,0 +1 @@
|
||||
build_file: "re2/kokoro/macos-cmake.sh"
|
4
extern/re2/kokoro/macos-cmake.sh
vendored
Normal file
4
extern/re2/kokoro/macos-cmake.sh
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
set -eux
|
||||
bash git/re2/kokoro/cmake.sh
|
||||
exit $?
|
1
extern/re2/kokoro/ubuntu-bazel.cfg
vendored
Normal file
1
extern/re2/kokoro/ubuntu-bazel.cfg
vendored
Normal file
@ -0,0 +1 @@
|
||||
build_file: "re2/kokoro/ubuntu-bazel.sh"
|
4
extern/re2/kokoro/ubuntu-bazel.sh
vendored
Normal file
4
extern/re2/kokoro/ubuntu-bazel.sh
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
set -eux
|
||||
bash git/re2/kokoro/bazel.sh
|
||||
exit $?
|
2
extern/re2/kokoro/windows-bazel.bat
vendored
Normal file
2
extern/re2/kokoro/windows-bazel.bat
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
bash git/re2/kokoro/bazel.sh
|
||||
EXIT /B %ERRORLEVEL%
|
1
extern/re2/kokoro/windows-bazel.cfg
vendored
Normal file
1
extern/re2/kokoro/windows-bazel.cfg
vendored
Normal file
@ -0,0 +1 @@
|
||||
build_file: "re2/kokoro/windows-bazel.bat"
|
2
extern/re2/kokoro/windows-cmake.bat
vendored
Normal file
2
extern/re2/kokoro/windows-cmake.bat
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
bash git/re2/kokoro/cmake.sh
|
||||
EXIT /B %ERRORLEVEL%
|
1
extern/re2/kokoro/windows-cmake.cfg
vendored
Normal file
1
extern/re2/kokoro/windows-cmake.cfg
vendored
Normal file
@ -0,0 +1 @@
|
||||
build_file: "re2/kokoro/windows-cmake.bat"
|
104
extern/re2/lib/git/commit-msg.hook
vendored
Normal file
104
extern/re2/lib/git/commit-msg.hook
vendored
Normal file
@ -0,0 +1,104 @@
|
||||
#!/bin/sh
|
||||
# From Gerrit Code Review 2.2.1
|
||||
#
|
||||
# Part of Gerrit Code Review (http://code.google.com/p/gerrit/)
|
||||
#
|
||||
# Copyright (C) 2009 The Android Open Source Project
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
CHANGE_ID_AFTER="Bug|Issue"
|
||||
MSG="$1"
|
||||
|
||||
# Check for, and add if missing, a unique Change-Id
|
||||
#
|
||||
add_ChangeId() {
|
||||
clean_message=`sed -e '
|
||||
/^diff --git a\/.*/{
|
||||
s///
|
||||
q
|
||||
}
|
||||
/^Signed-off-by:/d
|
||||
/^#/d
|
||||
' "$MSG" | git stripspace`
|
||||
if test -z "$clean_message"
|
||||
then
|
||||
return
|
||||
fi
|
||||
|
||||
if grep -i '^Change-Id:' "$MSG" >/dev/null
|
||||
then
|
||||
return
|
||||
fi
|
||||
|
||||
id=`_gen_ChangeId`
|
||||
perl -e '
|
||||
$MSG = shift;
|
||||
$id = shift;
|
||||
$CHANGE_ID_AFTER = shift;
|
||||
|
||||
undef $/;
|
||||
open(I, $MSG); $_ = <I>; close I;
|
||||
s|^diff --git a/.*||ms;
|
||||
s|^#.*$||mg;
|
||||
exit unless $_;
|
||||
|
||||
@message = split /\n/;
|
||||
$haveFooter = 0;
|
||||
$startFooter = @message;
|
||||
for($line = @message - 1; $line >= 0; $line--) {
|
||||
$_ = $message[$line];
|
||||
|
||||
if (/^[a-zA-Z0-9-]+:/ && !m,^[a-z0-9-]+://,) {
|
||||
$haveFooter++;
|
||||
next;
|
||||
}
|
||||
next if /^[ []/;
|
||||
$startFooter = $line if ($haveFooter && /^\r?$/);
|
||||
last;
|
||||
}
|
||||
|
||||
@footer = @message[$startFooter+1..@message];
|
||||
@message = @message[0..$startFooter];
|
||||
push(@footer, "") unless @footer;
|
||||
|
||||
for ($line = 0; $line < @footer; $line++) {
|
||||
$_ = $footer[$line];
|
||||
next if /^($CHANGE_ID_AFTER):/i;
|
||||
last;
|
||||
}
|
||||
splice(@footer, $line, 0, "Change-Id: I$id");
|
||||
|
||||
$_ = join("\n", @message, @footer);
|
||||
open(O, ">$MSG"); print O; close O;
|
||||
' "$MSG" "$id" "$CHANGE_ID_AFTER"
|
||||
}
|
||||
_gen_ChangeIdInput() {
|
||||
echo "tree `git write-tree`"
|
||||
if parent=`git rev-parse HEAD^0 2>/dev/null`
|
||||
then
|
||||
echo "parent $parent"
|
||||
fi
|
||||
echo "author `git var GIT_AUTHOR_IDENT`"
|
||||
echo "committer `git var GIT_COMMITTER_IDENT`"
|
||||
echo
|
||||
printf '%s' "$clean_message"
|
||||
}
|
||||
_gen_ChangeId() {
|
||||
_gen_ChangeIdInput |
|
||||
git hash-object -t commit --stdin
|
||||
}
|
||||
|
||||
|
||||
add_ChangeId
|
16
extern/re2/libre2.symbols
vendored
Normal file
16
extern/re2/libre2.symbols
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
global:
|
||||
# re2::RE2*
|
||||
_ZN3re23RE2*;
|
||||
_ZNK3re23RE2*;
|
||||
# re2::StringPiece*
|
||||
_ZN3re211StringPiece*;
|
||||
_ZNK3re211StringPiece*;
|
||||
# re2::operator<<*
|
||||
_ZN3re2ls*;
|
||||
# re2::FilteredRE2*
|
||||
_ZN3re211FilteredRE2*;
|
||||
_ZNK3re211FilteredRE2*;
|
||||
local:
|
||||
*;
|
||||
};
|
12
extern/re2/libre2.symbols.darwin
vendored
Normal file
12
extern/re2/libre2.symbols.darwin
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
# Linker doesn't like these unmangled:
|
||||
# re2::RE2*
|
||||
__ZN3re23RE2*
|
||||
__ZNK3re23RE2*
|
||||
# re2::StringPiece*
|
||||
__ZN3re211StringPiece*
|
||||
__ZNK3re211StringPiece*
|
||||
# re2::operator<<*
|
||||
__ZN3re2ls*
|
||||
# re2::FilteredRE2*
|
||||
__ZN3re211FilteredRE2*
|
||||
__ZNK3re211FilteredRE2*
|
10
extern/re2/re2.pc
vendored
Normal file
10
extern/re2/re2.pc
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
prefix=@prefix@
|
||||
exec_prefix=@exec_prefix@
|
||||
includedir=@includedir@
|
||||
libdir=@libdir@
|
||||
|
||||
Name: re2
|
||||
Description: RE2 is a fast, safe, thread-friendly regular expression engine.
|
||||
Version: 0.0.0
|
||||
Cflags: -std=c++11 -pthread -I${includedir}
|
||||
Libs: -pthread -L${libdir} -lre2
|
118
extern/re2/re2/bitmap256.h
vendored
Normal file
118
extern/re2/re2/bitmap256.h
vendored
Normal file
@ -0,0 +1,118 @@
|
||||
// Copyright 2016 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_BITMAP256_H_
|
||||
#define RE2_BITMAP256_H_
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class Bitmap256 {
|
||||
public:
|
||||
Bitmap256() {
|
||||
Clear();
|
||||
}
|
||||
|
||||
// Clears all of the bits.
|
||||
void Clear() {
|
||||
memset(words_, 0, sizeof words_);
|
||||
}
|
||||
|
||||
// Tests the bit with index c.
|
||||
bool Test(int c) const {
|
||||
DCHECK_GE(c, 0);
|
||||
DCHECK_LE(c, 255);
|
||||
|
||||
return (words_[c / 64] & (1ULL << (c % 64))) != 0;
|
||||
}
|
||||
|
||||
// Sets the bit with index c.
|
||||
void Set(int c) {
|
||||
DCHECK_GE(c, 0);
|
||||
DCHECK_LE(c, 255);
|
||||
|
||||
words_[c / 64] |= (1ULL << (c % 64));
|
||||
}
|
||||
|
||||
// Finds the next non-zero bit with index >= c.
|
||||
// Returns -1 if no such bit exists.
|
||||
int FindNextSetBit(int c) const;
|
||||
|
||||
private:
|
||||
// Finds the least significant non-zero bit in n.
|
||||
static int FindLSBSet(uint64_t n) {
|
||||
DCHECK_NE(n, 0);
|
||||
|
||||
#if defined(__GNUC__)
|
||||
return __builtin_ctzll(n);
|
||||
#elif defined(_MSC_VER) && defined(_M_X64)
|
||||
unsigned long c;
|
||||
_BitScanForward64(&c, n);
|
||||
return static_cast<int>(c);
|
||||
#elif defined(_MSC_VER) && defined(_M_IX86)
|
||||
unsigned long c;
|
||||
if (static_cast<uint32_t>(n) != 0) {
|
||||
_BitScanForward(&c, static_cast<uint32_t>(n));
|
||||
return static_cast<int>(c);
|
||||
} else {
|
||||
_BitScanForward(&c, static_cast<uint32_t>(n >> 32));
|
||||
return static_cast<int>(c) + 32;
|
||||
}
|
||||
#else
|
||||
int c = 63;
|
||||
for (int shift = 1 << 5; shift != 0; shift >>= 1) {
|
||||
uint64_t word = n << shift;
|
||||
if (word != 0) {
|
||||
n = word;
|
||||
c -= shift;
|
||||
}
|
||||
}
|
||||
return c;
|
||||
#endif
|
||||
}
|
||||
|
||||
uint64_t words_[4];
|
||||
};
|
||||
|
||||
int Bitmap256::FindNextSetBit(int c) const {
|
||||
DCHECK_GE(c, 0);
|
||||
DCHECK_LE(c, 255);
|
||||
|
||||
// Check the word that contains the bit. Mask out any lower bits.
|
||||
int i = c / 64;
|
||||
uint64_t word = words_[i] & (~0ULL << (c % 64));
|
||||
if (word != 0)
|
||||
return (i * 64) + FindLSBSet(word);
|
||||
|
||||
// Check any following words.
|
||||
i++;
|
||||
switch (i) {
|
||||
case 1:
|
||||
if (words_[1] != 0)
|
||||
return (1 * 64) + FindLSBSet(words_[1]);
|
||||
FALLTHROUGH_INTENDED;
|
||||
case 2:
|
||||
if (words_[2] != 0)
|
||||
return (2 * 64) + FindLSBSet(words_[2]);
|
||||
FALLTHROUGH_INTENDED;
|
||||
case 3:
|
||||
if (words_[3] != 0)
|
||||
return (3 * 64) + FindLSBSet(words_[3]);
|
||||
FALLTHROUGH_INTENDED;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_BITMAP256_H_
|
378
extern/re2/re2/bitstate.cc
vendored
Normal file
378
extern/re2/re2/bitstate.cc
vendored
Normal file
@ -0,0 +1,378 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Tested by search_test.cc, exhaustive_test.cc, tester.cc
|
||||
|
||||
// Prog::SearchBitState is a regular expression search with submatch
|
||||
// tracking for small regular expressions and texts. Similarly to
|
||||
// testing/backtrack.cc, it allocates a bitmap with (count of
|
||||
// lists) * (length of prog) bits to make sure it never explores the
|
||||
// same (instruction list, character position) multiple times. This
|
||||
// limits the search to run in time linear in the length of the text.
|
||||
//
|
||||
// Unlike testing/backtrack.cc, SearchBitState is not recursive
|
||||
// on the text.
|
||||
//
|
||||
// SearchBitState is a fast replacement for the NFA code on small
|
||||
// regexps and texts when SearchOnePass cannot be used.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct Job {
|
||||
int id;
|
||||
int rle; // run length encoding
|
||||
const char* p;
|
||||
};
|
||||
|
||||
class BitState {
|
||||
public:
|
||||
explicit BitState(Prog* prog);
|
||||
|
||||
// The usual Search prototype.
|
||||
// Can only call Search once per BitState.
|
||||
bool Search(const StringPiece& text, const StringPiece& context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch);
|
||||
|
||||
private:
|
||||
inline bool ShouldVisit(int id, const char* p);
|
||||
void Push(int id, const char* p);
|
||||
void GrowStack();
|
||||
bool TrySearch(int id, const char* p);
|
||||
|
||||
// Search parameters
|
||||
Prog* prog_; // program being run
|
||||
StringPiece text_; // text being searched
|
||||
StringPiece context_; // greater context of text being searched
|
||||
bool anchored_; // whether search is anchored at text.begin()
|
||||
bool longest_; // whether search wants leftmost-longest match
|
||||
bool endmatch_; // whether match must end at text.end()
|
||||
StringPiece* submatch_; // submatches to fill in
|
||||
int nsubmatch_; // # of submatches to fill in
|
||||
|
||||
// Search state
|
||||
static const int VisitedBits = 32;
|
||||
PODArray<uint32_t> visited_; // bitmap: (list ID, char*) pairs visited
|
||||
PODArray<const char*> cap_; // capture registers
|
||||
PODArray<Job> job_; // stack of text positions to explore
|
||||
int njob_; // stack size
|
||||
};
|
||||
|
||||
BitState::BitState(Prog* prog)
|
||||
: prog_(prog),
|
||||
anchored_(false),
|
||||
longest_(false),
|
||||
endmatch_(false),
|
||||
submatch_(NULL),
|
||||
nsubmatch_(0),
|
||||
njob_(0) {
|
||||
}
|
||||
|
||||
// Given id, which *must* be a list head, we can look up its list ID.
|
||||
// Then the question is: Should the search visit the (list ID, p) pair?
|
||||
// If so, remember that it was visited so that the next time,
|
||||
// we don't repeat the visit.
|
||||
bool BitState::ShouldVisit(int id, const char* p) {
|
||||
int n = prog_->list_heads()[id] * static_cast<int>(text_.size()+1) +
|
||||
static_cast<int>(p-text_.begin());
|
||||
if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1))))
|
||||
return false;
|
||||
visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1));
|
||||
return true;
|
||||
}
|
||||
|
||||
// Grow the stack.
|
||||
void BitState::GrowStack() {
|
||||
PODArray<Job> tmp(2*job_.size());
|
||||
memmove(tmp.data(), job_.data(), njob_*sizeof job_[0]);
|
||||
job_ = std::move(tmp);
|
||||
}
|
||||
|
||||
// Push (id, p) onto the stack, growing it if necessary.
|
||||
void BitState::Push(int id, const char* p) {
|
||||
if (njob_ >= job_.size()) {
|
||||
GrowStack();
|
||||
if (njob_ >= job_.size()) {
|
||||
LOG(DFATAL) << "GrowStack() failed: "
|
||||
<< "njob_ = " << njob_ << ", "
|
||||
<< "job_.size() = " << job_.size();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// If id < 0, it's undoing a Capture,
|
||||
// so we mustn't interfere with that.
|
||||
if (id >= 0 && njob_ > 0) {
|
||||
Job* top = &job_[njob_-1];
|
||||
if (id == top->id &&
|
||||
p == top->p + top->rle + 1 &&
|
||||
top->rle < std::numeric_limits<int>::max()) {
|
||||
++top->rle;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Job* top = &job_[njob_++];
|
||||
top->id = id;
|
||||
top->rle = 0;
|
||||
top->p = p;
|
||||
}
|
||||
|
||||
// Try a search from instruction id0 in state p0.
|
||||
// Return whether it succeeded.
|
||||
bool BitState::TrySearch(int id0, const char* p0) {
|
||||
bool matched = false;
|
||||
const char* end = text_.end();
|
||||
njob_ = 0;
|
||||
// Push() no longer checks ShouldVisit(),
|
||||
// so we must perform the check ourselves.
|
||||
if (ShouldVisit(id0, p0))
|
||||
Push(id0, p0);
|
||||
while (njob_ > 0) {
|
||||
// Pop job off stack.
|
||||
--njob_;
|
||||
int id = job_[njob_].id;
|
||||
int& rle = job_[njob_].rle;
|
||||
const char* p = job_[njob_].p;
|
||||
|
||||
if (id < 0) {
|
||||
// Undo the Capture.
|
||||
cap_[prog_->inst(-id)->cap()] = p;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (rle > 0) {
|
||||
p += rle;
|
||||
// Revivify job on stack.
|
||||
--rle;
|
||||
++njob_;
|
||||
}
|
||||
|
||||
Loop:
|
||||
// Visit id, p.
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "Unexpected opcode: " << ip->opcode();
|
||||
return false;
|
||||
|
||||
case kInstFail:
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
if (ip->greedy(prog_)) {
|
||||
// out1 is the Match instruction.
|
||||
id = ip->out1();
|
||||
p = end;
|
||||
goto Loop;
|
||||
}
|
||||
if (longest_) {
|
||||
// ip must be non-greedy...
|
||||
// out is the Match instruction.
|
||||
id = ip->out();
|
||||
p = end;
|
||||
goto Loop;
|
||||
}
|
||||
goto Next;
|
||||
|
||||
case kInstByteRange: {
|
||||
int c = -1;
|
||||
if (p < end)
|
||||
c = *p & 0xFF;
|
||||
if (!ip->Matches(c))
|
||||
goto Next;
|
||||
|
||||
if (ip->hint() != 0)
|
||||
Push(id+ip->hint(), p); // try the next when we're done
|
||||
id = ip->out();
|
||||
p++;
|
||||
goto CheckAndLoop;
|
||||
}
|
||||
|
||||
case kInstCapture:
|
||||
if (!ip->last())
|
||||
Push(id+1, p); // try the next when we're done
|
||||
|
||||
if (0 <= ip->cap() && ip->cap() < cap_.size()) {
|
||||
// Capture p to register, but save old value first.
|
||||
Push(-id, cap_[ip->cap()]); // undo when we're done
|
||||
cap_[ip->cap()] = p;
|
||||
}
|
||||
|
||||
id = ip->out();
|
||||
goto CheckAndLoop;
|
||||
|
||||
case kInstEmptyWidth:
|
||||
if (ip->empty() & ~Prog::EmptyFlags(context_, p))
|
||||
goto Next;
|
||||
|
||||
if (!ip->last())
|
||||
Push(id+1, p); // try the next when we're done
|
||||
id = ip->out();
|
||||
goto CheckAndLoop;
|
||||
|
||||
case kInstNop:
|
||||
if (!ip->last())
|
||||
Push(id+1, p); // try the next when we're done
|
||||
id = ip->out();
|
||||
|
||||
CheckAndLoop:
|
||||
// Sanity check: id is the head of its list, which must
|
||||
// be the case if id-1 is the last of *its* list. :)
|
||||
DCHECK(id == 0 || prog_->inst(id-1)->last());
|
||||
if (ShouldVisit(id, p))
|
||||
goto Loop;
|
||||
break;
|
||||
|
||||
case kInstMatch: {
|
||||
if (endmatch_ && p != end)
|
||||
goto Next;
|
||||
|
||||
// We found a match. If the caller doesn't care
|
||||
// where the match is, no point going further.
|
||||
if (nsubmatch_ == 0)
|
||||
return true;
|
||||
|
||||
// Record best match so far.
|
||||
// Only need to check end point, because this entire
|
||||
// call is only considering one start position.
|
||||
matched = true;
|
||||
cap_[1] = p;
|
||||
if (submatch_[0].data() == NULL ||
|
||||
(longest_ && p > submatch_[0].end())) {
|
||||
for (int i = 0; i < nsubmatch_; i++)
|
||||
submatch_[i] =
|
||||
StringPiece(cap_[2 * i],
|
||||
static_cast<size_t>(cap_[2 * i + 1] - cap_[2 * i]));
|
||||
}
|
||||
|
||||
// If going for first match, we're done.
|
||||
if (!longest_)
|
||||
return true;
|
||||
|
||||
// If we used the entire text, no longer match is possible.
|
||||
if (p == end)
|
||||
return true;
|
||||
|
||||
// Otherwise, continue on in hope of a longer match.
|
||||
// Note the absence of the ShouldVisit() check here
|
||||
// due to execution remaining in the same list.
|
||||
Next:
|
||||
if (!ip->last()) {
|
||||
id++;
|
||||
goto Loop;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return matched;
|
||||
}
|
||||
|
||||
// Search text (within context) for prog_.
|
||||
bool BitState::Search(const StringPiece& text, const StringPiece& context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch) {
|
||||
// Search parameters.
|
||||
text_ = text;
|
||||
context_ = context;
|
||||
if (context_.begin() == NULL)
|
||||
context_ = text;
|
||||
if (prog_->anchor_start() && context_.begin() != text.begin())
|
||||
return false;
|
||||
if (prog_->anchor_end() && context_.end() != text.end())
|
||||
return false;
|
||||
anchored_ = anchored || prog_->anchor_start();
|
||||
longest_ = longest || prog_->anchor_end();
|
||||
endmatch_ = prog_->anchor_end();
|
||||
submatch_ = submatch;
|
||||
nsubmatch_ = nsubmatch;
|
||||
for (int i = 0; i < nsubmatch_; i++)
|
||||
submatch_[i] = StringPiece();
|
||||
|
||||
// Allocate scratch space.
|
||||
int nvisited = prog_->list_count() * static_cast<int>(text.size()+1);
|
||||
nvisited = (nvisited + VisitedBits-1) / VisitedBits;
|
||||
visited_ = PODArray<uint32_t>(nvisited);
|
||||
memset(visited_.data(), 0, nvisited*sizeof visited_[0]);
|
||||
|
||||
int ncap = 2*nsubmatch;
|
||||
if (ncap < 2)
|
||||
ncap = 2;
|
||||
cap_ = PODArray<const char*>(ncap);
|
||||
memset(cap_.data(), 0, ncap*sizeof cap_[0]);
|
||||
|
||||
// When sizeof(Job) == 16, we start with a nice round 1KiB. :)
|
||||
job_ = PODArray<Job>(64);
|
||||
|
||||
// Anchored search must start at text.begin().
|
||||
if (anchored_) {
|
||||
cap_[0] = text.begin();
|
||||
return TrySearch(prog_->start(), text.begin());
|
||||
}
|
||||
|
||||
// Unanchored search, starting from each possible text position.
|
||||
// Notice that we have to try the empty string at the end of
|
||||
// the text, so the loop condition is p <= text.end(), not p < text.end().
|
||||
// This looks like it's quadratic in the size of the text,
|
||||
// but we are not clearing visited_ between calls to TrySearch,
|
||||
// so no work is duplicated and it ends up still being linear.
|
||||
for (const char* p = text.begin(); p <= text.end(); p++) {
|
||||
// Try to use memchr to find the first byte quickly.
|
||||
int fb = prog_->first_byte();
|
||||
if (fb >= 0 && p < text.end() && (p[0] & 0xFF) != fb) {
|
||||
p = reinterpret_cast<const char*>(memchr(p, fb, text.end() - p));
|
||||
if (p == NULL)
|
||||
p = text.end();
|
||||
}
|
||||
|
||||
cap_[0] = p;
|
||||
if (TrySearch(prog_->start(), p)) // Match must be leftmost; done.
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Bit-state search.
|
||||
bool Prog::SearchBitState(const StringPiece& text,
|
||||
const StringPiece& context,
|
||||
Anchor anchor,
|
||||
MatchKind kind,
|
||||
StringPiece* match,
|
||||
int nmatch) {
|
||||
// If full match, we ask for an anchored longest match
|
||||
// and then check that match[0] == text.
|
||||
// So make sure match[0] exists.
|
||||
StringPiece sp0;
|
||||
if (kind == kFullMatch) {
|
||||
anchor = kAnchored;
|
||||
if (nmatch < 1) {
|
||||
match = &sp0;
|
||||
nmatch = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Run the search.
|
||||
BitState b(this);
|
||||
bool anchored = anchor == kAnchored;
|
||||
bool longest = kind != kFirstMatch;
|
||||
if (!b.Search(text, context, anchored, longest, match, nmatch))
|
||||
return false;
|
||||
if (kind == kFullMatch && match[0].end() != text.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace re2
|
1279
extern/re2/re2/compile.cc
vendored
Normal file
1279
extern/re2/re2/compile.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
2151
extern/re2/re2/dfa.cc
vendored
Normal file
2151
extern/re2/re2/dfa.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
121
extern/re2/re2/filtered_re2.cc
vendored
Normal file
121
extern/re2/re2/filtered_re2.cc
vendored
Normal file
@ -0,0 +1,121 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "re2/filtered_re2.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/prefilter.h"
|
||||
#include "re2/prefilter_tree.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
FilteredRE2::FilteredRE2()
|
||||
: compiled_(false),
|
||||
prefilter_tree_(new PrefilterTree()) {
|
||||
}
|
||||
|
||||
FilteredRE2::FilteredRE2(int min_atom_len)
|
||||
: compiled_(false),
|
||||
prefilter_tree_(new PrefilterTree(min_atom_len)) {
|
||||
}
|
||||
|
||||
FilteredRE2::~FilteredRE2() {
|
||||
for (size_t i = 0; i < re2_vec_.size(); i++)
|
||||
delete re2_vec_[i];
|
||||
delete prefilter_tree_;
|
||||
}
|
||||
|
||||
RE2::ErrorCode FilteredRE2::Add(const StringPiece& pattern,
|
||||
const RE2::Options& options, int* id) {
|
||||
RE2* re = new RE2(pattern, options);
|
||||
RE2::ErrorCode code = re->error_code();
|
||||
|
||||
if (!re->ok()) {
|
||||
if (options.log_errors()) {
|
||||
LOG(ERROR) << "Couldn't compile regular expression, skipping: "
|
||||
<< re << " due to error " << re->error();
|
||||
}
|
||||
delete re;
|
||||
} else {
|
||||
*id = static_cast<int>(re2_vec_.size());
|
||||
re2_vec_.push_back(re);
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
void FilteredRE2::Compile(std::vector<std::string>* atoms) {
|
||||
if (compiled_) {
|
||||
LOG(ERROR) << "Compile called already.";
|
||||
return;
|
||||
}
|
||||
|
||||
if (re2_vec_.empty()) {
|
||||
LOG(ERROR) << "Compile called before Add.";
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < re2_vec_.size(); i++) {
|
||||
Prefilter* prefilter = Prefilter::FromRE2(re2_vec_[i]);
|
||||
prefilter_tree_->Add(prefilter);
|
||||
}
|
||||
atoms->clear();
|
||||
prefilter_tree_->Compile(atoms);
|
||||
compiled_ = true;
|
||||
}
|
||||
|
||||
int FilteredRE2::SlowFirstMatch(const StringPiece& text) const {
|
||||
for (size_t i = 0; i < re2_vec_.size(); i++)
|
||||
if (RE2::PartialMatch(text, *re2_vec_[i]))
|
||||
return static_cast<int>(i);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int FilteredRE2::FirstMatch(const StringPiece& text,
|
||||
const std::vector<int>& atoms) const {
|
||||
if (!compiled_) {
|
||||
LOG(DFATAL) << "FirstMatch called before Compile.";
|
||||
return -1;
|
||||
}
|
||||
std::vector<int> regexps;
|
||||
prefilter_tree_->RegexpsGivenStrings(atoms, ®exps);
|
||||
for (size_t i = 0; i < regexps.size(); i++)
|
||||
if (RE2::PartialMatch(text, *re2_vec_[regexps[i]]))
|
||||
return regexps[i];
|
||||
return -1;
|
||||
}
|
||||
|
||||
bool FilteredRE2::AllMatches(
|
||||
const StringPiece& text,
|
||||
const std::vector<int>& atoms,
|
||||
std::vector<int>* matching_regexps) const {
|
||||
matching_regexps->clear();
|
||||
std::vector<int> regexps;
|
||||
prefilter_tree_->RegexpsGivenStrings(atoms, ®exps);
|
||||
for (size_t i = 0; i < regexps.size(); i++)
|
||||
if (RE2::PartialMatch(text, *re2_vec_[regexps[i]]))
|
||||
matching_regexps->push_back(regexps[i]);
|
||||
return !matching_regexps->empty();
|
||||
}
|
||||
|
||||
void FilteredRE2::AllPotentials(
|
||||
const std::vector<int>& atoms,
|
||||
std::vector<int>* potential_regexps) const {
|
||||
prefilter_tree_->RegexpsGivenStrings(atoms, potential_regexps);
|
||||
}
|
||||
|
||||
void FilteredRE2::RegexpsGivenStrings(const std::vector<int>& matched_atoms,
|
||||
std::vector<int>* passed_regexps) {
|
||||
prefilter_tree_->RegexpsGivenStrings(matched_atoms, passed_regexps);
|
||||
}
|
||||
|
||||
void FilteredRE2::PrintPrefilter(int regexpid) {
|
||||
prefilter_tree_->PrintPrefilter(regexpid);
|
||||
}
|
||||
|
||||
} // namespace re2
|
109
extern/re2/re2/filtered_re2.h
vendored
Normal file
109
extern/re2/re2/filtered_re2.h
vendored
Normal file
@ -0,0 +1,109 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_FILTERED_RE2_H_
|
||||
#define RE2_FILTERED_RE2_H_
|
||||
|
||||
// The class FilteredRE2 is used as a wrapper to multiple RE2 regexps.
|
||||
// It provides a prefilter mechanism that helps in cutting down the
|
||||
// number of regexps that need to be actually searched.
|
||||
//
|
||||
// By design, it does not include a string matching engine. This is to
|
||||
// allow the user of the class to use their favorite string match
|
||||
// engine. The overall flow is: Add all the regexps using Add, then
|
||||
// Compile the FilteredRE2. The compile returns strings that need to
|
||||
// be matched. Note that all returned strings are lowercase. For
|
||||
// applying regexps to a search text, the caller does the string
|
||||
// matching using the strings returned. When doing the string match,
|
||||
// note that the caller has to do that on lower cased version of the
|
||||
// search text. Then call FirstMatch or AllMatches with a vector of
|
||||
// indices of strings that were found in the text to get the actual
|
||||
// regexp matches.
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class PrefilterTree;
|
||||
|
||||
class FilteredRE2 {
|
||||
public:
|
||||
FilteredRE2();
|
||||
explicit FilteredRE2(int min_atom_len);
|
||||
~FilteredRE2();
|
||||
|
||||
// Uses RE2 constructor to create a RE2 object (re). Returns
|
||||
// re->error_code(). If error_code is other than NoError, then re is
|
||||
// deleted and not added to re2_vec_.
|
||||
RE2::ErrorCode Add(const StringPiece& pattern,
|
||||
const RE2::Options& options,
|
||||
int *id);
|
||||
|
||||
// Prepares the regexps added by Add for filtering. Returns a set
|
||||
// of strings that the caller should check for in candidate texts.
|
||||
// The returned strings are lowercased. When doing string matching,
|
||||
// the search text should be lowercased first to find matching
|
||||
// strings from the set of strings returned by Compile. Call after
|
||||
// all Add calls are done.
|
||||
void Compile(std::vector<std::string>* strings_to_match);
|
||||
|
||||
// Returns the index of the first matching regexp.
|
||||
// Returns -1 on no match. Can be called prior to Compile.
|
||||
// Does not do any filtering: simply tries to Match the
|
||||
// regexps in a loop.
|
||||
int SlowFirstMatch(const StringPiece& text) const;
|
||||
|
||||
// Returns the index of the first matching regexp.
|
||||
// Returns -1 on no match. Compile has to be called before
|
||||
// calling this.
|
||||
int FirstMatch(const StringPiece& text,
|
||||
const std::vector<int>& atoms) const;
|
||||
|
||||
// Returns the indices of all matching regexps, after first clearing
|
||||
// matched_regexps.
|
||||
bool AllMatches(const StringPiece& text,
|
||||
const std::vector<int>& atoms,
|
||||
std::vector<int>* matching_regexps) const;
|
||||
|
||||
// Returns the indices of all potentially matching regexps after first
|
||||
// clearing potential_regexps.
|
||||
// A regexp is potentially matching if it passes the filter.
|
||||
// If a regexp passes the filter it may still not match.
|
||||
// A regexp that does not pass the filter is guaranteed to not match.
|
||||
void AllPotentials(const std::vector<int>& atoms,
|
||||
std::vector<int>* potential_regexps) const;
|
||||
|
||||
// The number of regexps added.
|
||||
int NumRegexps() const { return static_cast<int>(re2_vec_.size()); }
|
||||
|
||||
// Get the individual RE2 objects.
|
||||
const RE2& GetRE2(int regexpid) const { return *re2_vec_[regexpid]; }
|
||||
|
||||
private:
|
||||
// Print prefilter.
|
||||
void PrintPrefilter(int regexpid);
|
||||
|
||||
// Useful for testing and debugging.
|
||||
void RegexpsGivenStrings(const std::vector<int>& matched_atoms,
|
||||
std::vector<int>* passed_regexps);
|
||||
|
||||
// All the regexps in the FilteredRE2.
|
||||
std::vector<RE2*> re2_vec_;
|
||||
|
||||
// Has the FilteredRE2 been compiled using Compile()
|
||||
bool compiled_;
|
||||
|
||||
// An AND-OR tree of string atoms used for filtering regexps.
|
||||
PrefilterTree* prefilter_tree_;
|
||||
|
||||
FilteredRE2(const FilteredRE2&) = delete;
|
||||
FilteredRE2& operator=(const FilteredRE2&) = delete;
|
||||
};
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_FILTERED_RE2_H_
|
173
extern/re2/re2/fuzzing/re2_fuzzer.cc
vendored
Normal file
173
extern/re2/re2/fuzzing/re2_fuzzer.cc
vendored
Normal file
@ -0,0 +1,173 @@
|
||||
// Copyright 2016 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <queue>
|
||||
#include <string>
|
||||
|
||||
#include "re2/prefilter.h"
|
||||
#include "re2/re2.h"
|
||||
|
||||
using re2::StringPiece;
|
||||
|
||||
// NOT static, NOT signed.
|
||||
uint8_t dummy = 0;
|
||||
|
||||
void Test(StringPiece pattern, const RE2::Options& options, StringPiece text) {
|
||||
RE2 re(pattern, options);
|
||||
if (!re.ok())
|
||||
return;
|
||||
|
||||
// Don't waste time fuzzing programs with large substrings.
|
||||
// They can cause bug reports due to fuzzer timeouts when they
|
||||
// are repetitions (e.g. hundreds of NUL bytes) and matching is
|
||||
// unanchored. And they aren't interesting for fuzzing purposes.
|
||||
std::unique_ptr<re2::Prefilter> prefilter(re2::Prefilter::FromRE2(&re));
|
||||
if (prefilter == nullptr)
|
||||
return;
|
||||
std::queue<re2::Prefilter*> nodes;
|
||||
nodes.push(prefilter.get());
|
||||
while (!nodes.empty()) {
|
||||
re2::Prefilter* node = nodes.front();
|
||||
nodes.pop();
|
||||
if (node->op() == re2::Prefilter::ATOM) {
|
||||
if (node->atom().size() > 9)
|
||||
return;
|
||||
} else if (node->op() == re2::Prefilter::AND ||
|
||||
node->op() == re2::Prefilter::OR) {
|
||||
for (re2::Prefilter* sub : *node->subs())
|
||||
nodes.push(sub);
|
||||
}
|
||||
}
|
||||
|
||||
// Don't waste time fuzzing high-size programs.
|
||||
// They can cause bug reports due to fuzzer timeouts.
|
||||
int size = re.ProgramSize();
|
||||
if (size > 9999)
|
||||
return;
|
||||
int rsize = re.ReverseProgramSize();
|
||||
if (rsize > 9999)
|
||||
return;
|
||||
|
||||
// Don't waste time fuzzing high-fanout programs.
|
||||
// They can cause bug reports due to fuzzer timeouts.
|
||||
std::map<int, int> histogram;
|
||||
int fanout = re.ProgramFanout(&histogram);
|
||||
if (fanout > 9)
|
||||
return;
|
||||
int rfanout = re.ReverseProgramFanout(&histogram);
|
||||
if (rfanout > 9)
|
||||
return;
|
||||
|
||||
if (re.NumberOfCapturingGroups() == 0) {
|
||||
// Avoid early return due to too many arguments.
|
||||
StringPiece sp = text;
|
||||
RE2::FullMatch(sp, re);
|
||||
RE2::PartialMatch(sp, re);
|
||||
RE2::Consume(&sp, re);
|
||||
sp = text; // Reset.
|
||||
RE2::FindAndConsume(&sp, re);
|
||||
} else {
|
||||
// Okay, we have at least one capturing group...
|
||||
// Try conversion for variously typed arguments.
|
||||
StringPiece sp = text;
|
||||
short s;
|
||||
RE2::FullMatch(sp, re, &s);
|
||||
long l;
|
||||
RE2::PartialMatch(sp, re, &l);
|
||||
float f;
|
||||
RE2::Consume(&sp, re, &f);
|
||||
sp = text; // Reset.
|
||||
double d;
|
||||
RE2::FindAndConsume(&sp, re, &d);
|
||||
}
|
||||
|
||||
std::string s = std::string(text);
|
||||
RE2::Replace(&s, re, "");
|
||||
s = std::string(text); // Reset.
|
||||
RE2::GlobalReplace(&s, re, "");
|
||||
|
||||
std::string min, max;
|
||||
re.PossibleMatchRange(&min, &max, /*maxlen=*/9);
|
||||
|
||||
// Exercise some other API functionality.
|
||||
dummy += re.NamedCapturingGroups().size();
|
||||
dummy += re.CapturingGroupNames().size();
|
||||
dummy += RE2::QuoteMeta(pattern).size();
|
||||
}
|
||||
|
||||
// Entry point for libFuzzer.
|
||||
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
|
||||
if (size == 0 || size > 999)
|
||||
return 0;
|
||||
|
||||
// Crudely limit the use of ., \p, \P, \d, \D, \s, \S, \w and \W.
|
||||
// Otherwise, we will waste time on inputs that have long runs of various
|
||||
// character classes. The fuzzer has shown itself to be easily capable of
|
||||
// generating such patterns that fall within the other limits, but result
|
||||
// in timeouts nonetheless. The marginal cost is high - even more so when
|
||||
// counted repetition is involved - whereas the marginal benefit is zero.
|
||||
// TODO(junyer): Handle [:isalnum:] et al. when they start to cause pain.
|
||||
int char_class = 0;
|
||||
int backslash_p = 0; // very expensive, so handle specially
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
if (data[i] == '.')
|
||||
char_class++;
|
||||
if (data[i] != '\\')
|
||||
continue;
|
||||
i++;
|
||||
if (i >= size)
|
||||
break;
|
||||
if (data[i] == 'p' || data[i] == 'P' ||
|
||||
data[i] == 'd' || data[i] == 'D' ||
|
||||
data[i] == 's' || data[i] == 'S' ||
|
||||
data[i] == 'w' || data[i] == 'W')
|
||||
char_class++;
|
||||
if (data[i] == 'p' || data[i] == 'P')
|
||||
backslash_p++;
|
||||
}
|
||||
if (char_class > 9)
|
||||
return 0;
|
||||
if (backslash_p > 1)
|
||||
return 0;
|
||||
|
||||
// The one-at-a-time hash by Bob Jenkins.
|
||||
uint32_t hash = 0;
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
hash += data[i];
|
||||
hash += (hash << 10);
|
||||
hash ^= (hash >> 6);
|
||||
}
|
||||
hash += (hash << 3);
|
||||
hash ^= (hash >> 11);
|
||||
hash += (hash << 15);
|
||||
|
||||
RE2::Options options;
|
||||
options.set_log_errors(false);
|
||||
options.set_max_mem(64 << 20);
|
||||
options.set_encoding(hash & 1 ? RE2::Options::EncodingLatin1
|
||||
: RE2::Options::EncodingUTF8);
|
||||
options.set_posix_syntax(hash & 2);
|
||||
options.set_longest_match(hash & 4);
|
||||
options.set_literal(hash & 8);
|
||||
options.set_never_nl(hash & 16);
|
||||
options.set_dot_nl(hash & 32);
|
||||
options.set_never_capture(hash & 64);
|
||||
options.set_case_sensitive(hash & 128);
|
||||
options.set_perl_classes(hash & 256);
|
||||
options.set_word_boundary(hash & 512);
|
||||
options.set_one_line(hash & 1024);
|
||||
|
||||
const char* ptr = reinterpret_cast<const char*>(data);
|
||||
int len = static_cast<int>(size);
|
||||
|
||||
StringPiece pattern(ptr, len);
|
||||
StringPiece text(ptr, len);
|
||||
Test(pattern, options, text);
|
||||
|
||||
return 0;
|
||||
}
|
116
extern/re2/re2/make_perl_groups.pl
vendored
Normal file
116
extern/re2/re2/make_perl_groups.pl
vendored
Normal file
@ -0,0 +1,116 @@
|
||||
#!/usr/bin/perl
|
||||
# Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# Generate table entries giving character ranges
|
||||
# for POSIX/Perl character classes. Rather than
|
||||
# figure out what the definition is, it is easier to ask
|
||||
# Perl about each letter from 0-128 and write down
|
||||
# its answer.
|
||||
|
||||
@posixclasses = (
|
||||
"[:alnum:]",
|
||||
"[:alpha:]",
|
||||
"[:ascii:]",
|
||||
"[:blank:]",
|
||||
"[:cntrl:]",
|
||||
"[:digit:]",
|
||||
"[:graph:]",
|
||||
"[:lower:]",
|
||||
"[:print:]",
|
||||
"[:punct:]",
|
||||
"[:space:]",
|
||||
"[:upper:]",
|
||||
"[:word:]",
|
||||
"[:xdigit:]",
|
||||
);
|
||||
|
||||
@perlclasses = (
|
||||
"\\d",
|
||||
"\\s",
|
||||
"\\w",
|
||||
);
|
||||
|
||||
%overrides = (
|
||||
# Prior to Perl 5.18, \s did not match vertical tab.
|
||||
# RE2 preserves that original behaviour.
|
||||
"\\s:11" => 0,
|
||||
);
|
||||
|
||||
sub ComputeClass($) {
|
||||
my ($cname) = @_;
|
||||
my @ranges;
|
||||
my $regexp = qr/[$cname]/;
|
||||
my $start = -1;
|
||||
for (my $i=0; $i<=129; $i++) {
|
||||
if ($i == 129) { $i = 256; }
|
||||
if ($i <= 128 && ($overrides{"$cname:$i"} // chr($i) =~ $regexp)) {
|
||||
if ($start < 0) {
|
||||
$start = $i;
|
||||
}
|
||||
} else {
|
||||
if ($start >= 0) {
|
||||
push @ranges, [$start, $i-1];
|
||||
}
|
||||
$start = -1;
|
||||
}
|
||||
}
|
||||
return @ranges;
|
||||
}
|
||||
|
||||
sub PrintClass($$@) {
|
||||
my ($cnum, $cname, @ranges) = @_;
|
||||
print "static const URange16 code${cnum}[] = { /* $cname */\n";
|
||||
for (my $i=0; $i<@ranges; $i++) {
|
||||
my @a = @{$ranges[$i]};
|
||||
printf "\t{ 0x%x, 0x%x },\n", $a[0], $a[1];
|
||||
}
|
||||
print "};\n";
|
||||
my $n = @ranges;
|
||||
my $escname = $cname;
|
||||
$escname =~ s/\\/\\\\/g;
|
||||
$negname = $escname;
|
||||
if ($negname =~ /:/) {
|
||||
$negname =~ s/:/:^/;
|
||||
} else {
|
||||
$negname =~ y/a-z/A-Z/;
|
||||
}
|
||||
return "{ \"$escname\", +1, code$cnum, $n }", "{ \"$negname\", -1, code$cnum, $n }";
|
||||
}
|
||||
|
||||
my $cnum = 0;
|
||||
|
||||
sub PrintClasses($@) {
|
||||
my ($pname, @classes) = @_;
|
||||
my @entries;
|
||||
foreach my $cname (@classes) {
|
||||
my @ranges = ComputeClass($cname);
|
||||
push @entries, PrintClass(++$cnum, $cname, @ranges);
|
||||
}
|
||||
print "const UGroup ${pname}_groups[] = {\n";
|
||||
foreach my $e (@entries) {
|
||||
print "\t$e,\n";
|
||||
}
|
||||
print "};\n";
|
||||
my $count = @entries;
|
||||
print "const int num_${pname}_groups = $count;\n";
|
||||
}
|
||||
|
||||
print <<EOF;
|
||||
// GENERATED BY make_perl_groups.pl; DO NOT EDIT.
|
||||
// make_perl_groups.pl >perl_groups.cc
|
||||
|
||||
#include "re2/unicode_groups.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
EOF
|
||||
|
||||
PrintClasses("perl", @perlclasses);
|
||||
PrintClasses("posix", @posixclasses);
|
||||
|
||||
print <<EOF;
|
||||
|
||||
} // namespace re2
|
||||
EOF
|
151
extern/re2/re2/make_unicode_casefold.py
vendored
Normal file
151
extern/re2/re2/make_unicode_casefold.py
vendored
Normal file
@ -0,0 +1,151 @@
|
||||
#!/usr/bin/python
|
||||
# coding=utf-8
|
||||
#
|
||||
# Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
# See unicode_casefold.h for description of case folding tables.
|
||||
|
||||
"""Generate C++ table for Unicode case folding."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
import unicode
|
||||
|
||||
_header = """
|
||||
// GENERATED BY make_unicode_casefold.py; DO NOT EDIT.
|
||||
// make_unicode_casefold.py >unicode_casefold.cc
|
||||
|
||||
#include "re2/unicode_casefold.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
"""
|
||||
|
||||
_trailer = """
|
||||
|
||||
} // namespace re2
|
||||
|
||||
"""
|
||||
|
||||
def _Delta(a, b):
|
||||
"""Compute the delta for b - a. Even/odd and odd/even
|
||||
are handled specially, as described above."""
|
||||
if a+1 == b:
|
||||
if a%2 == 0:
|
||||
return 'EvenOdd'
|
||||
else:
|
||||
return 'OddEven'
|
||||
if a == b+1:
|
||||
if a%2 == 0:
|
||||
return 'OddEven'
|
||||
else:
|
||||
return 'EvenOdd'
|
||||
return b - a
|
||||
|
||||
def _AddDelta(a, delta):
|
||||
"""Return a + delta, handling EvenOdd and OddEven specially."""
|
||||
if type(delta) == int:
|
||||
return a+delta
|
||||
if delta == 'EvenOdd':
|
||||
if a%2 == 0:
|
||||
return a+1
|
||||
else:
|
||||
return a-1
|
||||
if delta == 'OddEven':
|
||||
if a%2 == 1:
|
||||
return a+1
|
||||
else:
|
||||
return a-1
|
||||
print("Bad Delta:", delta, file=sys.stderr)
|
||||
raise unicode.Error("Bad Delta")
|
||||
|
||||
def _MakeRanges(pairs):
|
||||
"""Turn a list like [(65,97), (66, 98), ..., (90,122)]
|
||||
into [(65, 90, +32)]."""
|
||||
ranges = []
|
||||
last = -100
|
||||
|
||||
def evenodd(last, a, b, r):
|
||||
if a != last+1 or b != _AddDelta(a, r[2]):
|
||||
return False
|
||||
r[1] = a
|
||||
return True
|
||||
|
||||
def evenoddpair(last, a, b, r):
|
||||
if a != last+2:
|
||||
return False
|
||||
delta = r[2]
|
||||
d = delta
|
||||
if type(delta) is not str:
|
||||
return False
|
||||
if delta.endswith('Skip'):
|
||||
d = delta[:-4]
|
||||
else:
|
||||
delta = d + 'Skip'
|
||||
if b != _AddDelta(a, d):
|
||||
return False
|
||||
r[1] = a
|
||||
r[2] = delta
|
||||
return True
|
||||
|
||||
for a, b in pairs:
|
||||
if ranges and evenodd(last, a, b, ranges[-1]):
|
||||
pass
|
||||
elif ranges and evenoddpair(last, a, b, ranges[-1]):
|
||||
pass
|
||||
else:
|
||||
ranges.append([a, a, _Delta(a, b)])
|
||||
last = a
|
||||
return ranges
|
||||
|
||||
# The maximum size of a case-folding group.
|
||||
# Case folding is implemented in parse.cc by a recursive process
|
||||
# with a recursion depth equal to the size of the largest
|
||||
# case-folding group, so it is important that this bound be small.
|
||||
# The current tables have no group bigger than 4.
|
||||
# If there are ever groups bigger than 10 or so, it will be
|
||||
# time to rework the code in parse.cc.
|
||||
MaxCasefoldGroup = 4
|
||||
|
||||
def main():
|
||||
lowergroups, casegroups = unicode.CaseGroups()
|
||||
foldpairs = []
|
||||
seen = {}
|
||||
for c in casegroups:
|
||||
if len(c) > MaxCasefoldGroup:
|
||||
raise unicode.Error("casefold group too long: %s" % (c,))
|
||||
for i in range(len(c)):
|
||||
if c[i-1] in seen:
|
||||
raise unicode.Error("bad casegroups %d -> %d" % (c[i-1], c[i]))
|
||||
seen[c[i-1]] = True
|
||||
foldpairs.append([c[i-1], c[i]])
|
||||
|
||||
lowerpairs = []
|
||||
for lower, group in lowergroups.items():
|
||||
for g in group:
|
||||
if g != lower:
|
||||
lowerpairs.append([g, lower])
|
||||
|
||||
def printpairs(name, foldpairs):
|
||||
foldpairs.sort()
|
||||
foldranges = _MakeRanges(foldpairs)
|
||||
print("// %d groups, %d pairs, %d ranges" % (len(casegroups), len(foldpairs), len(foldranges)))
|
||||
print("const CaseFold unicode_%s[] = {" % (name,))
|
||||
for lo, hi, delta in foldranges:
|
||||
print("\t{ %d, %d, %s }," % (lo, hi, delta))
|
||||
print("};")
|
||||
print("const int num_unicode_%s = %d;" % (name, len(foldranges)))
|
||||
print("")
|
||||
|
||||
print(_header)
|
||||
printpairs("casefold", foldpairs)
|
||||
printpairs("tolower", lowerpairs)
|
||||
print(_trailer)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
117
extern/re2/re2/make_unicode_groups.py
vendored
Normal file
117
extern/re2/re2/make_unicode_groups.py
vendored
Normal file
@ -0,0 +1,117 @@
|
||||
#!/usr/bin/python
|
||||
# Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
"""Generate C++ tables for Unicode Script and Category groups."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
import unicode
|
||||
|
||||
_header = """
|
||||
// GENERATED BY make_unicode_groups.py; DO NOT EDIT.
|
||||
// make_unicode_groups.py >unicode_groups.cc
|
||||
|
||||
#include "re2/unicode_groups.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
"""
|
||||
|
||||
_trailer = """
|
||||
|
||||
} // namespace re2
|
||||
|
||||
"""
|
||||
|
||||
n16 = 0
|
||||
n32 = 0
|
||||
|
||||
def MakeRanges(codes):
|
||||
"""Turn a list like [1,2,3,7,8,9] into a range list [[1,3], [7,9]]"""
|
||||
ranges = []
|
||||
last = -100
|
||||
for c in codes:
|
||||
if c == last+1:
|
||||
ranges[-1][1] = c
|
||||
else:
|
||||
ranges.append([c, c])
|
||||
last = c
|
||||
return ranges
|
||||
|
||||
def PrintRanges(type, name, ranges):
|
||||
"""Print the ranges as an array of type named name."""
|
||||
print("static const %s %s[] = {" % (type, name))
|
||||
for lo, hi in ranges:
|
||||
print("\t{ %d, %d }," % (lo, hi))
|
||||
print("};")
|
||||
|
||||
# def PrintCodes(type, name, codes):
|
||||
# """Print the codes as an array of type named name."""
|
||||
# print("static %s %s[] = {" % (type, name))
|
||||
# for c in codes:
|
||||
# print("\t%d," % (c,))
|
||||
# print("};")
|
||||
|
||||
def PrintGroup(name, codes):
|
||||
"""Print the data structures for the group of codes.
|
||||
Return a UGroup literal for the group."""
|
||||
|
||||
# See unicode_groups.h for a description of the data structure.
|
||||
|
||||
# Split codes into 16-bit ranges and 32-bit ranges.
|
||||
range16 = MakeRanges([c for c in codes if c < 65536])
|
||||
range32 = MakeRanges([c for c in codes if c >= 65536])
|
||||
|
||||
# Pull singleton ranges out of range16.
|
||||
# code16 = [lo for lo, hi in range16 if lo == hi]
|
||||
# range16 = [[lo, hi] for lo, hi in range16 if lo != hi]
|
||||
|
||||
global n16
|
||||
global n32
|
||||
n16 += len(range16)
|
||||
n32 += len(range32)
|
||||
|
||||
ugroup = "{ \"%s\", +1" % (name,)
|
||||
# if len(code16) > 0:
|
||||
# PrintCodes("uint16_t", name+"_code16", code16)
|
||||
# ugroup += ", %s_code16, %d" % (name, len(code16))
|
||||
# else:
|
||||
# ugroup += ", 0, 0"
|
||||
if len(range16) > 0:
|
||||
PrintRanges("URange16", name+"_range16", range16)
|
||||
ugroup += ", %s_range16, %d" % (name, len(range16))
|
||||
else:
|
||||
ugroup += ", 0, 0"
|
||||
if len(range32) > 0:
|
||||
PrintRanges("URange32", name+"_range32", range32)
|
||||
ugroup += ", %s_range32, %d" % (name, len(range32))
|
||||
else:
|
||||
ugroup += ", 0, 0"
|
||||
ugroup += " }"
|
||||
return ugroup
|
||||
|
||||
def main():
|
||||
categories = unicode.Categories()
|
||||
scripts = unicode.Scripts()
|
||||
print(_header)
|
||||
ugroups = []
|
||||
for name in sorted(categories):
|
||||
ugroups.append(PrintGroup(name, categories[name]))
|
||||
for name in sorted(scripts):
|
||||
ugroups.append(PrintGroup(name, scripts[name]))
|
||||
print("// %d 16-bit ranges, %d 32-bit ranges" % (n16, n32))
|
||||
print("const UGroup unicode_groups[] = {")
|
||||
ugroups.sort()
|
||||
for ug in ugroups:
|
||||
print("\t%s," % (ug,))
|
||||
print("};")
|
||||
print("const int num_unicode_groups = %d;" % (len(ugroups),))
|
||||
print(_trailer)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
187
extern/re2/re2/mimics_pcre.cc
vendored
Normal file
187
extern/re2/re2/mimics_pcre.cc
vendored
Normal file
@ -0,0 +1,187 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Determine whether this library should match PCRE exactly
|
||||
// for a particular Regexp. (If so, the testing framework can
|
||||
// check that it does.)
|
||||
//
|
||||
// This library matches PCRE except in these cases:
|
||||
// * the regexp contains a repetition of an empty string,
|
||||
// like (a*)* or (a*)+. In this case, PCRE will treat
|
||||
// the repetition sequence as ending with an empty string,
|
||||
// while this library does not.
|
||||
// * Perl and PCRE differ on whether \v matches \n.
|
||||
// For historical reasons, this library implements the Perl behavior.
|
||||
// * Perl and PCRE allow $ in one-line mode to match either the very
|
||||
// end of the text or just before a \n at the end of the text.
|
||||
// This library requires it to match only the end of the text.
|
||||
// * Similarly, Perl and PCRE do not allow ^ in multi-line mode to
|
||||
// match the end of the text if the last character is a \n.
|
||||
// This library does allow it.
|
||||
//
|
||||
// Regexp::MimicsPCRE checks for any of these conditions.
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Returns whether re might match an empty string.
|
||||
static bool CanBeEmptyString(Regexp *re);
|
||||
|
||||
// Walker class to compute whether library handles a regexp
|
||||
// exactly as PCRE would. See comment at top for conditions.
|
||||
|
||||
class PCREWalker : public Regexp::Walker<bool> {
|
||||
public:
|
||||
PCREWalker() {}
|
||||
bool PostVisit(Regexp* re, bool parent_arg, bool pre_arg, bool* child_args,
|
||||
int nchild_args);
|
||||
|
||||
bool ShortVisit(Regexp* re, bool a) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "EmptyStringWalker::ShortVisit called";
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
// Called after visiting each of re's children and accumulating
|
||||
// the return values in child_args. So child_args contains whether
|
||||
// this library mimics PCRE for those subexpressions.
|
||||
bool PCREWalker::PostVisit(Regexp* re, bool parent_arg, bool pre_arg,
|
||||
bool* child_args, int nchild_args) {
|
||||
// If children failed, so do we.
|
||||
for (int i = 0; i < nchild_args; i++)
|
||||
if (!child_args[i])
|
||||
return false;
|
||||
|
||||
// Otherwise look for other reasons to fail.
|
||||
switch (re->op()) {
|
||||
// Look for repeated empty string.
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
if (CanBeEmptyString(re->sub()[0]))
|
||||
return false;
|
||||
break;
|
||||
case kRegexpRepeat:
|
||||
if (re->max() == -1 && CanBeEmptyString(re->sub()[0]))
|
||||
return false;
|
||||
break;
|
||||
|
||||
// Look for \v
|
||||
case kRegexpLiteral:
|
||||
if (re->rune() == '\v')
|
||||
return false;
|
||||
break;
|
||||
|
||||
// Look for $ in single-line mode.
|
||||
case kRegexpEndText:
|
||||
case kRegexpEmptyMatch:
|
||||
if (re->parse_flags() & Regexp::WasDollar)
|
||||
return false;
|
||||
break;
|
||||
|
||||
// Look for ^ in multi-line mode.
|
||||
case kRegexpBeginLine:
|
||||
// No condition: in single-line mode ^ becomes kRegexpBeginText.
|
||||
return false;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
// Not proven guilty.
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns whether this regexp's behavior will mimic PCRE's exactly.
|
||||
bool Regexp::MimicsPCRE() {
|
||||
PCREWalker w;
|
||||
return w.Walk(this, true);
|
||||
}
|
||||
|
||||
|
||||
// Walker class to compute whether a Regexp can match an empty string.
|
||||
// It is okay to overestimate. For example, \b\B cannot match an empty
|
||||
// string, because \b and \B are mutually exclusive, but this isn't
|
||||
// that smart and will say it can. Spurious empty strings
|
||||
// will reduce the number of regexps we sanity check against PCRE,
|
||||
// but they won't break anything.
|
||||
|
||||
class EmptyStringWalker : public Regexp::Walker<bool> {
|
||||
public:
|
||||
EmptyStringWalker() { }
|
||||
bool PostVisit(Regexp* re, bool parent_arg, bool pre_arg,
|
||||
bool* child_args, int nchild_args);
|
||||
|
||||
bool ShortVisit(Regexp* re, bool a) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "EmptyStringWalker::ShortVisit called";
|
||||
return a;
|
||||
}
|
||||
|
||||
private:
|
||||
EmptyStringWalker(const EmptyStringWalker&) = delete;
|
||||
EmptyStringWalker& operator=(const EmptyStringWalker&) = delete;
|
||||
};
|
||||
|
||||
// Called after visiting re's children. child_args contains the return
|
||||
// value from each of the children's PostVisits (i.e., whether each child
|
||||
// can match an empty string). Returns whether this clause can match an
|
||||
// empty string.
|
||||
bool EmptyStringWalker::PostVisit(Regexp* re, bool parent_arg, bool pre_arg,
|
||||
bool* child_args, int nchild_args) {
|
||||
switch (re->op()) {
|
||||
case kRegexpNoMatch: // never empty
|
||||
case kRegexpLiteral:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
case kRegexpCharClass:
|
||||
case kRegexpLiteralString:
|
||||
return false;
|
||||
|
||||
case kRegexpEmptyMatch: // always empty
|
||||
case kRegexpBeginLine: // always empty, when they match
|
||||
case kRegexpEndLine:
|
||||
case kRegexpNoWordBoundary:
|
||||
case kRegexpWordBoundary:
|
||||
case kRegexpBeginText:
|
||||
case kRegexpEndText:
|
||||
case kRegexpStar: // can always be empty
|
||||
case kRegexpQuest:
|
||||
case kRegexpHaveMatch:
|
||||
return true;
|
||||
|
||||
case kRegexpConcat: // can be empty if all children can
|
||||
for (int i = 0; i < nchild_args; i++)
|
||||
if (!child_args[i])
|
||||
return false;
|
||||
return true;
|
||||
|
||||
case kRegexpAlternate: // can be empty if any child can
|
||||
for (int i = 0; i < nchild_args; i++)
|
||||
if (child_args[i])
|
||||
return true;
|
||||
return false;
|
||||
|
||||
case kRegexpPlus: // can be empty if the child can
|
||||
case kRegexpCapture:
|
||||
return child_args[0];
|
||||
|
||||
case kRegexpRepeat: // can be empty if child can or is x{0}
|
||||
return child_args[0] || re->min() == 0;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns whether re can match an empty string.
|
||||
static bool CanBeEmptyString(Regexp* re) {
|
||||
EmptyStringWalker w;
|
||||
return w.Walk(re, true);
|
||||
}
|
||||
|
||||
} // namespace re2
|
757
extern/re2/re2/nfa.cc
vendored
Normal file
757
extern/re2/re2/nfa.cc
vendored
Normal file
@ -0,0 +1,757 @@
|
||||
// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Tested by search_test.cc.
|
||||
//
|
||||
// Prog::SearchNFA, an NFA search.
|
||||
// This is an actual NFA like the theorists talk about,
|
||||
// not the pseudo-NFA found in backtracking regexp implementations.
|
||||
//
|
||||
// IMPLEMENTATION
|
||||
//
|
||||
// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
|
||||
// which is a variant of the one described in Thompson's 1968 CACM paper.
|
||||
// See http://swtch.com/~rsc/regexp/ for various history. The main feature
|
||||
// over the DFA implementation is that it tracks submatch boundaries.
|
||||
//
|
||||
// When the choice of submatch boundaries is ambiguous, this particular
|
||||
// implementation makes the same choices that traditional backtracking
|
||||
// implementations (in particular, Perl and PCRE) do.
|
||||
// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
|
||||
// time in the length of the input.
|
||||
//
|
||||
// Like Thompson's original machine and like the DFA implementation, this
|
||||
// implementation notices a match only once it is one byte past it.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "util/sparse_array.h"
|
||||
#include "util/sparse_set.h"
|
||||
#include "util/strutil.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const bool ExtraDebug = false;
|
||||
|
||||
class NFA {
|
||||
public:
|
||||
NFA(Prog* prog);
|
||||
~NFA();
|
||||
|
||||
// Searches for a matching string.
|
||||
// * If anchored is true, only considers matches starting at offset.
|
||||
// Otherwise finds lefmost match at or after offset.
|
||||
// * If longest is true, returns the longest match starting
|
||||
// at the chosen start point. Otherwise returns the so-called
|
||||
// left-biased match, the one traditional backtracking engines
|
||||
// (like Perl and PCRE) find.
|
||||
// Records submatch boundaries in submatch[1..nsubmatch-1].
|
||||
// Submatch[0] is the entire match. When there is a choice in
|
||||
// which text matches each subexpression, the submatch boundaries
|
||||
// are chosen to match what a backtracking implementation would choose.
|
||||
bool Search(const StringPiece& text, const StringPiece& context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch);
|
||||
|
||||
private:
|
||||
struct Thread {
|
||||
union {
|
||||
int ref;
|
||||
Thread* next; // when on free list
|
||||
};
|
||||
const char** capture;
|
||||
};
|
||||
|
||||
// State for explicit stack in AddToThreadq.
|
||||
struct AddState {
|
||||
int id; // Inst to process
|
||||
Thread* t; // if not null, set t0 = t before processing id
|
||||
};
|
||||
|
||||
// Threadq is a list of threads. The list is sorted by the order
|
||||
// in which Perl would explore that particular state -- the earlier
|
||||
// choices appear earlier in the list.
|
||||
typedef SparseArray<Thread*> Threadq;
|
||||
|
||||
inline Thread* AllocThread();
|
||||
inline Thread* Incref(Thread* t);
|
||||
inline void Decref(Thread* t);
|
||||
|
||||
// Follows all empty arrows from id0 and enqueues all the states reached.
|
||||
// Enqueues only the ByteRange instructions that match byte c.
|
||||
// context is used (with p) for evaluating empty-width specials.
|
||||
// p is the current input position, and t0 is the current thread.
|
||||
void AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
|
||||
const char* p, Thread* t0);
|
||||
|
||||
// Run runq on byte c, appending new states to nextq.
|
||||
// Updates matched_ and match_ as new, better matches are found.
|
||||
// context is used (with p) for evaluating empty-width specials.
|
||||
// p is the position of byte c in the input string for AddToThreadq;
|
||||
// p-1 will be used when processing Match instructions.
|
||||
// Frees all the threads on runq.
|
||||
// If there is a shortcut to the end, returns that shortcut.
|
||||
int Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
|
||||
const char* p);
|
||||
|
||||
// Returns text version of capture information, for debugging.
|
||||
std::string FormatCapture(const char** capture);
|
||||
|
||||
inline void CopyCapture(const char** dst, const char** src);
|
||||
|
||||
Prog* prog_; // underlying program
|
||||
int start_; // start instruction in program
|
||||
int ncapture_; // number of submatches to track
|
||||
bool longest_; // whether searching for longest match
|
||||
bool endmatch_; // whether match must end at text.end()
|
||||
const char* btext_; // beginning of text being matched (for FormatSubmatch)
|
||||
const char* etext_; // end of text being matched (for endmatch_)
|
||||
Threadq q0_, q1_; // pre-allocated for Search.
|
||||
PODArray<AddState> stack_; // pre-allocated for AddToThreadq
|
||||
Thread* free_threads_; // free list
|
||||
const char** match_; // best match so far
|
||||
bool matched_; // any match so far?
|
||||
|
||||
NFA(const NFA&) = delete;
|
||||
NFA& operator=(const NFA&) = delete;
|
||||
};
|
||||
|
||||
NFA::NFA(Prog* prog) {
|
||||
prog_ = prog;
|
||||
start_ = prog_->start();
|
||||
ncapture_ = 0;
|
||||
longest_ = false;
|
||||
endmatch_ = false;
|
||||
btext_ = NULL;
|
||||
etext_ = NULL;
|
||||
q0_.resize(prog_->size());
|
||||
q1_.resize(prog_->size());
|
||||
// See NFA::AddToThreadq() for why this is so.
|
||||
int nstack = 2*prog_->inst_count(kInstCapture) +
|
||||
prog_->inst_count(kInstEmptyWidth) +
|
||||
prog_->inst_count(kInstNop) + 1; // + 1 for start inst
|
||||
stack_ = PODArray<AddState>(nstack);
|
||||
free_threads_ = NULL;
|
||||
match_ = NULL;
|
||||
matched_ = false;
|
||||
}
|
||||
|
||||
NFA::~NFA() {
|
||||
delete[] match_;
|
||||
Thread* next;
|
||||
for (Thread* t = free_threads_; t; t = next) {
|
||||
next = t->next;
|
||||
delete[] t->capture;
|
||||
delete t;
|
||||
}
|
||||
}
|
||||
|
||||
NFA::Thread* NFA::AllocThread() {
|
||||
Thread* t = free_threads_;
|
||||
if (t == NULL) {
|
||||
t = new Thread;
|
||||
t->ref = 1;
|
||||
t->capture = new const char*[ncapture_];
|
||||
return t;
|
||||
}
|
||||
free_threads_ = t->next;
|
||||
t->ref = 1;
|
||||
return t;
|
||||
}
|
||||
|
||||
NFA::Thread* NFA::Incref(Thread* t) {
|
||||
DCHECK(t != NULL);
|
||||
t->ref++;
|
||||
return t;
|
||||
}
|
||||
|
||||
void NFA::Decref(Thread* t) {
|
||||
if (t == NULL)
|
||||
return;
|
||||
t->ref--;
|
||||
if (t->ref > 0)
|
||||
return;
|
||||
DCHECK_EQ(t->ref, 0);
|
||||
t->next = free_threads_;
|
||||
free_threads_ = t;
|
||||
}
|
||||
|
||||
void NFA::CopyCapture(const char** dst, const char** src) {
|
||||
for (int i = 0; i < ncapture_; i+=2) {
|
||||
dst[i] = src[i];
|
||||
dst[i+1] = src[i+1];
|
||||
}
|
||||
}
|
||||
|
||||
// Follows all empty arrows from id0 and enqueues all the states reached.
|
||||
// Enqueues only the ByteRange instructions that match byte c.
|
||||
// context is used (with p) for evaluating empty-width specials.
|
||||
// p is the current input position, and t0 is the current thread.
|
||||
void NFA::AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
|
||||
const char* p, Thread* t0) {
|
||||
if (id0 == 0)
|
||||
return;
|
||||
|
||||
// Use stack_ to hold our stack of instructions yet to process.
|
||||
// It was preallocated as follows:
|
||||
// two entries per Capture;
|
||||
// one entry per EmptyWidth; and
|
||||
// one entry per Nop.
|
||||
// This reflects the maximum number of stack pushes that each can
|
||||
// perform. (Each instruction can be processed at most once.)
|
||||
AddState* stk = stack_.data();
|
||||
int nstk = 0;
|
||||
|
||||
stk[nstk++] = {id0, NULL};
|
||||
while (nstk > 0) {
|
||||
DCHECK_LE(nstk, stack_.size());
|
||||
AddState a = stk[--nstk];
|
||||
|
||||
Loop:
|
||||
if (a.t != NULL) {
|
||||
// t0 was a thread that we allocated and copied in order to
|
||||
// record the capture, so we must now decref it.
|
||||
Decref(t0);
|
||||
t0 = a.t;
|
||||
}
|
||||
|
||||
int id = a.id;
|
||||
if (id == 0)
|
||||
continue;
|
||||
if (q->has_index(id)) {
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, " [%d%s]\n", id, FormatCapture(t0->capture).c_str());
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create entry in q no matter what. We might fill it in below,
|
||||
// or we might not. Even if not, it is necessary to have it,
|
||||
// so that we don't revisit id0 during the recursion.
|
||||
q->set_new(id, NULL);
|
||||
Thread** tp = &q->get_existing(id);
|
||||
int j;
|
||||
Thread* t;
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
|
||||
break;
|
||||
|
||||
case kInstFail:
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
// Save state; will pick up at next byte.
|
||||
t = Incref(t0);
|
||||
*tp = t;
|
||||
|
||||
DCHECK(!ip->last());
|
||||
a = {id+1, NULL};
|
||||
goto Loop;
|
||||
|
||||
case kInstNop:
|
||||
if (!ip->last())
|
||||
stk[nstk++] = {id+1, NULL};
|
||||
|
||||
// Continue on.
|
||||
a = {ip->out(), NULL};
|
||||
goto Loop;
|
||||
|
||||
case kInstCapture:
|
||||
if (!ip->last())
|
||||
stk[nstk++] = {id+1, NULL};
|
||||
|
||||
if ((j=ip->cap()) < ncapture_) {
|
||||
// Push a dummy whose only job is to restore t0
|
||||
// once we finish exploring this possibility.
|
||||
stk[nstk++] = {0, t0};
|
||||
|
||||
// Record capture.
|
||||
t = AllocThread();
|
||||
CopyCapture(t->capture, t0->capture);
|
||||
t->capture[j] = p;
|
||||
t0 = t;
|
||||
}
|
||||
a = {ip->out(), NULL};
|
||||
goto Loop;
|
||||
|
||||
case kInstByteRange:
|
||||
if (!ip->Matches(c))
|
||||
goto Next;
|
||||
|
||||
// Save state; will pick up at next byte.
|
||||
t = Incref(t0);
|
||||
*tp = t;
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, " + %d%s\n", id, FormatCapture(t0->capture).c_str());
|
||||
|
||||
if (ip->hint() == 0)
|
||||
break;
|
||||
a = {id+ip->hint(), NULL};
|
||||
goto Loop;
|
||||
|
||||
case kInstMatch:
|
||||
// Save state; will pick up at next byte.
|
||||
t = Incref(t0);
|
||||
*tp = t;
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, " ! %d%s\n", id, FormatCapture(t0->capture).c_str());
|
||||
|
||||
Next:
|
||||
if (ip->last())
|
||||
break;
|
||||
a = {id+1, NULL};
|
||||
goto Loop;
|
||||
|
||||
case kInstEmptyWidth:
|
||||
if (!ip->last())
|
||||
stk[nstk++] = {id+1, NULL};
|
||||
|
||||
// Continue on if we have all the right flag bits.
|
||||
if (ip->empty() & ~Prog::EmptyFlags(context, p))
|
||||
break;
|
||||
a = {ip->out(), NULL};
|
||||
goto Loop;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Run runq on byte c, appending new states to nextq.
|
||||
// Updates matched_ and match_ as new, better matches are found.
|
||||
// context is used (with p) for evaluating empty-width specials.
|
||||
// p is the position of byte c in the input string for AddToThreadq;
|
||||
// p-1 will be used when processing Match instructions.
|
||||
// Frees all the threads on runq.
|
||||
// If there is a shortcut to the end, returns that shortcut.
|
||||
int NFA::Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
|
||||
const char* p) {
|
||||
nextq->clear();
|
||||
|
||||
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
||||
Thread* t = i->value();
|
||||
if (t == NULL)
|
||||
continue;
|
||||
|
||||
if (longest_) {
|
||||
// Can skip any threads started after our current best match.
|
||||
if (matched_ && match_[0] < t->capture[0]) {
|
||||
Decref(t);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
int id = i->index();
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
// Should only see the values handled below.
|
||||
LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
|
||||
break;
|
||||
|
||||
case kInstByteRange:
|
||||
AddToThreadq(nextq, ip->out(), c, context, p, t);
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
if (i != runq->begin())
|
||||
break;
|
||||
// The match is ours if we want it.
|
||||
if (ip->greedy(prog_) || longest_) {
|
||||
CopyCapture(match_, t->capture);
|
||||
matched_ = true;
|
||||
|
||||
Decref(t);
|
||||
for (++i; i != runq->end(); ++i)
|
||||
Decref(i->value());
|
||||
runq->clear();
|
||||
if (ip->greedy(prog_))
|
||||
return ip->out1();
|
||||
return ip->out();
|
||||
}
|
||||
break;
|
||||
|
||||
case kInstMatch: {
|
||||
// Avoid invoking undefined behavior when p happens
|
||||
// to be null - and p-1 would be meaningless anyway.
|
||||
if (p == NULL)
|
||||
break;
|
||||
|
||||
if (endmatch_ && p-1 != etext_)
|
||||
break;
|
||||
|
||||
if (longest_) {
|
||||
// Leftmost-longest mode: save this match only if
|
||||
// it is either farther to the left or at the same
|
||||
// point but longer than an existing match.
|
||||
if (!matched_ || t->capture[0] < match_[0] ||
|
||||
(t->capture[0] == match_[0] && p-1 > match_[1])) {
|
||||
CopyCapture(match_, t->capture);
|
||||
match_[1] = p-1;
|
||||
matched_ = true;
|
||||
}
|
||||
} else {
|
||||
// Leftmost-biased mode: this match is by definition
|
||||
// better than what we've already found (see next line).
|
||||
CopyCapture(match_, t->capture);
|
||||
match_[1] = p-1;
|
||||
matched_ = true;
|
||||
|
||||
// Cut off the threads that can only find matches
|
||||
// worse than the one we just found: don't run the
|
||||
// rest of the current Threadq.
|
||||
Decref(t);
|
||||
for (++i; i != runq->end(); ++i)
|
||||
Decref(i->value());
|
||||
runq->clear();
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
Decref(t);
|
||||
}
|
||||
runq->clear();
|
||||
return 0;
|
||||
}
|
||||
|
||||
std::string NFA::FormatCapture(const char** capture) {
|
||||
std::string s;
|
||||
for (int i = 0; i < ncapture_; i+=2) {
|
||||
if (capture[i] == NULL)
|
||||
s += "(?,?)";
|
||||
else if (capture[i+1] == NULL)
|
||||
s += StringPrintf("(%d,?)",
|
||||
(int)(capture[i] - btext_));
|
||||
else
|
||||
s += StringPrintf("(%d,%d)",
|
||||
(int)(capture[i] - btext_),
|
||||
(int)(capture[i+1] - btext_));
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch) {
|
||||
if (start_ == 0)
|
||||
return false;
|
||||
|
||||
StringPiece context = const_context;
|
||||
if (context.begin() == NULL)
|
||||
context = text;
|
||||
|
||||
// Sanity check: make sure that text lies within context.
|
||||
if (text.begin() < context.begin() || text.end() > context.end()) {
|
||||
LOG(DFATAL) << "context does not contain text";
|
||||
return false;
|
||||
}
|
||||
|
||||
if (prog_->anchor_start() && context.begin() != text.begin())
|
||||
return false;
|
||||
if (prog_->anchor_end() && context.end() != text.end())
|
||||
return false;
|
||||
anchored |= prog_->anchor_start();
|
||||
if (prog_->anchor_end()) {
|
||||
longest = true;
|
||||
endmatch_ = true;
|
||||
etext_ = text.end();
|
||||
}
|
||||
|
||||
if (nsubmatch < 0) {
|
||||
LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Save search parameters.
|
||||
ncapture_ = 2*nsubmatch;
|
||||
longest_ = longest;
|
||||
|
||||
if (nsubmatch == 0) {
|
||||
// We need to maintain match[0], both to distinguish the
|
||||
// longest match (if longest is true) and also to tell
|
||||
// whether we've seen any matches at all.
|
||||
ncapture_ = 2;
|
||||
}
|
||||
|
||||
match_ = new const char*[ncapture_];
|
||||
matched_ = false;
|
||||
|
||||
// For debugging prints.
|
||||
btext_ = context.begin();
|
||||
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
|
||||
std::string(text).c_str(), std::string(context).c_str(), anchored,
|
||||
longest);
|
||||
|
||||
// Set up search.
|
||||
Threadq* runq = &q0_;
|
||||
Threadq* nextq = &q1_;
|
||||
runq->clear();
|
||||
nextq->clear();
|
||||
memset(&match_[0], 0, ncapture_*sizeof match_[0]);
|
||||
|
||||
// Loop over the text, stepping the machine.
|
||||
for (const char* p = text.begin();; p++) {
|
||||
if (ExtraDebug) {
|
||||
int c = 0;
|
||||
if (p == context.begin())
|
||||
c = '^';
|
||||
else if (p > text.end())
|
||||
c = '$';
|
||||
else if (p < text.end())
|
||||
c = p[0] & 0xFF;
|
||||
|
||||
fprintf(stderr, "%c:", c);
|
||||
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
||||
Thread* t = i->value();
|
||||
if (t == NULL)
|
||||
continue;
|
||||
fprintf(stderr, " %d%s", i->index(), FormatCapture(t->capture).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// This is a no-op the first time around the loop because runq is empty.
|
||||
int id = Step(runq, nextq, p < text.end() ? p[0] & 0xFF : -1, context, p);
|
||||
DCHECK_EQ(runq->size(), 0);
|
||||
using std::swap;
|
||||
swap(nextq, runq);
|
||||
nextq->clear();
|
||||
if (id != 0) {
|
||||
// We're done: full match ahead.
|
||||
p = text.end();
|
||||
for (;;) {
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
|
||||
break;
|
||||
|
||||
case kInstCapture:
|
||||
if (ip->cap() < ncapture_)
|
||||
match_[ip->cap()] = p;
|
||||
id = ip->out();
|
||||
continue;
|
||||
|
||||
case kInstNop:
|
||||
id = ip->out();
|
||||
continue;
|
||||
|
||||
case kInstMatch:
|
||||
match_[1] = p;
|
||||
matched_ = true;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (p > text.end())
|
||||
break;
|
||||
|
||||
// Start a new thread if there have not been any matches.
|
||||
// (No point in starting a new thread if there have been
|
||||
// matches, since it would be to the right of the match
|
||||
// we already found.)
|
||||
if (!matched_ && (!anchored || p == text.begin())) {
|
||||
// If there's a required first byte for an unanchored search
|
||||
// and we're not in the middle of any possible matches,
|
||||
// use memchr to search for the byte quickly.
|
||||
int fb = prog_->first_byte();
|
||||
if (!anchored && runq->size() == 0 &&
|
||||
fb >= 0 && p < text.end() && (p[0] & 0xFF) != fb) {
|
||||
p = reinterpret_cast<const char*>(memchr(p, fb, text.end() - p));
|
||||
if (p == NULL) {
|
||||
p = text.end();
|
||||
}
|
||||
}
|
||||
|
||||
Thread* t = AllocThread();
|
||||
CopyCapture(t->capture, match_);
|
||||
t->capture[0] = p;
|
||||
AddToThreadq(runq, start_, p < text.end() ? p[0] & 0xFF : -1, context, p,
|
||||
t);
|
||||
Decref(t);
|
||||
}
|
||||
|
||||
// If all the threads have died, stop early.
|
||||
if (runq->size() == 0) {
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, "dead\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i)
|
||||
Decref(i->value());
|
||||
|
||||
if (matched_) {
|
||||
for (int i = 0; i < nsubmatch; i++)
|
||||
submatch[i] =
|
||||
StringPiece(match_[2 * i],
|
||||
static_cast<size_t>(match_[2 * i + 1] - match_[2 * i]));
|
||||
if (ExtraDebug)
|
||||
fprintf(stderr, "match (%td,%td)\n",
|
||||
match_[0] - btext_, match_[1] - btext_);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Computes whether all successful matches have a common first byte,
|
||||
// and if so, returns that byte. If not, returns -1.
|
||||
int Prog::ComputeFirstByte() {
|
||||
int b = -1;
|
||||
SparseSet q(size());
|
||||
q.insert(start());
|
||||
for (SparseSet::iterator it = q.begin(); it != q.end(); ++it) {
|
||||
int id = *it;
|
||||
Prog::Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte";
|
||||
break;
|
||||
|
||||
case kInstMatch:
|
||||
// The empty string matches: no first byte.
|
||||
return -1;
|
||||
|
||||
case kInstByteRange:
|
||||
if (!ip->last())
|
||||
q.insert(id+1);
|
||||
|
||||
// Must match only a single byte
|
||||
if (ip->lo() != ip->hi())
|
||||
return -1;
|
||||
if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z')
|
||||
return -1;
|
||||
// If we haven't seen any bytes yet, record it;
|
||||
// otherwise must match the one we saw before.
|
||||
if (b == -1)
|
||||
b = ip->lo();
|
||||
else if (b != ip->lo())
|
||||
return -1;
|
||||
break;
|
||||
|
||||
case kInstNop:
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
if (!ip->last())
|
||||
q.insert(id+1);
|
||||
|
||||
// Continue on.
|
||||
// Ignore ip->empty() flags for kInstEmptyWidth
|
||||
// in order to be as conservative as possible
|
||||
// (assume all possible empty-width flags are true).
|
||||
if (ip->out())
|
||||
q.insert(ip->out());
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
DCHECK(!ip->last());
|
||||
q.insert(id+1);
|
||||
break;
|
||||
|
||||
case kInstFail:
|
||||
break;
|
||||
}
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
bool
|
||||
Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch) {
|
||||
if (ExtraDebug)
|
||||
Dump();
|
||||
|
||||
NFA nfa(this);
|
||||
StringPiece sp;
|
||||
if (kind == kFullMatch) {
|
||||
anchor = kAnchored;
|
||||
if (nmatch == 0) {
|
||||
match = &sp;
|
||||
nmatch = 1;
|
||||
}
|
||||
}
|
||||
if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
|
||||
return false;
|
||||
if (kind == kFullMatch && match[0].end() != text.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// For each instruction i in the program reachable from the start, compute the
|
||||
// number of instructions reachable from i by following only empty transitions
|
||||
// and record that count as fanout[i].
|
||||
//
|
||||
// fanout holds the results and is also the work queue for the outer iteration.
|
||||
// reachable holds the reached nodes for the inner iteration.
|
||||
void Prog::Fanout(SparseArray<int>* fanout) {
|
||||
DCHECK_EQ(fanout->max_size(), size());
|
||||
SparseSet reachable(size());
|
||||
fanout->clear();
|
||||
fanout->set_new(start(), 0);
|
||||
for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) {
|
||||
int* count = &i->value();
|
||||
reachable.clear();
|
||||
reachable.insert(i->index());
|
||||
for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) {
|
||||
int id = *j;
|
||||
Prog::Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()";
|
||||
break;
|
||||
|
||||
case kInstByteRange:
|
||||
if (!ip->last())
|
||||
reachable.insert(id+1);
|
||||
|
||||
(*count)++;
|
||||
if (!fanout->has_index(ip->out())) {
|
||||
fanout->set_new(ip->out(), 0);
|
||||
}
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
DCHECK(!ip->last());
|
||||
reachable.insert(id+1);
|
||||
break;
|
||||
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
case kInstNop:
|
||||
if (!ip->last())
|
||||
reachable.insert(id+1);
|
||||
|
||||
reachable.insert(ip->out());
|
||||
break;
|
||||
|
||||
case kInstMatch:
|
||||
if (!ip->last())
|
||||
reachable.insert(id+1);
|
||||
break;
|
||||
|
||||
case kInstFail:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
623
extern/re2/re2/onepass.cc
vendored
Normal file
623
extern/re2/re2/onepass.cc
vendored
Normal file
@ -0,0 +1,623 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Tested by search_test.cc.
|
||||
//
|
||||
// Prog::SearchOnePass is an efficient implementation of
|
||||
// regular expression search with submatch tracking for
|
||||
// what I call "one-pass regular expressions". (An alternate
|
||||
// name might be "backtracking-free regular expressions".)
|
||||
//
|
||||
// One-pass regular expressions have the property that
|
||||
// at each input byte during an anchored match, there may be
|
||||
// multiple alternatives but only one can proceed for any
|
||||
// given input byte.
|
||||
//
|
||||
// For example, the regexp /x*yx*/ is one-pass: you read
|
||||
// x's until a y, then you read the y, then you keep reading x's.
|
||||
// At no point do you have to guess what to do or back up
|
||||
// and try a different guess.
|
||||
//
|
||||
// On the other hand, /x*x/ is not one-pass: when you're
|
||||
// looking at an input "x", it's not clear whether you should
|
||||
// use it to extend the x* or as the final x.
|
||||
//
|
||||
// More examples: /([^ ]*) (.*)/ is one-pass; /(.*) (.*)/ is not.
|
||||
// /(\d+)-(\d+)/ is one-pass; /(\d+).(\d+)/ is not.
|
||||
//
|
||||
// A simple intuition for identifying one-pass regular expressions
|
||||
// is that it's always immediately obvious when a repetition ends.
|
||||
// It must also be immediately obvious which branch of an | to take:
|
||||
//
|
||||
// /x(y|z)/ is one-pass, but /(xy|xz)/ is not.
|
||||
//
|
||||
// The NFA-based search in nfa.cc does some bookkeeping to
|
||||
// avoid the need for backtracking and its associated exponential blowup.
|
||||
// But if we have a one-pass regular expression, there is no
|
||||
// possibility of backtracking, so there is no need for the
|
||||
// extra bookkeeping. Hence, this code.
|
||||
//
|
||||
// On a one-pass regular expression, the NFA code in nfa.cc
|
||||
// runs at about 1/20 of the backtracking-based PCRE speed.
|
||||
// In contrast, the code in this file runs at about the same
|
||||
// speed as PCRE.
|
||||
//
|
||||
// One-pass regular expressions get used a lot when RE is
|
||||
// used for parsing simple strings, so it pays off to
|
||||
// notice them and handle them efficiently.
|
||||
//
|
||||
// See also Anne Brüggemann-Klein and Derick Wood,
|
||||
// "One-unambiguous regular languages", Information and Computation 142(2).
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "util/sparse_set.h"
|
||||
#include "util/strutil.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
// Silence "zero-sized array in struct/union" warning for OneState::action.
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable: 4200)
|
||||
#endif
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const bool ExtraDebug = false;
|
||||
|
||||
// The key insight behind this implementation is that the
|
||||
// non-determinism in an NFA for a one-pass regular expression
|
||||
// is contained. To explain what that means, first a
|
||||
// refresher about what regular expression programs look like
|
||||
// and how the usual NFA execution runs.
|
||||
//
|
||||
// In a regular expression program, only the kInstByteRange
|
||||
// instruction processes an input byte c and moves on to the
|
||||
// next byte in the string (it does so if c is in the given range).
|
||||
// The kInstByteRange instructions correspond to literal characters
|
||||
// and character classes in the regular expression.
|
||||
//
|
||||
// The kInstAlt instructions are used as wiring to connect the
|
||||
// kInstByteRange instructions together in interesting ways when
|
||||
// implementing | + and *.
|
||||
// The kInstAlt instruction forks execution, like a goto that
|
||||
// jumps to ip->out() and ip->out1() in parallel. Each of the
|
||||
// resulting computation paths is called a thread.
|
||||
//
|
||||
// The other instructions -- kInstEmptyWidth, kInstMatch, kInstCapture --
|
||||
// are interesting in their own right but like kInstAlt they don't
|
||||
// advance the input pointer. Only kInstByteRange does.
|
||||
//
|
||||
// The automaton execution in nfa.cc runs all the possible
|
||||
// threads of execution in lock-step over the input. To process
|
||||
// a particular byte, each thread gets run until it either dies
|
||||
// or finds a kInstByteRange instruction matching the byte.
|
||||
// If the latter happens, the thread stops just past the
|
||||
// kInstByteRange instruction (at ip->out()) and waits for
|
||||
// the other threads to finish processing the input byte.
|
||||
// Then, once all the threads have processed that input byte,
|
||||
// the whole process repeats. The kInstAlt state instruction
|
||||
// might create new threads during input processing, but no
|
||||
// matter what, all the threads stop after a kInstByteRange
|
||||
// and wait for the other threads to "catch up".
|
||||
// Running in lock step like this ensures that the NFA reads
|
||||
// the input string only once.
|
||||
//
|
||||
// Each thread maintains its own set of capture registers
|
||||
// (the string positions at which it executed the kInstCapture
|
||||
// instructions corresponding to capturing parentheses in the
|
||||
// regular expression). Repeated copying of the capture registers
|
||||
// is the main performance bottleneck in the NFA implementation.
|
||||
//
|
||||
// A regular expression program is "one-pass" if, no matter what
|
||||
// the input string, there is only one thread that makes it
|
||||
// past a kInstByteRange instruction at each input byte. This means
|
||||
// that there is in some sense only one active thread throughout
|
||||
// the execution. Other threads might be created during the
|
||||
// processing of an input byte, but they are ephemeral: only one
|
||||
// thread is left to start processing the next input byte.
|
||||
// This is what I meant above when I said the non-determinism
|
||||
// was "contained".
|
||||
//
|
||||
// To execute a one-pass regular expression program, we can build
|
||||
// a DFA (no non-determinism) that has at most as many states as
|
||||
// the NFA (compare this to the possibly exponential number of states
|
||||
// in the general case). Each state records, for each possible
|
||||
// input byte, the next state along with the conditions required
|
||||
// before entering that state -- empty-width flags that must be true
|
||||
// and capture operations that must be performed. It also records
|
||||
// whether a set of conditions required to finish a match at that
|
||||
// point in the input rather than process the next byte.
|
||||
|
||||
// A state in the one-pass NFA - just an array of actions indexed
|
||||
// by the bytemap_[] of the next input byte. (The bytemap
|
||||
// maps next input bytes into equivalence classes, to reduce
|
||||
// the memory footprint.)
|
||||
struct OneState {
|
||||
uint32_t matchcond; // conditions to match right now.
|
||||
uint32_t action[];
|
||||
};
|
||||
|
||||
// The uint32_t conditions in the action are a combination of
|
||||
// condition and capture bits and the next state. The bottom 16 bits
|
||||
// are the condition and capture bits, and the top 16 are the index of
|
||||
// the next state.
|
||||
//
|
||||
// Bits 0-5 are the empty-width flags from prog.h.
|
||||
// Bit 6 is kMatchWins, which means the match takes
|
||||
// priority over moving to next in a first-match search.
|
||||
// The remaining bits mark capture registers that should
|
||||
// be set to the current input position. The capture bits
|
||||
// start at index 2, since the search loop can take care of
|
||||
// cap[0], cap[1] (the overall match position).
|
||||
// That means we can handle up to 5 capturing parens: $1 through $4, plus $0.
|
||||
// No input position can satisfy both kEmptyWordBoundary
|
||||
// and kEmptyNonWordBoundary, so we can use that as a sentinel
|
||||
// instead of needing an extra bit.
|
||||
|
||||
static const int kIndexShift = 16; // number of bits below index
|
||||
static const int kEmptyShift = 6; // number of empty flags in prog.h
|
||||
static const int kRealCapShift = kEmptyShift + 1;
|
||||
static const int kRealMaxCap = (kIndexShift - kRealCapShift) / 2 * 2;
|
||||
|
||||
// Parameters used to skip over cap[0], cap[1].
|
||||
static const int kCapShift = kRealCapShift - 2;
|
||||
static const int kMaxCap = kRealMaxCap + 2;
|
||||
|
||||
static const uint32_t kMatchWins = 1 << kEmptyShift;
|
||||
static const uint32_t kCapMask = ((1 << kRealMaxCap) - 1) << kRealCapShift;
|
||||
|
||||
static const uint32_t kImpossible = kEmptyWordBoundary | kEmptyNonWordBoundary;
|
||||
|
||||
// Check, at compile time, that prog.h agrees with math above.
|
||||
// This function is never called.
|
||||
void OnePass_Checks() {
|
||||
static_assert((1<<kEmptyShift)-1 == kEmptyAllFlags,
|
||||
"kEmptyShift disagrees with kEmptyAllFlags");
|
||||
// kMaxCap counts pointers, kMaxOnePassCapture counts pairs.
|
||||
static_assert(kMaxCap == Prog::kMaxOnePassCapture*2,
|
||||
"kMaxCap disagrees with kMaxOnePassCapture");
|
||||
}
|
||||
|
||||
static bool Satisfy(uint32_t cond, const StringPiece& context, const char* p) {
|
||||
uint32_t satisfied = Prog::EmptyFlags(context, p);
|
||||
if (cond & kEmptyAllFlags & ~satisfied)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Apply the capture bits in cond, saving p to the appropriate
|
||||
// locations in cap[].
|
||||
static void ApplyCaptures(uint32_t cond, const char* p,
|
||||
const char** cap, int ncap) {
|
||||
for (int i = 2; i < ncap; i++)
|
||||
if (cond & (1 << kCapShift << i))
|
||||
cap[i] = p;
|
||||
}
|
||||
|
||||
// Computes the OneState* for the given nodeindex.
|
||||
static inline OneState* IndexToNode(uint8_t* nodes, int statesize,
|
||||
int nodeindex) {
|
||||
return reinterpret_cast<OneState*>(nodes + statesize*nodeindex);
|
||||
}
|
||||
|
||||
bool Prog::SearchOnePass(const StringPiece& text,
|
||||
const StringPiece& const_context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch) {
|
||||
if (anchor != kAnchored && kind != kFullMatch) {
|
||||
LOG(DFATAL) << "Cannot use SearchOnePass for unanchored matches.";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Make sure we have at least cap[1],
|
||||
// because we use it to tell if we matched.
|
||||
int ncap = 2*nmatch;
|
||||
if (ncap < 2)
|
||||
ncap = 2;
|
||||
|
||||
const char* cap[kMaxCap];
|
||||
for (int i = 0; i < ncap; i++)
|
||||
cap[i] = NULL;
|
||||
|
||||
const char* matchcap[kMaxCap];
|
||||
for (int i = 0; i < ncap; i++)
|
||||
matchcap[i] = NULL;
|
||||
|
||||
StringPiece context = const_context;
|
||||
if (context.begin() == NULL)
|
||||
context = text;
|
||||
if (anchor_start() && context.begin() != text.begin())
|
||||
return false;
|
||||
if (anchor_end() && context.end() != text.end())
|
||||
return false;
|
||||
if (anchor_end())
|
||||
kind = kFullMatch;
|
||||
|
||||
uint8_t* nodes = onepass_nodes_.data();
|
||||
int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
|
||||
// start() is always mapped to the zeroth OneState.
|
||||
OneState* state = IndexToNode(nodes, statesize, 0);
|
||||
uint8_t* bytemap = bytemap_;
|
||||
const char* bp = text.begin();
|
||||
const char* ep = text.end();
|
||||
const char* p;
|
||||
bool matched = false;
|
||||
matchcap[0] = bp;
|
||||
cap[0] = bp;
|
||||
uint32_t nextmatchcond = state->matchcond;
|
||||
for (p = bp; p < ep; p++) {
|
||||
int c = bytemap[*p & 0xFF];
|
||||
uint32_t matchcond = nextmatchcond;
|
||||
uint32_t cond = state->action[c];
|
||||
|
||||
// Determine whether we can reach act->next.
|
||||
// If so, advance state and nextmatchcond.
|
||||
if ((cond & kEmptyAllFlags) == 0 || Satisfy(cond, context, p)) {
|
||||
uint32_t nextindex = cond >> kIndexShift;
|
||||
state = IndexToNode(nodes, statesize, nextindex);
|
||||
nextmatchcond = state->matchcond;
|
||||
} else {
|
||||
state = NULL;
|
||||
nextmatchcond = kImpossible;
|
||||
}
|
||||
|
||||
// This code section is carefully tuned.
|
||||
// The goto sequence is about 10% faster than the
|
||||
// obvious rewrite as a large if statement in the
|
||||
// ASCIIMatchRE2 and DotMatchRE2 benchmarks.
|
||||
|
||||
// Saving the match capture registers is expensive.
|
||||
// Is this intermediate match worth thinking about?
|
||||
|
||||
// Not if we want a full match.
|
||||
if (kind == kFullMatch)
|
||||
goto skipmatch;
|
||||
|
||||
// Not if it's impossible.
|
||||
if (matchcond == kImpossible)
|
||||
goto skipmatch;
|
||||
|
||||
// Not if the possible match is beaten by the certain
|
||||
// match at the next byte. When this test is useless
|
||||
// (e.g., HTTPPartialMatchRE2) it slows the loop by
|
||||
// about 10%, but when it avoids work (e.g., DotMatchRE2),
|
||||
// it cuts the loop execution by about 45%.
|
||||
if ((cond & kMatchWins) == 0 && (nextmatchcond & kEmptyAllFlags) == 0)
|
||||
goto skipmatch;
|
||||
|
||||
// Finally, the match conditions must be satisfied.
|
||||
if ((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p)) {
|
||||
for (int i = 2; i < 2*nmatch; i++)
|
||||
matchcap[i] = cap[i];
|
||||
if (nmatch > 1 && (matchcond & kCapMask))
|
||||
ApplyCaptures(matchcond, p, matchcap, ncap);
|
||||
matchcap[1] = p;
|
||||
matched = true;
|
||||
|
||||
// If we're in longest match mode, we have to keep
|
||||
// going and see if we find a longer match.
|
||||
// In first match mode, we can stop if the match
|
||||
// takes priority over the next state for this input byte.
|
||||
// That bit is per-input byte and thus in cond, not matchcond.
|
||||
if (kind == kFirstMatch && (cond & kMatchWins))
|
||||
goto done;
|
||||
}
|
||||
|
||||
skipmatch:
|
||||
if (state == NULL)
|
||||
goto done;
|
||||
if ((cond & kCapMask) && nmatch > 1)
|
||||
ApplyCaptures(cond, p, cap, ncap);
|
||||
}
|
||||
|
||||
// Look for match at end of input.
|
||||
{
|
||||
uint32_t matchcond = state->matchcond;
|
||||
if (matchcond != kImpossible &&
|
||||
((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p))) {
|
||||
if (nmatch > 1 && (matchcond & kCapMask))
|
||||
ApplyCaptures(matchcond, p, cap, ncap);
|
||||
for (int i = 2; i < ncap; i++)
|
||||
matchcap[i] = cap[i];
|
||||
matchcap[1] = p;
|
||||
matched = true;
|
||||
}
|
||||
}
|
||||
|
||||
done:
|
||||
if (!matched)
|
||||
return false;
|
||||
for (int i = 0; i < nmatch; i++)
|
||||
match[i] =
|
||||
StringPiece(matchcap[2 * i],
|
||||
static_cast<size_t>(matchcap[2 * i + 1] - matchcap[2 * i]));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Analysis to determine whether a given regexp program is one-pass.
|
||||
|
||||
// If ip is not on workq, adds ip to work queue and returns true.
|
||||
// If ip is already on work queue, does nothing and returns false.
|
||||
// If ip is NULL, does nothing and returns true (pretends to add it).
|
||||
typedef SparseSet Instq;
|
||||
static bool AddQ(Instq *q, int id) {
|
||||
if (id == 0)
|
||||
return true;
|
||||
if (q->contains(id))
|
||||
return false;
|
||||
q->insert(id);
|
||||
return true;
|
||||
}
|
||||
|
||||
struct InstCond {
|
||||
int id;
|
||||
uint32_t cond;
|
||||
};
|
||||
|
||||
// Returns whether this is a one-pass program; that is,
|
||||
// returns whether it is safe to use SearchOnePass on this program.
|
||||
// These conditions must be true for any instruction ip:
|
||||
//
|
||||
// (1) for any other Inst nip, there is at most one input-free
|
||||
// path from ip to nip.
|
||||
// (2) there is at most one kInstByte instruction reachable from
|
||||
// ip that matches any particular byte c.
|
||||
// (3) there is at most one input-free path from ip to a kInstMatch
|
||||
// instruction.
|
||||
//
|
||||
// This is actually just a conservative approximation: it might
|
||||
// return false when the answer is true, when kInstEmptyWidth
|
||||
// instructions are involved.
|
||||
// Constructs and saves corresponding one-pass NFA on success.
|
||||
bool Prog::IsOnePass() {
|
||||
if (did_onepass_)
|
||||
return onepass_nodes_.data() != NULL;
|
||||
did_onepass_ = true;
|
||||
|
||||
if (start() == 0) // no match
|
||||
return false;
|
||||
|
||||
// Steal memory for the one-pass NFA from the overall DFA budget.
|
||||
// Willing to use at most 1/4 of the DFA budget (heuristic).
|
||||
// Limit max node count to 65000 as a conservative estimate to
|
||||
// avoid overflowing 16-bit node index in encoding.
|
||||
int maxnodes = 2 + inst_count(kInstByteRange);
|
||||
int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
|
||||
if (maxnodes >= 65000 || dfa_mem_ / 4 / statesize < maxnodes)
|
||||
return false;
|
||||
|
||||
// Flood the graph starting at the start state, and check
|
||||
// that in each reachable state, each possible byte leads
|
||||
// to a unique next state.
|
||||
int stacksize = inst_count(kInstCapture) +
|
||||
inst_count(kInstEmptyWidth) +
|
||||
inst_count(kInstNop) + 1; // + 1 for start inst
|
||||
PODArray<InstCond> stack(stacksize);
|
||||
|
||||
int size = this->size();
|
||||
PODArray<int> nodebyid(size); // indexed by ip
|
||||
memset(nodebyid.data(), 0xFF, size*sizeof nodebyid[0]);
|
||||
|
||||
// Originally, nodes was a uint8_t[maxnodes*statesize], but that was
|
||||
// unnecessarily optimistic: why allocate a large amount of memory
|
||||
// upfront for a large program when it is unlikely to be one-pass?
|
||||
std::vector<uint8_t> nodes;
|
||||
|
||||
Instq tovisit(size), workq(size);
|
||||
AddQ(&tovisit, start());
|
||||
nodebyid[start()] = 0;
|
||||
int nalloc = 1;
|
||||
nodes.insert(nodes.end(), statesize, 0);
|
||||
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
|
||||
int id = *it;
|
||||
int nodeindex = nodebyid[id];
|
||||
OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
|
||||
|
||||
// Flood graph using manual stack, filling in actions as found.
|
||||
// Default is none.
|
||||
for (int b = 0; b < bytemap_range_; b++)
|
||||
node->action[b] = kImpossible;
|
||||
node->matchcond = kImpossible;
|
||||
|
||||
workq.clear();
|
||||
bool matched = false;
|
||||
int nstack = 0;
|
||||
stack[nstack].id = id;
|
||||
stack[nstack++].cond = 0;
|
||||
while (nstack > 0) {
|
||||
int id = stack[--nstack].id;
|
||||
uint32_t cond = stack[nstack].cond;
|
||||
|
||||
Loop:
|
||||
Prog::Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
// TODO(rsc): Ignoring kInstAltMatch optimization.
|
||||
// Should implement it in this engine, but it's subtle.
|
||||
DCHECK(!ip->last());
|
||||
// If already on work queue, (1) is violated: bail out.
|
||||
if (!AddQ(&workq, id+1))
|
||||
goto fail;
|
||||
id = id+1;
|
||||
goto Loop;
|
||||
|
||||
case kInstByteRange: {
|
||||
int nextindex = nodebyid[ip->out()];
|
||||
if (nextindex == -1) {
|
||||
if (nalloc >= maxnodes) {
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Not OnePass: hit node limit %d >= %d", nalloc, maxnodes);
|
||||
goto fail;
|
||||
}
|
||||
nextindex = nalloc;
|
||||
AddQ(&tovisit, ip->out());
|
||||
nodebyid[ip->out()] = nalloc;
|
||||
nalloc++;
|
||||
nodes.insert(nodes.end(), statesize, 0);
|
||||
// Update node because it might have been invalidated.
|
||||
node = IndexToNode(nodes.data(), statesize, nodeindex);
|
||||
}
|
||||
for (int c = ip->lo(); c <= ip->hi(); c++) {
|
||||
int b = bytemap_[c];
|
||||
// Skip any bytes immediately after c that are also in b.
|
||||
while (c < 256-1 && bytemap_[c+1] == b)
|
||||
c++;
|
||||
uint32_t act = node->action[b];
|
||||
uint32_t newact = (nextindex << kIndexShift) | cond;
|
||||
if (matched)
|
||||
newact |= kMatchWins;
|
||||
if ((act & kImpossible) == kImpossible) {
|
||||
node->action[b] = newact;
|
||||
} else if (act != newact) {
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Not OnePass: conflict on byte %#x at state %d", c, *it);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if (ip->foldcase()) {
|
||||
Rune lo = std::max<Rune>(ip->lo(), 'a') + 'A' - 'a';
|
||||
Rune hi = std::min<Rune>(ip->hi(), 'z') + 'A' - 'a';
|
||||
for (int c = lo; c <= hi; c++) {
|
||||
int b = bytemap_[c];
|
||||
// Skip any bytes immediately after c that are also in b.
|
||||
while (c < 256-1 && bytemap_[c+1] == b)
|
||||
c++;
|
||||
uint32_t act = node->action[b];
|
||||
uint32_t newact = (nextindex << kIndexShift) | cond;
|
||||
if (matched)
|
||||
newact |= kMatchWins;
|
||||
if ((act & kImpossible) == kImpossible) {
|
||||
node->action[b] = newact;
|
||||
} else if (act != newact) {
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Not OnePass: conflict on byte %#x at state %d", c, *it);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ip->last())
|
||||
break;
|
||||
// If already on work queue, (1) is violated: bail out.
|
||||
if (!AddQ(&workq, id+1))
|
||||
goto fail;
|
||||
id = id+1;
|
||||
goto Loop;
|
||||
}
|
||||
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
case kInstNop:
|
||||
if (!ip->last()) {
|
||||
// If already on work queue, (1) is violated: bail out.
|
||||
if (!AddQ(&workq, id+1))
|
||||
goto fail;
|
||||
stack[nstack].id = id+1;
|
||||
stack[nstack++].cond = cond;
|
||||
}
|
||||
|
||||
if (ip->opcode() == kInstCapture && ip->cap() < kMaxCap)
|
||||
cond |= (1 << kCapShift) << ip->cap();
|
||||
if (ip->opcode() == kInstEmptyWidth)
|
||||
cond |= ip->empty();
|
||||
|
||||
// kInstCapture and kInstNop always proceed to ip->out().
|
||||
// kInstEmptyWidth only sometimes proceeds to ip->out(),
|
||||
// but as a conservative approximation we assume it always does.
|
||||
// We could be a little more precise by looking at what c
|
||||
// is, but that seems like overkill.
|
||||
|
||||
// If already on work queue, (1) is violated: bail out.
|
||||
if (!AddQ(&workq, ip->out())) {
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Not OnePass: multiple paths %d -> %d\n", *it, ip->out());
|
||||
goto fail;
|
||||
}
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstMatch:
|
||||
if (matched) {
|
||||
// (3) is violated
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << StringPrintf(
|
||||
"Not OnePass: multiple matches from %d\n", *it);
|
||||
goto fail;
|
||||
}
|
||||
matched = true;
|
||||
node->matchcond = cond;
|
||||
|
||||
if (ip->last())
|
||||
break;
|
||||
// If already on work queue, (1) is violated: bail out.
|
||||
if (!AddQ(&workq, id+1))
|
||||
goto fail;
|
||||
id = id+1;
|
||||
goto Loop;
|
||||
|
||||
case kInstFail:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ExtraDebug) { // For debugging, dump one-pass NFA to LOG(ERROR).
|
||||
LOG(ERROR) << "bytemap:\n" << DumpByteMap();
|
||||
LOG(ERROR) << "prog:\n" << Dump();
|
||||
|
||||
std::map<int, int> idmap;
|
||||
for (int i = 0; i < size; i++)
|
||||
if (nodebyid[i] != -1)
|
||||
idmap[nodebyid[i]] = i;
|
||||
|
||||
std::string dump;
|
||||
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
|
||||
int id = *it;
|
||||
int nodeindex = nodebyid[id];
|
||||
if (nodeindex == -1)
|
||||
continue;
|
||||
OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
|
||||
dump += StringPrintf("node %d id=%d: matchcond=%#x\n",
|
||||
nodeindex, id, node->matchcond);
|
||||
for (int i = 0; i < bytemap_range_; i++) {
|
||||
if ((node->action[i] & kImpossible) == kImpossible)
|
||||
continue;
|
||||
dump += StringPrintf(" %d cond %#x -> %d id=%d\n",
|
||||
i, node->action[i] & 0xFFFF,
|
||||
node->action[i] >> kIndexShift,
|
||||
idmap[node->action[i] >> kIndexShift]);
|
||||
}
|
||||
}
|
||||
LOG(ERROR) << "nodes:\n" << dump;
|
||||
}
|
||||
|
||||
dfa_mem_ -= nalloc*statesize;
|
||||
onepass_nodes_ = PODArray<uint8_t>(nalloc*statesize);
|
||||
memmove(onepass_nodes_.data(), nodes.data(), nalloc*statesize);
|
||||
return true;
|
||||
|
||||
fail:
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace re2
|
2463
extern/re2/re2/parse.cc
vendored
Normal file
2463
extern/re2/re2/parse.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
119
extern/re2/re2/perl_groups.cc
vendored
Normal file
119
extern/re2/re2/perl_groups.cc
vendored
Normal file
@ -0,0 +1,119 @@
|
||||
// GENERATED BY make_perl_groups.pl; DO NOT EDIT.
|
||||
// make_perl_groups.pl >perl_groups.cc
|
||||
|
||||
#include "re2/unicode_groups.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const URange16 code1[] = { /* \d */
|
||||
{ 0x30, 0x39 },
|
||||
};
|
||||
static const URange16 code2[] = { /* \s */
|
||||
{ 0x9, 0xa },
|
||||
{ 0xc, 0xd },
|
||||
{ 0x20, 0x20 },
|
||||
};
|
||||
static const URange16 code3[] = { /* \w */
|
||||
{ 0x30, 0x39 },
|
||||
{ 0x41, 0x5a },
|
||||
{ 0x5f, 0x5f },
|
||||
{ 0x61, 0x7a },
|
||||
};
|
||||
const UGroup perl_groups[] = {
|
||||
{ "\\d", +1, code1, 1 },
|
||||
{ "\\D", -1, code1, 1 },
|
||||
{ "\\s", +1, code2, 3 },
|
||||
{ "\\S", -1, code2, 3 },
|
||||
{ "\\w", +1, code3, 4 },
|
||||
{ "\\W", -1, code3, 4 },
|
||||
};
|
||||
const int num_perl_groups = 6;
|
||||
static const URange16 code4[] = { /* [:alnum:] */
|
||||
{ 0x30, 0x39 },
|
||||
{ 0x41, 0x5a },
|
||||
{ 0x61, 0x7a },
|
||||
};
|
||||
static const URange16 code5[] = { /* [:alpha:] */
|
||||
{ 0x41, 0x5a },
|
||||
{ 0x61, 0x7a },
|
||||
};
|
||||
static const URange16 code6[] = { /* [:ascii:] */
|
||||
{ 0x0, 0x7f },
|
||||
};
|
||||
static const URange16 code7[] = { /* [:blank:] */
|
||||
{ 0x9, 0x9 },
|
||||
{ 0x20, 0x20 },
|
||||
};
|
||||
static const URange16 code8[] = { /* [:cntrl:] */
|
||||
{ 0x0, 0x1f },
|
||||
{ 0x7f, 0x7f },
|
||||
};
|
||||
static const URange16 code9[] = { /* [:digit:] */
|
||||
{ 0x30, 0x39 },
|
||||
};
|
||||
static const URange16 code10[] = { /* [:graph:] */
|
||||
{ 0x21, 0x7e },
|
||||
};
|
||||
static const URange16 code11[] = { /* [:lower:] */
|
||||
{ 0x61, 0x7a },
|
||||
};
|
||||
static const URange16 code12[] = { /* [:print:] */
|
||||
{ 0x20, 0x7e },
|
||||
};
|
||||
static const URange16 code13[] = { /* [:punct:] */
|
||||
{ 0x21, 0x2f },
|
||||
{ 0x3a, 0x40 },
|
||||
{ 0x5b, 0x60 },
|
||||
{ 0x7b, 0x7e },
|
||||
};
|
||||
static const URange16 code14[] = { /* [:space:] */
|
||||
{ 0x9, 0xd },
|
||||
{ 0x20, 0x20 },
|
||||
};
|
||||
static const URange16 code15[] = { /* [:upper:] */
|
||||
{ 0x41, 0x5a },
|
||||
};
|
||||
static const URange16 code16[] = { /* [:word:] */
|
||||
{ 0x30, 0x39 },
|
||||
{ 0x41, 0x5a },
|
||||
{ 0x5f, 0x5f },
|
||||
{ 0x61, 0x7a },
|
||||
};
|
||||
static const URange16 code17[] = { /* [:xdigit:] */
|
||||
{ 0x30, 0x39 },
|
||||
{ 0x41, 0x46 },
|
||||
{ 0x61, 0x66 },
|
||||
};
|
||||
const UGroup posix_groups[] = {
|
||||
{ "[:alnum:]", +1, code4, 3 },
|
||||
{ "[:^alnum:]", -1, code4, 3 },
|
||||
{ "[:alpha:]", +1, code5, 2 },
|
||||
{ "[:^alpha:]", -1, code5, 2 },
|
||||
{ "[:ascii:]", +1, code6, 1 },
|
||||
{ "[:^ascii:]", -1, code6, 1 },
|
||||
{ "[:blank:]", +1, code7, 2 },
|
||||
{ "[:^blank:]", -1, code7, 2 },
|
||||
{ "[:cntrl:]", +1, code8, 2 },
|
||||
{ "[:^cntrl:]", -1, code8, 2 },
|
||||
{ "[:digit:]", +1, code9, 1 },
|
||||
{ "[:^digit:]", -1, code9, 1 },
|
||||
{ "[:graph:]", +1, code10, 1 },
|
||||
{ "[:^graph:]", -1, code10, 1 },
|
||||
{ "[:lower:]", +1, code11, 1 },
|
||||
{ "[:^lower:]", -1, code11, 1 },
|
||||
{ "[:print:]", +1, code12, 1 },
|
||||
{ "[:^print:]", -1, code12, 1 },
|
||||
{ "[:punct:]", +1, code13, 4 },
|
||||
{ "[:^punct:]", -1, code13, 4 },
|
||||
{ "[:space:]", +1, code14, 2 },
|
||||
{ "[:^space:]", -1, code14, 2 },
|
||||
{ "[:upper:]", +1, code15, 1 },
|
||||
{ "[:^upper:]", -1, code15, 1 },
|
||||
{ "[:word:]", +1, code16, 4 },
|
||||
{ "[:^word:]", -1, code16, 4 },
|
||||
{ "[:xdigit:]", +1, code17, 3 },
|
||||
{ "[:^xdigit:]", -1, code17, 3 },
|
||||
};
|
||||
const int num_posix_groups = 28;
|
||||
|
||||
} // namespace re2
|
710
extern/re2/re2/prefilter.cc
vendored
Normal file
710
extern/re2/re2/prefilter.cc
vendored
Normal file
@ -0,0 +1,710 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "re2/prefilter.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/unicode_casefold.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const bool ExtraDebug = false;
|
||||
|
||||
typedef std::set<std::string>::iterator SSIter;
|
||||
typedef std::set<std::string>::const_iterator ConstSSIter;
|
||||
|
||||
// Initializes a Prefilter, allocating subs_ as necessary.
|
||||
Prefilter::Prefilter(Op op) {
|
||||
op_ = op;
|
||||
subs_ = NULL;
|
||||
if (op_ == AND || op_ == OR)
|
||||
subs_ = new std::vector<Prefilter*>;
|
||||
}
|
||||
|
||||
// Destroys a Prefilter.
|
||||
Prefilter::~Prefilter() {
|
||||
if (subs_) {
|
||||
for (size_t i = 0; i < subs_->size(); i++)
|
||||
delete (*subs_)[i];
|
||||
delete subs_;
|
||||
subs_ = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// Simplify if the node is an empty Or or And.
|
||||
Prefilter* Prefilter::Simplify() {
|
||||
if (op_ != AND && op_ != OR) {
|
||||
return this;
|
||||
}
|
||||
|
||||
// Nothing left in the AND/OR.
|
||||
if (subs_->empty()) {
|
||||
if (op_ == AND)
|
||||
op_ = ALL; // AND of nothing is true
|
||||
else
|
||||
op_ = NONE; // OR of nothing is false
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
// Just one subnode: throw away wrapper.
|
||||
if (subs_->size() == 1) {
|
||||
Prefilter* a = (*subs_)[0];
|
||||
subs_->clear();
|
||||
delete this;
|
||||
return a->Simplify();
|
||||
}
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
// Combines two Prefilters together to create an "op" (AND or OR).
|
||||
// The passed Prefilters will be part of the returned Prefilter or deleted.
|
||||
// Does lots of work to avoid creating unnecessarily complicated structures.
|
||||
Prefilter* Prefilter::AndOr(Op op, Prefilter* a, Prefilter* b) {
|
||||
// If a, b can be rewritten as op, do so.
|
||||
a = a->Simplify();
|
||||
b = b->Simplify();
|
||||
|
||||
// Canonicalize: a->op <= b->op.
|
||||
if (a->op() > b->op()) {
|
||||
Prefilter* t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
|
||||
// Trivial cases.
|
||||
// ALL AND b = b
|
||||
// NONE OR b = b
|
||||
// ALL OR b = ALL
|
||||
// NONE AND b = NONE
|
||||
// Don't need to look at b, because of canonicalization above.
|
||||
// ALL and NONE are smallest opcodes.
|
||||
if (a->op() == ALL || a->op() == NONE) {
|
||||
if ((a->op() == ALL && op == AND) ||
|
||||
(a->op() == NONE && op == OR)) {
|
||||
delete a;
|
||||
return b;
|
||||
} else {
|
||||
delete b;
|
||||
return a;
|
||||
}
|
||||
}
|
||||
|
||||
// If a and b match op, merge their contents.
|
||||
if (a->op() == op && b->op() == op) {
|
||||
for (size_t i = 0; i < b->subs()->size(); i++) {
|
||||
Prefilter* bb = (*b->subs())[i];
|
||||
a->subs()->push_back(bb);
|
||||
}
|
||||
b->subs()->clear();
|
||||
delete b;
|
||||
return a;
|
||||
}
|
||||
|
||||
// If a already has the same op as the op that is under construction
|
||||
// add in b (similarly if b already has the same op, add in a).
|
||||
if (b->op() == op) {
|
||||
Prefilter* t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
}
|
||||
if (a->op() == op) {
|
||||
a->subs()->push_back(b);
|
||||
return a;
|
||||
}
|
||||
|
||||
// Otherwise just return the op.
|
||||
Prefilter* c = new Prefilter(op);
|
||||
c->subs()->push_back(a);
|
||||
c->subs()->push_back(b);
|
||||
return c;
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::And(Prefilter* a, Prefilter* b) {
|
||||
return AndOr(AND, a, b);
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::Or(Prefilter* a, Prefilter* b) {
|
||||
return AndOr(OR, a, b);
|
||||
}
|
||||
|
||||
static void SimplifyStringSet(std::set<std::string>* ss) {
|
||||
// Now make sure that the strings aren't redundant. For example, if
|
||||
// we know "ab" is a required string, then it doesn't help at all to
|
||||
// know that "abc" is also a required string, so delete "abc". This
|
||||
// is because, when we are performing a string search to filter
|
||||
// regexps, matching "ab" will already allow this regexp to be a
|
||||
// candidate for match, so further matching "abc" is redundant.
|
||||
// Note that we must ignore "" because find() would find it at the
|
||||
// start of everything and thus we would end up erasing everything.
|
||||
for (SSIter i = ss->begin(); i != ss->end(); ++i) {
|
||||
if (i->empty())
|
||||
continue;
|
||||
SSIter j = i;
|
||||
++j;
|
||||
while (j != ss->end()) {
|
||||
if (j->find(*i) != std::string::npos) {
|
||||
j = ss->erase(j);
|
||||
continue;
|
||||
}
|
||||
++j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::OrStrings(std::set<std::string>* ss) {
|
||||
Prefilter* or_prefilter = new Prefilter(NONE);
|
||||
SimplifyStringSet(ss);
|
||||
for (SSIter i = ss->begin(); i != ss->end(); ++i)
|
||||
or_prefilter = Or(or_prefilter, FromString(*i));
|
||||
return or_prefilter;
|
||||
}
|
||||
|
||||
static Rune ToLowerRune(Rune r) {
|
||||
if (r < Runeself) {
|
||||
if ('A' <= r && r <= 'Z')
|
||||
r += 'a' - 'A';
|
||||
return r;
|
||||
}
|
||||
|
||||
const CaseFold *f = LookupCaseFold(unicode_tolower, num_unicode_tolower, r);
|
||||
if (f == NULL || r < f->lo)
|
||||
return r;
|
||||
return ApplyFold(f, r);
|
||||
}
|
||||
|
||||
static Rune ToLowerRuneLatin1(Rune r) {
|
||||
if ('A' <= r && r <= 'Z')
|
||||
r += 'a' - 'A';
|
||||
return r;
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::FromString(const std::string& str) {
|
||||
Prefilter* m = new Prefilter(Prefilter::ATOM);
|
||||
m->atom_ = str;
|
||||
return m;
|
||||
}
|
||||
|
||||
// Information about a regexp used during computation of Prefilter.
|
||||
// Can be thought of as information about the set of strings matching
|
||||
// the given regular expression.
|
||||
class Prefilter::Info {
|
||||
public:
|
||||
Info();
|
||||
~Info();
|
||||
|
||||
// More constructors. They delete their Info* arguments.
|
||||
static Info* Alt(Info* a, Info* b);
|
||||
static Info* Concat(Info* a, Info* b);
|
||||
static Info* And(Info* a, Info* b);
|
||||
static Info* Star(Info* a);
|
||||
static Info* Plus(Info* a);
|
||||
static Info* Quest(Info* a);
|
||||
static Info* EmptyString();
|
||||
static Info* NoMatch();
|
||||
static Info* AnyCharOrAnyByte();
|
||||
static Info* CClass(CharClass* cc, bool latin1);
|
||||
static Info* Literal(Rune r);
|
||||
static Info* LiteralLatin1(Rune r);
|
||||
static Info* AnyMatch();
|
||||
|
||||
// Format Info as a string.
|
||||
std::string ToString();
|
||||
|
||||
// Caller takes ownership of the Prefilter.
|
||||
Prefilter* TakeMatch();
|
||||
|
||||
std::set<std::string>& exact() { return exact_; }
|
||||
|
||||
bool is_exact() const { return is_exact_; }
|
||||
|
||||
class Walker;
|
||||
|
||||
private:
|
||||
std::set<std::string> exact_;
|
||||
|
||||
// When is_exact_ is true, the strings that match
|
||||
// are placed in exact_. When it is no longer an exact
|
||||
// set of strings that match this RE, then is_exact_
|
||||
// is false and the match_ contains the required match
|
||||
// criteria.
|
||||
bool is_exact_;
|
||||
|
||||
// Accumulated Prefilter query that any
|
||||
// match for this regexp is guaranteed to match.
|
||||
Prefilter* match_;
|
||||
};
|
||||
|
||||
|
||||
Prefilter::Info::Info()
|
||||
: is_exact_(false),
|
||||
match_(NULL) {
|
||||
}
|
||||
|
||||
Prefilter::Info::~Info() {
|
||||
delete match_;
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::Info::TakeMatch() {
|
||||
if (is_exact_) {
|
||||
match_ = Prefilter::OrStrings(&exact_);
|
||||
is_exact_ = false;
|
||||
}
|
||||
Prefilter* m = match_;
|
||||
match_ = NULL;
|
||||
return m;
|
||||
}
|
||||
|
||||
// Format a Info in string form.
|
||||
std::string Prefilter::Info::ToString() {
|
||||
if (is_exact_) {
|
||||
int n = 0;
|
||||
std::string s;
|
||||
for (SSIter i = exact_.begin(); i != exact_.end(); ++i) {
|
||||
if (n++ > 0)
|
||||
s += ",";
|
||||
s += *i;
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
if (match_)
|
||||
return match_->DebugString();
|
||||
|
||||
return "";
|
||||
}
|
||||
|
||||
// Add the strings from src to dst.
|
||||
static void CopyIn(const std::set<std::string>& src,
|
||||
std::set<std::string>* dst) {
|
||||
for (ConstSSIter i = src.begin(); i != src.end(); ++i)
|
||||
dst->insert(*i);
|
||||
}
|
||||
|
||||
// Add the cross-product of a and b to dst.
|
||||
// (For each string i in a and j in b, add i+j.)
|
||||
static void CrossProduct(const std::set<std::string>& a,
|
||||
const std::set<std::string>& b,
|
||||
std::set<std::string>* dst) {
|
||||
for (ConstSSIter i = a.begin(); i != a.end(); ++i)
|
||||
for (ConstSSIter j = b.begin(); j != b.end(); ++j)
|
||||
dst->insert(*i + *j);
|
||||
}
|
||||
|
||||
// Concats a and b. Requires that both are exact sets.
|
||||
// Forms an exact set that is a crossproduct of a and b.
|
||||
Prefilter::Info* Prefilter::Info::Concat(Info* a, Info* b) {
|
||||
if (a == NULL)
|
||||
return b;
|
||||
DCHECK(a->is_exact_);
|
||||
DCHECK(b && b->is_exact_);
|
||||
Info *ab = new Info();
|
||||
|
||||
CrossProduct(a->exact_, b->exact_, &ab->exact_);
|
||||
ab->is_exact_ = true;
|
||||
|
||||
delete a;
|
||||
delete b;
|
||||
return ab;
|
||||
}
|
||||
|
||||
// Constructs an inexact Info for ab given a and b.
|
||||
// Used only when a or b is not exact or when the
|
||||
// exact cross product is likely to be too big.
|
||||
Prefilter::Info* Prefilter::Info::And(Info* a, Info* b) {
|
||||
if (a == NULL)
|
||||
return b;
|
||||
if (b == NULL)
|
||||
return a;
|
||||
|
||||
Info *ab = new Info();
|
||||
|
||||
ab->match_ = Prefilter::And(a->TakeMatch(), b->TakeMatch());
|
||||
ab->is_exact_ = false;
|
||||
delete a;
|
||||
delete b;
|
||||
return ab;
|
||||
}
|
||||
|
||||
// Constructs Info for a|b given a and b.
|
||||
Prefilter::Info* Prefilter::Info::Alt(Info* a, Info* b) {
|
||||
Info *ab = new Info();
|
||||
|
||||
if (a->is_exact_ && b->is_exact_) {
|
||||
CopyIn(a->exact_, &ab->exact_);
|
||||
CopyIn(b->exact_, &ab->exact_);
|
||||
ab->is_exact_ = true;
|
||||
} else {
|
||||
// Either a or b has is_exact_ = false. If the other
|
||||
// one has is_exact_ = true, we move it to match_ and
|
||||
// then create a OR of a,b. The resulting Info has
|
||||
// is_exact_ = false.
|
||||
ab->match_ = Prefilter::Or(a->TakeMatch(), b->TakeMatch());
|
||||
ab->is_exact_ = false;
|
||||
}
|
||||
|
||||
delete a;
|
||||
delete b;
|
||||
return ab;
|
||||
}
|
||||
|
||||
// Constructs Info for a? given a.
|
||||
Prefilter::Info* Prefilter::Info::Quest(Info *a) {
|
||||
Info *ab = new Info();
|
||||
|
||||
ab->is_exact_ = false;
|
||||
ab->match_ = new Prefilter(ALL);
|
||||
delete a;
|
||||
return ab;
|
||||
}
|
||||
|
||||
// Constructs Info for a* given a.
|
||||
// Same as a? -- not much to do.
|
||||
Prefilter::Info* Prefilter::Info::Star(Info *a) {
|
||||
return Quest(a);
|
||||
}
|
||||
|
||||
// Constructs Info for a+ given a. If a was exact set, it isn't
|
||||
// anymore.
|
||||
Prefilter::Info* Prefilter::Info::Plus(Info *a) {
|
||||
Info *ab = new Info();
|
||||
|
||||
ab->match_ = a->TakeMatch();
|
||||
ab->is_exact_ = false;
|
||||
|
||||
delete a;
|
||||
return ab;
|
||||
}
|
||||
|
||||
static std::string RuneToString(Rune r) {
|
||||
char buf[UTFmax];
|
||||
int n = runetochar(buf, &r);
|
||||
return std::string(buf, n);
|
||||
}
|
||||
|
||||
static std::string RuneToStringLatin1(Rune r) {
|
||||
char c = r & 0xff;
|
||||
return std::string(&c, 1);
|
||||
}
|
||||
|
||||
// Constructs Info for literal rune.
|
||||
Prefilter::Info* Prefilter::Info::Literal(Rune r) {
|
||||
Info* info = new Info();
|
||||
info->exact_.insert(RuneToString(ToLowerRune(r)));
|
||||
info->is_exact_ = true;
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Info for literal rune for Latin1 encoded string.
|
||||
Prefilter::Info* Prefilter::Info::LiteralLatin1(Rune r) {
|
||||
Info* info = new Info();
|
||||
info->exact_.insert(RuneToStringLatin1(ToLowerRuneLatin1(r)));
|
||||
info->is_exact_ = true;
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Info for dot (any character) or \C (any byte).
|
||||
Prefilter::Info* Prefilter::Info::AnyCharOrAnyByte() {
|
||||
Prefilter::Info* info = new Prefilter::Info();
|
||||
info->match_ = new Prefilter(ALL);
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Prefilter::Info for no possible match.
|
||||
Prefilter::Info* Prefilter::Info::NoMatch() {
|
||||
Prefilter::Info* info = new Prefilter::Info();
|
||||
info->match_ = new Prefilter(NONE);
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Prefilter::Info for any possible match.
|
||||
// This Prefilter::Info is valid for any regular expression,
|
||||
// since it makes no assertions whatsoever about the
|
||||
// strings being matched.
|
||||
Prefilter::Info* Prefilter::Info::AnyMatch() {
|
||||
Prefilter::Info *info = new Prefilter::Info();
|
||||
info->match_ = new Prefilter(ALL);
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Prefilter::Info for just the empty string.
|
||||
Prefilter::Info* Prefilter::Info::EmptyString() {
|
||||
Prefilter::Info* info = new Prefilter::Info();
|
||||
info->is_exact_ = true;
|
||||
info->exact_.insert("");
|
||||
return info;
|
||||
}
|
||||
|
||||
// Constructs Prefilter::Info for a character class.
|
||||
typedef CharClass::iterator CCIter;
|
||||
Prefilter::Info* Prefilter::Info::CClass(CharClass *cc,
|
||||
bool latin1) {
|
||||
if (ExtraDebug) {
|
||||
LOG(ERROR) << "CharClassInfo:";
|
||||
for (CCIter i = cc->begin(); i != cc->end(); ++i)
|
||||
LOG(ERROR) << " " << i->lo << "-" << i->hi;
|
||||
}
|
||||
|
||||
// If the class is too large, it's okay to overestimate.
|
||||
if (cc->size() > 10)
|
||||
return AnyCharOrAnyByte();
|
||||
|
||||
Prefilter::Info *a = new Prefilter::Info();
|
||||
for (CCIter i = cc->begin(); i != cc->end(); ++i)
|
||||
for (Rune r = i->lo; r <= i->hi; r++) {
|
||||
if (latin1) {
|
||||
a->exact_.insert(RuneToStringLatin1(ToLowerRuneLatin1(r)));
|
||||
} else {
|
||||
a->exact_.insert(RuneToString(ToLowerRune(r)));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
a->is_exact_ = true;
|
||||
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << " = " << a->ToString();
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
class Prefilter::Info::Walker : public Regexp::Walker<Prefilter::Info*> {
|
||||
public:
|
||||
Walker(bool latin1) : latin1_(latin1) {}
|
||||
|
||||
virtual Info* PostVisit(
|
||||
Regexp* re, Info* parent_arg,
|
||||
Info* pre_arg,
|
||||
Info** child_args, int nchild_args);
|
||||
|
||||
virtual Info* ShortVisit(
|
||||
Regexp* re,
|
||||
Info* parent_arg);
|
||||
|
||||
bool latin1() { return latin1_; }
|
||||
private:
|
||||
bool latin1_;
|
||||
|
||||
Walker(const Walker&) = delete;
|
||||
Walker& operator=(const Walker&) = delete;
|
||||
};
|
||||
|
||||
Prefilter::Info* Prefilter::BuildInfo(Regexp* re) {
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << "BuildPrefilter::Info: " << re->ToString();
|
||||
|
||||
bool latin1 = (re->parse_flags() & Regexp::Latin1) != 0;
|
||||
Prefilter::Info::Walker w(latin1);
|
||||
Prefilter::Info* info = w.WalkExponential(re, NULL, 100000);
|
||||
|
||||
if (w.stopped_early()) {
|
||||
delete info;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
Prefilter::Info* Prefilter::Info::Walker::ShortVisit(
|
||||
Regexp* re, Prefilter::Info* parent_arg) {
|
||||
return AnyMatch();
|
||||
}
|
||||
|
||||
// Constructs the Prefilter::Info for the given regular expression.
|
||||
// Assumes re is simplified.
|
||||
Prefilter::Info* Prefilter::Info::Walker::PostVisit(
|
||||
Regexp* re, Prefilter::Info* parent_arg,
|
||||
Prefilter::Info* pre_arg, Prefilter::Info** child_args,
|
||||
int nchild_args) {
|
||||
Prefilter::Info *info;
|
||||
switch (re->op()) {
|
||||
default:
|
||||
case kRegexpRepeat:
|
||||
LOG(DFATAL) << "Bad regexp op " << re->op();
|
||||
info = EmptyString();
|
||||
break;
|
||||
|
||||
case kRegexpNoMatch:
|
||||
info = NoMatch();
|
||||
break;
|
||||
|
||||
// These ops match the empty string:
|
||||
case kRegexpEmptyMatch: // anywhere
|
||||
case kRegexpBeginLine: // at beginning of line
|
||||
case kRegexpEndLine: // at end of line
|
||||
case kRegexpBeginText: // at beginning of text
|
||||
case kRegexpEndText: // at end of text
|
||||
case kRegexpWordBoundary: // at word boundary
|
||||
case kRegexpNoWordBoundary: // not at word boundary
|
||||
info = EmptyString();
|
||||
break;
|
||||
|
||||
case kRegexpLiteral:
|
||||
if (latin1()) {
|
||||
info = LiteralLatin1(re->rune());
|
||||
}
|
||||
else {
|
||||
info = Literal(re->rune());
|
||||
}
|
||||
break;
|
||||
|
||||
case kRegexpLiteralString:
|
||||
if (re->nrunes() == 0) {
|
||||
info = NoMatch();
|
||||
break;
|
||||
}
|
||||
if (latin1()) {
|
||||
info = LiteralLatin1(re->runes()[0]);
|
||||
for (int i = 1; i < re->nrunes(); i++) {
|
||||
info = Concat(info, LiteralLatin1(re->runes()[i]));
|
||||
}
|
||||
} else {
|
||||
info = Literal(re->runes()[0]);
|
||||
for (int i = 1; i < re->nrunes(); i++) {
|
||||
info = Concat(info, Literal(re->runes()[i]));
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case kRegexpConcat: {
|
||||
// Accumulate in info.
|
||||
// Exact is concat of recent contiguous exact nodes.
|
||||
info = NULL;
|
||||
Info* exact = NULL;
|
||||
for (int i = 0; i < nchild_args; i++) {
|
||||
Info* ci = child_args[i]; // child info
|
||||
if (!ci->is_exact() ||
|
||||
(exact && ci->exact().size() * exact->exact().size() > 16)) {
|
||||
// Exact run is over.
|
||||
info = And(info, exact);
|
||||
exact = NULL;
|
||||
// Add this child's info.
|
||||
info = And(info, ci);
|
||||
} else {
|
||||
// Append to exact run.
|
||||
exact = Concat(exact, ci);
|
||||
}
|
||||
}
|
||||
info = And(info, exact);
|
||||
}
|
||||
break;
|
||||
|
||||
case kRegexpAlternate:
|
||||
info = child_args[0];
|
||||
for (int i = 1; i < nchild_args; i++)
|
||||
info = Alt(info, child_args[i]);
|
||||
break;
|
||||
|
||||
case kRegexpStar:
|
||||
info = Star(child_args[0]);
|
||||
break;
|
||||
|
||||
case kRegexpQuest:
|
||||
info = Quest(child_args[0]);
|
||||
break;
|
||||
|
||||
case kRegexpPlus:
|
||||
info = Plus(child_args[0]);
|
||||
break;
|
||||
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
// Claim nothing, except that it's not empty.
|
||||
info = AnyCharOrAnyByte();
|
||||
break;
|
||||
|
||||
case kRegexpCharClass:
|
||||
info = CClass(re->cc(), latin1());
|
||||
break;
|
||||
|
||||
case kRegexpCapture:
|
||||
// These don't affect the set of matching strings.
|
||||
info = child_args[0];
|
||||
break;
|
||||
}
|
||||
|
||||
if (ExtraDebug)
|
||||
LOG(ERROR) << "BuildInfo " << re->ToString()
|
||||
<< ": " << (info ? info->ToString() : "");
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
|
||||
Prefilter* Prefilter::FromRegexp(Regexp* re) {
|
||||
if (re == NULL)
|
||||
return NULL;
|
||||
|
||||
Regexp* simple = re->Simplify();
|
||||
Prefilter::Info *info = BuildInfo(simple);
|
||||
|
||||
simple->Decref();
|
||||
if (info == NULL)
|
||||
return NULL;
|
||||
|
||||
Prefilter* m = info->TakeMatch();
|
||||
|
||||
delete info;
|
||||
return m;
|
||||
}
|
||||
|
||||
std::string Prefilter::DebugString() const {
|
||||
switch (op_) {
|
||||
default:
|
||||
LOG(DFATAL) << "Bad op in Prefilter::DebugString: " << op_;
|
||||
return StringPrintf("op%d", op_);
|
||||
case NONE:
|
||||
return "*no-matches*";
|
||||
case ATOM:
|
||||
return atom_;
|
||||
case ALL:
|
||||
return "";
|
||||
case AND: {
|
||||
std::string s = "";
|
||||
for (size_t i = 0; i < subs_->size(); i++) {
|
||||
if (i > 0)
|
||||
s += " ";
|
||||
Prefilter* sub = (*subs_)[i];
|
||||
s += sub ? sub->DebugString() : "<nil>";
|
||||
}
|
||||
return s;
|
||||
}
|
||||
case OR: {
|
||||
std::string s = "(";
|
||||
for (size_t i = 0; i < subs_->size(); i++) {
|
||||
if (i > 0)
|
||||
s += "|";
|
||||
Prefilter* sub = (*subs_)[i];
|
||||
s += sub ? sub->DebugString() : "<nil>";
|
||||
}
|
||||
s += ")";
|
||||
return s;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Prefilter* Prefilter::FromRE2(const RE2* re2) {
|
||||
if (re2 == NULL)
|
||||
return NULL;
|
||||
|
||||
Regexp* regexp = re2->Regexp();
|
||||
if (regexp == NULL)
|
||||
return NULL;
|
||||
|
||||
return FromRegexp(regexp);
|
||||
}
|
||||
|
||||
|
||||
} // namespace re2
|
108
extern/re2/re2/prefilter.h
vendored
Normal file
108
extern/re2/re2/prefilter.h
vendored
Normal file
@ -0,0 +1,108 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_PREFILTER_H_
|
||||
#define RE2_PREFILTER_H_
|
||||
|
||||
// Prefilter is the class used to extract string guards from regexps.
|
||||
// Rather than using Prefilter class directly, use FilteredRE2.
|
||||
// See filtered_re2.h
|
||||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class RE2;
|
||||
|
||||
class Regexp;
|
||||
|
||||
class Prefilter {
|
||||
// Instead of using Prefilter directly, use FilteredRE2; see filtered_re2.h
|
||||
public:
|
||||
enum Op {
|
||||
ALL = 0, // Everything matches
|
||||
NONE, // Nothing matches
|
||||
ATOM, // The string atom() must match
|
||||
AND, // All in subs() must match
|
||||
OR, // One of subs() must match
|
||||
};
|
||||
|
||||
explicit Prefilter(Op op);
|
||||
~Prefilter();
|
||||
|
||||
Op op() { return op_; }
|
||||
const std::string& atom() const { return atom_; }
|
||||
void set_unique_id(int id) { unique_id_ = id; }
|
||||
int unique_id() const { return unique_id_; }
|
||||
|
||||
// The children of the Prefilter node.
|
||||
std::vector<Prefilter*>* subs() {
|
||||
DCHECK(op_ == AND || op_ == OR);
|
||||
return subs_;
|
||||
}
|
||||
|
||||
// Set the children vector. Prefilter takes ownership of subs and
|
||||
// subs_ will be deleted when Prefilter is deleted.
|
||||
void set_subs(std::vector<Prefilter*>* subs) { subs_ = subs; }
|
||||
|
||||
// Given a RE2, return a Prefilter. The caller takes ownership of
|
||||
// the Prefilter and should deallocate it. Returns NULL if Prefilter
|
||||
// cannot be formed.
|
||||
static Prefilter* FromRE2(const RE2* re2);
|
||||
|
||||
// Returns a readable debug string of the prefilter.
|
||||
std::string DebugString() const;
|
||||
|
||||
private:
|
||||
class Info;
|
||||
|
||||
// Combines two prefilters together to create an AND. The passed
|
||||
// Prefilters will be part of the returned Prefilter or deleted.
|
||||
static Prefilter* And(Prefilter* a, Prefilter* b);
|
||||
|
||||
// Combines two prefilters together to create an OR. The passed
|
||||
// Prefilters will be part of the returned Prefilter or deleted.
|
||||
static Prefilter* Or(Prefilter* a, Prefilter* b);
|
||||
|
||||
// Generalized And/Or
|
||||
static Prefilter* AndOr(Op op, Prefilter* a, Prefilter* b);
|
||||
|
||||
static Prefilter* FromRegexp(Regexp* a);
|
||||
|
||||
static Prefilter* FromString(const std::string& str);
|
||||
|
||||
static Prefilter* OrStrings(std::set<std::string>* ss);
|
||||
|
||||
static Info* BuildInfo(Regexp* re);
|
||||
|
||||
Prefilter* Simplify();
|
||||
|
||||
// Kind of Prefilter.
|
||||
Op op_;
|
||||
|
||||
// Sub-matches for AND or OR Prefilter.
|
||||
std::vector<Prefilter*>* subs_;
|
||||
|
||||
// Actual string to match in leaf node.
|
||||
std::string atom_;
|
||||
|
||||
// If different prefilters have the same string atom, or if they are
|
||||
// structurally the same (e.g., OR of same atom strings) they are
|
||||
// considered the same unique nodes. This is the id for each unique
|
||||
// node. This field is populated with a unique id for every node,
|
||||
// and -1 for duplicate nodes.
|
||||
int unique_id_;
|
||||
|
||||
Prefilter(const Prefilter&) = delete;
|
||||
Prefilter& operator=(const Prefilter&) = delete;
|
||||
};
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_PREFILTER_H_
|
407
extern/re2/re2/prefilter_tree.cc
vendored
Normal file
407
extern/re2/re2/prefilter_tree.cc
vendored
Normal file
@ -0,0 +1,407 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "re2/prefilter_tree.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/prefilter.h"
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const bool ExtraDebug = false;
|
||||
|
||||
PrefilterTree::PrefilterTree()
|
||||
: compiled_(false),
|
||||
min_atom_len_(3) {
|
||||
}
|
||||
|
||||
PrefilterTree::PrefilterTree(int min_atom_len)
|
||||
: compiled_(false),
|
||||
min_atom_len_(min_atom_len) {
|
||||
}
|
||||
|
||||
PrefilterTree::~PrefilterTree() {
|
||||
for (size_t i = 0; i < prefilter_vec_.size(); i++)
|
||||
delete prefilter_vec_[i];
|
||||
|
||||
for (size_t i = 0; i < entries_.size(); i++)
|
||||
delete entries_[i].parents;
|
||||
}
|
||||
|
||||
void PrefilterTree::Add(Prefilter* prefilter) {
|
||||
if (compiled_) {
|
||||
LOG(DFATAL) << "Add called after Compile.";
|
||||
return;
|
||||
}
|
||||
if (prefilter != NULL && !KeepNode(prefilter)) {
|
||||
delete prefilter;
|
||||
prefilter = NULL;
|
||||
}
|
||||
|
||||
prefilter_vec_.push_back(prefilter);
|
||||
}
|
||||
|
||||
void PrefilterTree::Compile(std::vector<std::string>* atom_vec) {
|
||||
if (compiled_) {
|
||||
LOG(DFATAL) << "Compile called already.";
|
||||
return;
|
||||
}
|
||||
|
||||
// Some legacy users of PrefilterTree call Compile() before
|
||||
// adding any regexps and expect Compile() to have no effect.
|
||||
if (prefilter_vec_.empty())
|
||||
return;
|
||||
|
||||
compiled_ = true;
|
||||
|
||||
// TODO(junyer): Use std::unordered_set<Prefilter*> instead?
|
||||
NodeMap nodes;
|
||||
AssignUniqueIds(&nodes, atom_vec);
|
||||
|
||||
// Identify nodes that are too common among prefilters and are
|
||||
// triggering too many parents. Then get rid of them if possible.
|
||||
// Note that getting rid of a prefilter node simply means they are
|
||||
// no longer necessary for their parent to trigger; that is, we do
|
||||
// not miss out on any regexps triggering by getting rid of a
|
||||
// prefilter node.
|
||||
for (size_t i = 0; i < entries_.size(); i++) {
|
||||
StdIntMap* parents = entries_[i].parents;
|
||||
if (parents->size() > 8) {
|
||||
// This one triggers too many things. If all the parents are AND
|
||||
// nodes and have other things guarding them, then get rid of
|
||||
// this trigger. TODO(vsri): Adjust the threshold appropriately,
|
||||
// make it a function of total number of nodes?
|
||||
bool have_other_guard = true;
|
||||
for (StdIntMap::iterator it = parents->begin();
|
||||
it != parents->end(); ++it) {
|
||||
have_other_guard = have_other_guard &&
|
||||
(entries_[it->first].propagate_up_at_count > 1);
|
||||
}
|
||||
|
||||
if (have_other_guard) {
|
||||
for (StdIntMap::iterator it = parents->begin();
|
||||
it != parents->end(); ++it)
|
||||
entries_[it->first].propagate_up_at_count -= 1;
|
||||
|
||||
parents->clear(); // Forget the parents
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ExtraDebug)
|
||||
PrintDebugInfo(&nodes);
|
||||
}
|
||||
|
||||
Prefilter* PrefilterTree::CanonicalNode(NodeMap* nodes, Prefilter* node) {
|
||||
std::string node_string = NodeString(node);
|
||||
std::map<std::string, Prefilter*>::iterator iter = nodes->find(node_string);
|
||||
if (iter == nodes->end())
|
||||
return NULL;
|
||||
return (*iter).second;
|
||||
}
|
||||
|
||||
std::string PrefilterTree::NodeString(Prefilter* node) const {
|
||||
// Adding the operation disambiguates AND/OR/atom nodes.
|
||||
std::string s = StringPrintf("%d", node->op()) + ":";
|
||||
if (node->op() == Prefilter::ATOM) {
|
||||
s += node->atom();
|
||||
} else {
|
||||
for (size_t i = 0; i < node->subs()->size(); i++) {
|
||||
if (i > 0)
|
||||
s += ',';
|
||||
s += StringPrintf("%d", (*node->subs())[i]->unique_id());
|
||||
}
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
bool PrefilterTree::KeepNode(Prefilter* node) const {
|
||||
if (node == NULL)
|
||||
return false;
|
||||
|
||||
switch (node->op()) {
|
||||
default:
|
||||
LOG(DFATAL) << "Unexpected op in KeepNode: " << node->op();
|
||||
return false;
|
||||
|
||||
case Prefilter::ALL:
|
||||
case Prefilter::NONE:
|
||||
return false;
|
||||
|
||||
case Prefilter::ATOM:
|
||||
return node->atom().size() >= static_cast<size_t>(min_atom_len_);
|
||||
|
||||
case Prefilter::AND: {
|
||||
int j = 0;
|
||||
std::vector<Prefilter*>* subs = node->subs();
|
||||
for (size_t i = 0; i < subs->size(); i++)
|
||||
if (KeepNode((*subs)[i]))
|
||||
(*subs)[j++] = (*subs)[i];
|
||||
else
|
||||
delete (*subs)[i];
|
||||
|
||||
subs->resize(j);
|
||||
return j > 0;
|
||||
}
|
||||
|
||||
case Prefilter::OR:
|
||||
for (size_t i = 0; i < node->subs()->size(); i++)
|
||||
if (!KeepNode((*node->subs())[i]))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void PrefilterTree::AssignUniqueIds(NodeMap* nodes,
|
||||
std::vector<std::string>* atom_vec) {
|
||||
atom_vec->clear();
|
||||
|
||||
// Build vector of all filter nodes, sorted topologically
|
||||
// from top to bottom in v.
|
||||
std::vector<Prefilter*> v;
|
||||
|
||||
// Add the top level nodes of each regexp prefilter.
|
||||
for (size_t i = 0; i < prefilter_vec_.size(); i++) {
|
||||
Prefilter* f = prefilter_vec_[i];
|
||||
if (f == NULL)
|
||||
unfiltered_.push_back(static_cast<int>(i));
|
||||
|
||||
// We push NULL also on to v, so that we maintain the
|
||||
// mapping of index==regexpid for level=0 prefilter nodes.
|
||||
v.push_back(f);
|
||||
}
|
||||
|
||||
// Now add all the descendant nodes.
|
||||
for (size_t i = 0; i < v.size(); i++) {
|
||||
Prefilter* f = v[i];
|
||||
if (f == NULL)
|
||||
continue;
|
||||
if (f->op() == Prefilter::AND || f->op() == Prefilter::OR) {
|
||||
const std::vector<Prefilter*>& subs = *f->subs();
|
||||
for (size_t j = 0; j < subs.size(); j++)
|
||||
v.push_back(subs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// Identify unique nodes.
|
||||
int unique_id = 0;
|
||||
for (int i = static_cast<int>(v.size()) - 1; i >= 0; i--) {
|
||||
Prefilter *node = v[i];
|
||||
if (node == NULL)
|
||||
continue;
|
||||
node->set_unique_id(-1);
|
||||
Prefilter* canonical = CanonicalNode(nodes, node);
|
||||
if (canonical == NULL) {
|
||||
// Any further nodes that have the same node string
|
||||
// will find this node as the canonical node.
|
||||
nodes->emplace(NodeString(node), node);
|
||||
if (node->op() == Prefilter::ATOM) {
|
||||
atom_vec->push_back(node->atom());
|
||||
atom_index_to_id_.push_back(unique_id);
|
||||
}
|
||||
node->set_unique_id(unique_id++);
|
||||
} else {
|
||||
node->set_unique_id(canonical->unique_id());
|
||||
}
|
||||
}
|
||||
entries_.resize(nodes->size());
|
||||
|
||||
// Create parent StdIntMap for the entries.
|
||||
for (int i = static_cast<int>(v.size()) - 1; i >= 0; i--) {
|
||||
Prefilter* prefilter = v[i];
|
||||
if (prefilter == NULL)
|
||||
continue;
|
||||
|
||||
if (CanonicalNode(nodes, prefilter) != prefilter)
|
||||
continue;
|
||||
|
||||
Entry* entry = &entries_[prefilter->unique_id()];
|
||||
entry->parents = new StdIntMap();
|
||||
}
|
||||
|
||||
// Fill the entries.
|
||||
for (int i = static_cast<int>(v.size()) - 1; i >= 0; i--) {
|
||||
Prefilter* prefilter = v[i];
|
||||
if (prefilter == NULL)
|
||||
continue;
|
||||
|
||||
if (CanonicalNode(nodes, prefilter) != prefilter)
|
||||
continue;
|
||||
|
||||
Entry* entry = &entries_[prefilter->unique_id()];
|
||||
|
||||
switch (prefilter->op()) {
|
||||
default:
|
||||
case Prefilter::ALL:
|
||||
LOG(DFATAL) << "Unexpected op: " << prefilter->op();
|
||||
return;
|
||||
|
||||
case Prefilter::ATOM:
|
||||
entry->propagate_up_at_count = 1;
|
||||
break;
|
||||
|
||||
case Prefilter::OR:
|
||||
case Prefilter::AND: {
|
||||
std::set<int> uniq_child;
|
||||
for (size_t j = 0; j < prefilter->subs()->size(); j++) {
|
||||
Prefilter* child = (*prefilter->subs())[j];
|
||||
Prefilter* canonical = CanonicalNode(nodes, child);
|
||||
if (canonical == NULL) {
|
||||
LOG(DFATAL) << "Null canonical node";
|
||||
return;
|
||||
}
|
||||
int child_id = canonical->unique_id();
|
||||
uniq_child.insert(child_id);
|
||||
// To the child, we want to add to parent indices.
|
||||
Entry* child_entry = &entries_[child_id];
|
||||
if (child_entry->parents->find(prefilter->unique_id()) ==
|
||||
child_entry->parents->end()) {
|
||||
(*child_entry->parents)[prefilter->unique_id()] = 1;
|
||||
}
|
||||
}
|
||||
entry->propagate_up_at_count = prefilter->op() == Prefilter::AND
|
||||
? static_cast<int>(uniq_child.size())
|
||||
: 1;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For top level nodes, populate regexp id.
|
||||
for (size_t i = 0; i < prefilter_vec_.size(); i++) {
|
||||
if (prefilter_vec_[i] == NULL)
|
||||
continue;
|
||||
int id = CanonicalNode(nodes, prefilter_vec_[i])->unique_id();
|
||||
DCHECK_LE(0, id);
|
||||
Entry* entry = &entries_[id];
|
||||
entry->regexps.push_back(static_cast<int>(i));
|
||||
}
|
||||
}
|
||||
|
||||
// Functions for triggering during search.
|
||||
void PrefilterTree::RegexpsGivenStrings(
|
||||
const std::vector<int>& matched_atoms,
|
||||
std::vector<int>* regexps) const {
|
||||
regexps->clear();
|
||||
if (!compiled_) {
|
||||
// Some legacy users of PrefilterTree call Compile() before
|
||||
// adding any regexps and expect Compile() to have no effect.
|
||||
// This kludge is a counterpart to that kludge.
|
||||
if (prefilter_vec_.empty())
|
||||
return;
|
||||
|
||||
LOG(ERROR) << "RegexpsGivenStrings called before Compile.";
|
||||
for (size_t i = 0; i < prefilter_vec_.size(); i++)
|
||||
regexps->push_back(static_cast<int>(i));
|
||||
} else {
|
||||
IntMap regexps_map(static_cast<int>(prefilter_vec_.size()));
|
||||
std::vector<int> matched_atom_ids;
|
||||
for (size_t j = 0; j < matched_atoms.size(); j++)
|
||||
matched_atom_ids.push_back(atom_index_to_id_[matched_atoms[j]]);
|
||||
PropagateMatch(matched_atom_ids, ®exps_map);
|
||||
for (IntMap::iterator it = regexps_map.begin();
|
||||
it != regexps_map.end();
|
||||
++it)
|
||||
regexps->push_back(it->index());
|
||||
|
||||
regexps->insert(regexps->end(), unfiltered_.begin(), unfiltered_.end());
|
||||
}
|
||||
std::sort(regexps->begin(), regexps->end());
|
||||
}
|
||||
|
||||
void PrefilterTree::PropagateMatch(const std::vector<int>& atom_ids,
|
||||
IntMap* regexps) const {
|
||||
IntMap count(static_cast<int>(entries_.size()));
|
||||
IntMap work(static_cast<int>(entries_.size()));
|
||||
for (size_t i = 0; i < atom_ids.size(); i++)
|
||||
work.set(atom_ids[i], 1);
|
||||
for (IntMap::iterator it = work.begin(); it != work.end(); ++it) {
|
||||
const Entry& entry = entries_[it->index()];
|
||||
// Record regexps triggered.
|
||||
for (size_t i = 0; i < entry.regexps.size(); i++)
|
||||
regexps->set(entry.regexps[i], 1);
|
||||
int c;
|
||||
// Pass trigger up to parents.
|
||||
for (StdIntMap::iterator it = entry.parents->begin();
|
||||
it != entry.parents->end();
|
||||
++it) {
|
||||
int j = it->first;
|
||||
const Entry& parent = entries_[j];
|
||||
// Delay until all the children have succeeded.
|
||||
if (parent.propagate_up_at_count > 1) {
|
||||
if (count.has_index(j)) {
|
||||
c = count.get_existing(j) + 1;
|
||||
count.set_existing(j, c);
|
||||
} else {
|
||||
c = 1;
|
||||
count.set_new(j, c);
|
||||
}
|
||||
if (c < parent.propagate_up_at_count)
|
||||
continue;
|
||||
}
|
||||
// Trigger the parent.
|
||||
work.set(j, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Debugging help.
|
||||
void PrefilterTree::PrintPrefilter(int regexpid) {
|
||||
LOG(ERROR) << DebugNodeString(prefilter_vec_[regexpid]);
|
||||
}
|
||||
|
||||
void PrefilterTree::PrintDebugInfo(NodeMap* nodes) {
|
||||
LOG(ERROR) << "#Unique Atoms: " << atom_index_to_id_.size();
|
||||
LOG(ERROR) << "#Unique Nodes: " << entries_.size();
|
||||
|
||||
for (size_t i = 0; i < entries_.size(); i++) {
|
||||
StdIntMap* parents = entries_[i].parents;
|
||||
const std::vector<int>& regexps = entries_[i].regexps;
|
||||
LOG(ERROR) << "EntryId: " << i
|
||||
<< " N: " << parents->size() << " R: " << regexps.size();
|
||||
for (StdIntMap::iterator it = parents->begin(); it != parents->end(); ++it)
|
||||
LOG(ERROR) << it->first;
|
||||
}
|
||||
LOG(ERROR) << "Map:";
|
||||
for (std::map<std::string, Prefilter*>::const_iterator iter = nodes->begin();
|
||||
iter != nodes->end(); ++iter)
|
||||
LOG(ERROR) << "NodeId: " << (*iter).second->unique_id()
|
||||
<< " Str: " << (*iter).first;
|
||||
}
|
||||
|
||||
std::string PrefilterTree::DebugNodeString(Prefilter* node) const {
|
||||
std::string node_string = "";
|
||||
if (node->op() == Prefilter::ATOM) {
|
||||
DCHECK(!node->atom().empty());
|
||||
node_string += node->atom();
|
||||
} else {
|
||||
// Adding the operation disambiguates AND and OR nodes.
|
||||
node_string += node->op() == Prefilter::AND ? "AND" : "OR";
|
||||
node_string += "(";
|
||||
for (size_t i = 0; i < node->subs()->size(); i++) {
|
||||
if (i > 0)
|
||||
node_string += ',';
|
||||
node_string += StringPrintf("%d", (*node->subs())[i]->unique_id());
|
||||
node_string += ":";
|
||||
node_string += DebugNodeString((*node->subs())[i]);
|
||||
}
|
||||
node_string += ")";
|
||||
}
|
||||
return node_string;
|
||||
}
|
||||
|
||||
} // namespace re2
|
139
extern/re2/re2/prefilter_tree.h
vendored
Normal file
139
extern/re2/re2/prefilter_tree.h
vendored
Normal file
@ -0,0 +1,139 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_PREFILTER_TREE_H_
|
||||
#define RE2_PREFILTER_TREE_H_
|
||||
|
||||
// The PrefilterTree class is used to form an AND-OR tree of strings
|
||||
// that would trigger each regexp. The 'prefilter' of each regexp is
|
||||
// added to PrefilterTree, and then PrefilterTree is used to find all
|
||||
// the unique strings across the prefilters. During search, by using
|
||||
// matches from a string matching engine, PrefilterTree deduces the
|
||||
// set of regexps that are to be triggered. The 'string matching
|
||||
// engine' itself is outside of this class, and the caller can use any
|
||||
// favorite engine. PrefilterTree provides a set of strings (called
|
||||
// atoms) that the user of this class should use to do the string
|
||||
// matching.
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/sparse_array.h"
|
||||
#include "re2/prefilter.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class PrefilterTree {
|
||||
public:
|
||||
PrefilterTree();
|
||||
explicit PrefilterTree(int min_atom_len);
|
||||
~PrefilterTree();
|
||||
|
||||
// Adds the prefilter for the next regexp. Note that we assume that
|
||||
// Add called sequentially for all regexps. All Add calls
|
||||
// must precede Compile.
|
||||
void Add(Prefilter* prefilter);
|
||||
|
||||
// The Compile returns a vector of string in atom_vec.
|
||||
// Call this after all the prefilters are added through Add.
|
||||
// No calls to Add after Compile are allowed.
|
||||
// The caller should use the returned set of strings to do string matching.
|
||||
// Each time a string matches, the corresponding index then has to be
|
||||
// and passed to RegexpsGivenStrings below.
|
||||
void Compile(std::vector<std::string>* atom_vec);
|
||||
|
||||
// Given the indices of the atoms that matched, returns the indexes
|
||||
// of regexps that should be searched. The matched_atoms should
|
||||
// contain all the ids of string atoms that were found to match the
|
||||
// content. The caller can use any string match engine to perform
|
||||
// this function. This function is thread safe.
|
||||
void RegexpsGivenStrings(const std::vector<int>& matched_atoms,
|
||||
std::vector<int>* regexps) const;
|
||||
|
||||
// Print debug prefilter. Also prints unique ids associated with
|
||||
// nodes of the prefilter of the regexp.
|
||||
void PrintPrefilter(int regexpid);
|
||||
|
||||
private:
|
||||
typedef SparseArray<int> IntMap;
|
||||
typedef std::map<int, int> StdIntMap;
|
||||
typedef std::map<std::string, Prefilter*> NodeMap;
|
||||
|
||||
// Each unique node has a corresponding Entry that helps in
|
||||
// passing the matching trigger information along the tree.
|
||||
struct Entry {
|
||||
public:
|
||||
// How many children should match before this node triggers the
|
||||
// parent. For an atom and an OR node, this is 1 and for an AND
|
||||
// node, it is the number of unique children.
|
||||
int propagate_up_at_count;
|
||||
|
||||
// When this node is ready to trigger the parent, what are the indices
|
||||
// of the parent nodes to trigger. The reason there may be more than
|
||||
// one is because of sharing. For example (abc | def) and (xyz | def)
|
||||
// are two different nodes, but they share the atom 'def'. So when
|
||||
// 'def' matches, it triggers two parents, corresponding to the two
|
||||
// different OR nodes.
|
||||
StdIntMap* parents;
|
||||
|
||||
// When this node is ready to trigger the parent, what are the
|
||||
// regexps that are triggered.
|
||||
std::vector<int> regexps;
|
||||
};
|
||||
|
||||
// Returns true if the prefilter node should be kept.
|
||||
bool KeepNode(Prefilter* node) const;
|
||||
|
||||
// This function assigns unique ids to various parts of the
|
||||
// prefilter, by looking at if these nodes are already in the
|
||||
// PrefilterTree.
|
||||
void AssignUniqueIds(NodeMap* nodes, std::vector<std::string>* atom_vec);
|
||||
|
||||
// Given the matching atoms, find the regexps to be triggered.
|
||||
void PropagateMatch(const std::vector<int>& atom_ids,
|
||||
IntMap* regexps) const;
|
||||
|
||||
// Returns the prefilter node that has the same NodeString as this
|
||||
// node. For the canonical node, returns node.
|
||||
Prefilter* CanonicalNode(NodeMap* nodes, Prefilter* node);
|
||||
|
||||
// A string that uniquely identifies the node. Assumes that the
|
||||
// children of node has already been assigned unique ids.
|
||||
std::string NodeString(Prefilter* node) const;
|
||||
|
||||
// Recursively constructs a readable prefilter string.
|
||||
std::string DebugNodeString(Prefilter* node) const;
|
||||
|
||||
// Used for debugging.
|
||||
void PrintDebugInfo(NodeMap* nodes);
|
||||
|
||||
// These are all the nodes formed by Compile. Essentially, there is
|
||||
// one node for each unique atom and each unique AND/OR node.
|
||||
std::vector<Entry> entries_;
|
||||
|
||||
// indices of regexps that always pass through the filter (since we
|
||||
// found no required literals in these regexps).
|
||||
std::vector<int> unfiltered_;
|
||||
|
||||
// vector of Prefilter for all regexps.
|
||||
std::vector<Prefilter*> prefilter_vec_;
|
||||
|
||||
// Atom index in returned strings to entry id mapping.
|
||||
std::vector<int> atom_index_to_id_;
|
||||
|
||||
// Has the prefilter tree been compiled.
|
||||
bool compiled_;
|
||||
|
||||
// Strings less than this length are not stored as atoms.
|
||||
const int min_atom_len_;
|
||||
|
||||
PrefilterTree(const PrefilterTree&) = delete;
|
||||
PrefilterTree& operator=(const PrefilterTree&) = delete;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // RE2_PREFILTER_TREE_H_
|
921
extern/re2/re2/prog.cc
vendored
Normal file
921
extern/re2/re2/prog.cc
vendored
Normal file
@ -0,0 +1,921 @@
|
||||
// Copyright 2007 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Compiled regular expression representation.
|
||||
// Tested by compile_test.cc
|
||||
|
||||
#include "re2/prog.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/bitmap256.h"
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Constructors per Inst opcode
|
||||
|
||||
void Prog::Inst::InitAlt(uint32_t out, uint32_t out1) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_out_opcode(out, kInstAlt);
|
||||
out1_ = out1;
|
||||
}
|
||||
|
||||
void Prog::Inst::InitByteRange(int lo, int hi, int foldcase, uint32_t out) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_out_opcode(out, kInstByteRange);
|
||||
lo_ = lo & 0xFF;
|
||||
hi_ = hi & 0xFF;
|
||||
hint_foldcase_ = foldcase&1;
|
||||
}
|
||||
|
||||
void Prog::Inst::InitCapture(int cap, uint32_t out) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_out_opcode(out, kInstCapture);
|
||||
cap_ = cap;
|
||||
}
|
||||
|
||||
void Prog::Inst::InitEmptyWidth(EmptyOp empty, uint32_t out) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_out_opcode(out, kInstEmptyWidth);
|
||||
empty_ = empty;
|
||||
}
|
||||
|
||||
void Prog::Inst::InitMatch(int32_t id) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_opcode(kInstMatch);
|
||||
match_id_ = id;
|
||||
}
|
||||
|
||||
void Prog::Inst::InitNop(uint32_t out) {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_opcode(kInstNop);
|
||||
}
|
||||
|
||||
void Prog::Inst::InitFail() {
|
||||
DCHECK_EQ(out_opcode_, 0);
|
||||
set_opcode(kInstFail);
|
||||
}
|
||||
|
||||
std::string Prog::Inst::Dump() {
|
||||
switch (opcode()) {
|
||||
default:
|
||||
return StringPrintf("opcode %d", static_cast<int>(opcode()));
|
||||
|
||||
case kInstAlt:
|
||||
return StringPrintf("alt -> %d | %d", out(), out1_);
|
||||
|
||||
case kInstAltMatch:
|
||||
return StringPrintf("altmatch -> %d | %d", out(), out1_);
|
||||
|
||||
case kInstByteRange:
|
||||
return StringPrintf("byte%s [%02x-%02x] %d -> %d",
|
||||
foldcase() ? "/i" : "",
|
||||
lo_, hi_, hint(), out());
|
||||
|
||||
case kInstCapture:
|
||||
return StringPrintf("capture %d -> %d", cap_, out());
|
||||
|
||||
case kInstEmptyWidth:
|
||||
return StringPrintf("emptywidth %#x -> %d",
|
||||
static_cast<int>(empty_), out());
|
||||
|
||||
case kInstMatch:
|
||||
return StringPrintf("match! %d", match_id());
|
||||
|
||||
case kInstNop:
|
||||
return StringPrintf("nop -> %d", out());
|
||||
|
||||
case kInstFail:
|
||||
return StringPrintf("fail");
|
||||
}
|
||||
}
|
||||
|
||||
Prog::Prog()
|
||||
: anchor_start_(false),
|
||||
anchor_end_(false),
|
||||
reversed_(false),
|
||||
did_flatten_(false),
|
||||
did_onepass_(false),
|
||||
start_(0),
|
||||
start_unanchored_(0),
|
||||
size_(0),
|
||||
bytemap_range_(0),
|
||||
first_byte_(-1),
|
||||
flags_(0),
|
||||
list_count_(0),
|
||||
dfa_mem_(0),
|
||||
dfa_first_(NULL),
|
||||
dfa_longest_(NULL) {
|
||||
}
|
||||
|
||||
Prog::~Prog() {
|
||||
DeleteDFA(dfa_longest_);
|
||||
DeleteDFA(dfa_first_);
|
||||
}
|
||||
|
||||
typedef SparseSet Workq;
|
||||
|
||||
static inline void AddToQueue(Workq* q, int id) {
|
||||
if (id != 0)
|
||||
q->insert(id);
|
||||
}
|
||||
|
||||
static std::string ProgToString(Prog* prog, Workq* q) {
|
||||
std::string s;
|
||||
for (Workq::iterator i = q->begin(); i != q->end(); ++i) {
|
||||
int id = *i;
|
||||
Prog::Inst* ip = prog->inst(id);
|
||||
s += StringPrintf("%d. %s\n", id, ip->Dump().c_str());
|
||||
AddToQueue(q, ip->out());
|
||||
if (ip->opcode() == kInstAlt || ip->opcode() == kInstAltMatch)
|
||||
AddToQueue(q, ip->out1());
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
static std::string FlattenedProgToString(Prog* prog, int start) {
|
||||
std::string s;
|
||||
for (int id = start; id < prog->size(); id++) {
|
||||
Prog::Inst* ip = prog->inst(id);
|
||||
if (ip->last())
|
||||
s += StringPrintf("%d. %s\n", id, ip->Dump().c_str());
|
||||
else
|
||||
s += StringPrintf("%d+ %s\n", id, ip->Dump().c_str());
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
std::string Prog::Dump() {
|
||||
if (did_flatten_)
|
||||
return FlattenedProgToString(this, start_);
|
||||
|
||||
Workq q(size_);
|
||||
AddToQueue(&q, start_);
|
||||
return ProgToString(this, &q);
|
||||
}
|
||||
|
||||
std::string Prog::DumpUnanchored() {
|
||||
if (did_flatten_)
|
||||
return FlattenedProgToString(this, start_unanchored_);
|
||||
|
||||
Workq q(size_);
|
||||
AddToQueue(&q, start_unanchored_);
|
||||
return ProgToString(this, &q);
|
||||
}
|
||||
|
||||
std::string Prog::DumpByteMap() {
|
||||
std::string map;
|
||||
for (int c = 0; c < 256; c++) {
|
||||
int b = bytemap_[c];
|
||||
int lo = c;
|
||||
while (c < 256-1 && bytemap_[c+1] == b)
|
||||
c++;
|
||||
int hi = c;
|
||||
map += StringPrintf("[%02x-%02x] -> %d\n", lo, hi, b);
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
int Prog::first_byte() {
|
||||
std::call_once(first_byte_once_, [](Prog* prog) {
|
||||
prog->first_byte_ = prog->ComputeFirstByte();
|
||||
}, this);
|
||||
return first_byte_;
|
||||
}
|
||||
|
||||
static bool IsMatch(Prog*, Prog::Inst*);
|
||||
|
||||
// Peep-hole optimizer.
|
||||
void Prog::Optimize() {
|
||||
Workq q(size_);
|
||||
|
||||
// Eliminate nops. Most are taken out during compilation
|
||||
// but a few are hard to avoid.
|
||||
q.clear();
|
||||
AddToQueue(&q, start_);
|
||||
for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
|
||||
int id = *i;
|
||||
|
||||
Inst* ip = inst(id);
|
||||
int j = ip->out();
|
||||
Inst* jp;
|
||||
while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
|
||||
j = jp->out();
|
||||
}
|
||||
ip->set_out(j);
|
||||
AddToQueue(&q, ip->out());
|
||||
|
||||
if (ip->opcode() == kInstAlt) {
|
||||
j = ip->out1();
|
||||
while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
|
||||
j = jp->out();
|
||||
}
|
||||
ip->out1_ = j;
|
||||
AddToQueue(&q, ip->out1());
|
||||
}
|
||||
}
|
||||
|
||||
// Insert kInstAltMatch instructions
|
||||
// Look for
|
||||
// ip: Alt -> j | k
|
||||
// j: ByteRange [00-FF] -> ip
|
||||
// k: Match
|
||||
// or the reverse (the above is the greedy one).
|
||||
// Rewrite Alt to AltMatch.
|
||||
q.clear();
|
||||
AddToQueue(&q, start_);
|
||||
for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
|
||||
int id = *i;
|
||||
Inst* ip = inst(id);
|
||||
AddToQueue(&q, ip->out());
|
||||
if (ip->opcode() == kInstAlt)
|
||||
AddToQueue(&q, ip->out1());
|
||||
|
||||
if (ip->opcode() == kInstAlt) {
|
||||
Inst* j = inst(ip->out());
|
||||
Inst* k = inst(ip->out1());
|
||||
if (j->opcode() == kInstByteRange && j->out() == id &&
|
||||
j->lo() == 0x00 && j->hi() == 0xFF &&
|
||||
IsMatch(this, k)) {
|
||||
ip->set_opcode(kInstAltMatch);
|
||||
continue;
|
||||
}
|
||||
if (IsMatch(this, j) &&
|
||||
k->opcode() == kInstByteRange && k->out() == id &&
|
||||
k->lo() == 0x00 && k->hi() == 0xFF) {
|
||||
ip->set_opcode(kInstAltMatch);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Is ip a guaranteed match at end of text, perhaps after some capturing?
|
||||
static bool IsMatch(Prog* prog, Prog::Inst* ip) {
|
||||
for (;;) {
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "Unexpected opcode in IsMatch: " << ip->opcode();
|
||||
return false;
|
||||
|
||||
case kInstAlt:
|
||||
case kInstAltMatch:
|
||||
case kInstByteRange:
|
||||
case kInstFail:
|
||||
case kInstEmptyWidth:
|
||||
return false;
|
||||
|
||||
case kInstCapture:
|
||||
case kInstNop:
|
||||
ip = prog->inst(ip->out());
|
||||
break;
|
||||
|
||||
case kInstMatch:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t Prog::EmptyFlags(const StringPiece& text, const char* p) {
|
||||
int flags = 0;
|
||||
|
||||
// ^ and \A
|
||||
if (p == text.begin())
|
||||
flags |= kEmptyBeginText | kEmptyBeginLine;
|
||||
else if (p[-1] == '\n')
|
||||
flags |= kEmptyBeginLine;
|
||||
|
||||
// $ and \z
|
||||
if (p == text.end())
|
||||
flags |= kEmptyEndText | kEmptyEndLine;
|
||||
else if (p < text.end() && p[0] == '\n')
|
||||
flags |= kEmptyEndLine;
|
||||
|
||||
// \b and \B
|
||||
if (p == text.begin() && p == text.end()) {
|
||||
// no word boundary here
|
||||
} else if (p == text.begin()) {
|
||||
if (IsWordChar(p[0]))
|
||||
flags |= kEmptyWordBoundary;
|
||||
} else if (p == text.end()) {
|
||||
if (IsWordChar(p[-1]))
|
||||
flags |= kEmptyWordBoundary;
|
||||
} else {
|
||||
if (IsWordChar(p[-1]) != IsWordChar(p[0]))
|
||||
flags |= kEmptyWordBoundary;
|
||||
}
|
||||
if (!(flags & kEmptyWordBoundary))
|
||||
flags |= kEmptyNonWordBoundary;
|
||||
|
||||
return flags;
|
||||
}
|
||||
|
||||
// ByteMapBuilder implements a coloring algorithm.
|
||||
//
|
||||
// The first phase is a series of "mark and merge" batches: we mark one or more
|
||||
// [lo-hi] ranges, then merge them into our internal state. Batching is not for
|
||||
// performance; rather, it means that the ranges are treated indistinguishably.
|
||||
//
|
||||
// Internally, the ranges are represented using a bitmap that stores the splits
|
||||
// and a vector that stores the colors; both of them are indexed by the ranges'
|
||||
// last bytes. Thus, in order to merge a [lo-hi] range, we split at lo-1 and at
|
||||
// hi (if not already split), then recolor each range in between. The color map
|
||||
// (i.e. from the old color to the new color) is maintained for the lifetime of
|
||||
// the batch and so underpins this somewhat obscure approach to set operations.
|
||||
//
|
||||
// The second phase builds the bytemap from our internal state: we recolor each
|
||||
// range, then store the new color (which is now the byte class) in each of the
|
||||
// corresponding array elements. Finally, we output the number of byte classes.
|
||||
class ByteMapBuilder {
|
||||
public:
|
||||
ByteMapBuilder() {
|
||||
// Initial state: the [0-255] range has color 256.
|
||||
// This will avoid problems during the second phase,
|
||||
// in which we assign byte classes numbered from 0.
|
||||
splits_.Set(255);
|
||||
colors_[255] = 256;
|
||||
nextcolor_ = 257;
|
||||
}
|
||||
|
||||
void Mark(int lo, int hi);
|
||||
void Merge();
|
||||
void Build(uint8_t* bytemap, int* bytemap_range);
|
||||
|
||||
private:
|
||||
int Recolor(int oldcolor);
|
||||
|
||||
Bitmap256 splits_;
|
||||
int colors_[256];
|
||||
int nextcolor_;
|
||||
std::vector<std::pair<int, int>> colormap_;
|
||||
std::vector<std::pair<int, int>> ranges_;
|
||||
|
||||
ByteMapBuilder(const ByteMapBuilder&) = delete;
|
||||
ByteMapBuilder& operator=(const ByteMapBuilder&) = delete;
|
||||
};
|
||||
|
||||
void ByteMapBuilder::Mark(int lo, int hi) {
|
||||
DCHECK_GE(lo, 0);
|
||||
DCHECK_GE(hi, 0);
|
||||
DCHECK_LE(lo, 255);
|
||||
DCHECK_LE(hi, 255);
|
||||
DCHECK_LE(lo, hi);
|
||||
|
||||
// Ignore any [0-255] ranges. They cause us to recolor every range, which
|
||||
// has no effect on the eventual result and is therefore a waste of time.
|
||||
if (lo == 0 && hi == 255)
|
||||
return;
|
||||
|
||||
ranges_.emplace_back(lo, hi);
|
||||
}
|
||||
|
||||
void ByteMapBuilder::Merge() {
|
||||
for (std::vector<std::pair<int, int>>::const_iterator it = ranges_.begin();
|
||||
it != ranges_.end();
|
||||
++it) {
|
||||
int lo = it->first-1;
|
||||
int hi = it->second;
|
||||
|
||||
if (0 <= lo && !splits_.Test(lo)) {
|
||||
splits_.Set(lo);
|
||||
int next = splits_.FindNextSetBit(lo+1);
|
||||
colors_[lo] = colors_[next];
|
||||
}
|
||||
if (!splits_.Test(hi)) {
|
||||
splits_.Set(hi);
|
||||
int next = splits_.FindNextSetBit(hi+1);
|
||||
colors_[hi] = colors_[next];
|
||||
}
|
||||
|
||||
int c = lo+1;
|
||||
while (c < 256) {
|
||||
int next = splits_.FindNextSetBit(c);
|
||||
colors_[next] = Recolor(colors_[next]);
|
||||
if (next == hi)
|
||||
break;
|
||||
c = next+1;
|
||||
}
|
||||
}
|
||||
colormap_.clear();
|
||||
ranges_.clear();
|
||||
}
|
||||
|
||||
void ByteMapBuilder::Build(uint8_t* bytemap, int* bytemap_range) {
|
||||
// Assign byte classes numbered from 0.
|
||||
nextcolor_ = 0;
|
||||
|
||||
int c = 0;
|
||||
while (c < 256) {
|
||||
int next = splits_.FindNextSetBit(c);
|
||||
uint8_t b = static_cast<uint8_t>(Recolor(colors_[next]));
|
||||
while (c <= next) {
|
||||
bytemap[c] = b;
|
||||
c++;
|
||||
}
|
||||
}
|
||||
|
||||
*bytemap_range = nextcolor_;
|
||||
}
|
||||
|
||||
int ByteMapBuilder::Recolor(int oldcolor) {
|
||||
// Yes, this is a linear search. There can be at most 256
|
||||
// colors and there will typically be far fewer than that.
|
||||
// Also, we need to consider keys *and* values in order to
|
||||
// avoid recoloring a given range more than once per batch.
|
||||
std::vector<std::pair<int, int>>::const_iterator it =
|
||||
std::find_if(colormap_.begin(), colormap_.end(),
|
||||
[=](const std::pair<int, int>& kv) -> bool {
|
||||
return kv.first == oldcolor || kv.second == oldcolor;
|
||||
});
|
||||
if (it != colormap_.end())
|
||||
return it->second;
|
||||
int newcolor = nextcolor_;
|
||||
nextcolor_++;
|
||||
colormap_.emplace_back(oldcolor, newcolor);
|
||||
return newcolor;
|
||||
}
|
||||
|
||||
void Prog::ComputeByteMap() {
|
||||
// Fill in bytemap with byte classes for the program.
|
||||
// Ranges of bytes that are treated indistinguishably
|
||||
// will be mapped to a single byte class.
|
||||
ByteMapBuilder builder;
|
||||
|
||||
// Don't repeat the work for ^ and $.
|
||||
bool marked_line_boundaries = false;
|
||||
// Don't repeat the work for \b and \B.
|
||||
bool marked_word_boundaries = false;
|
||||
|
||||
for (int id = 0; id < size(); id++) {
|
||||
Inst* ip = inst(id);
|
||||
if (ip->opcode() == kInstByteRange) {
|
||||
int lo = ip->lo();
|
||||
int hi = ip->hi();
|
||||
builder.Mark(lo, hi);
|
||||
if (ip->foldcase() && lo <= 'z' && hi >= 'a') {
|
||||
int foldlo = lo;
|
||||
int foldhi = hi;
|
||||
if (foldlo < 'a')
|
||||
foldlo = 'a';
|
||||
if (foldhi > 'z')
|
||||
foldhi = 'z';
|
||||
if (foldlo <= foldhi) {
|
||||
foldlo += 'A' - 'a';
|
||||
foldhi += 'A' - 'a';
|
||||
builder.Mark(foldlo, foldhi);
|
||||
}
|
||||
}
|
||||
// If this Inst is not the last Inst in its list AND the next Inst is
|
||||
// also a ByteRange AND the Insts have the same out, defer the merge.
|
||||
if (!ip->last() &&
|
||||
inst(id+1)->opcode() == kInstByteRange &&
|
||||
ip->out() == inst(id+1)->out())
|
||||
continue;
|
||||
builder.Merge();
|
||||
} else if (ip->opcode() == kInstEmptyWidth) {
|
||||
if (ip->empty() & (kEmptyBeginLine|kEmptyEndLine) &&
|
||||
!marked_line_boundaries) {
|
||||
builder.Mark('\n', '\n');
|
||||
builder.Merge();
|
||||
marked_line_boundaries = true;
|
||||
}
|
||||
if (ip->empty() & (kEmptyWordBoundary|kEmptyNonWordBoundary) &&
|
||||
!marked_word_boundaries) {
|
||||
// We require two batches here: the first for ranges that are word
|
||||
// characters, the second for ranges that are not word characters.
|
||||
for (bool isword : {true, false}) {
|
||||
int j;
|
||||
for (int i = 0; i < 256; i = j) {
|
||||
for (j = i + 1; j < 256 &&
|
||||
Prog::IsWordChar(static_cast<uint8_t>(i)) ==
|
||||
Prog::IsWordChar(static_cast<uint8_t>(j));
|
||||
j++)
|
||||
;
|
||||
if (Prog::IsWordChar(static_cast<uint8_t>(i)) == isword)
|
||||
builder.Mark(i, j - 1);
|
||||
}
|
||||
builder.Merge();
|
||||
}
|
||||
marked_word_boundaries = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
builder.Build(bytemap_, &bytemap_range_);
|
||||
|
||||
if (0) { // For debugging, use trivial bytemap.
|
||||
LOG(ERROR) << "Using trivial bytemap.";
|
||||
for (int i = 0; i < 256; i++)
|
||||
bytemap_[i] = static_cast<uint8_t>(i);
|
||||
bytemap_range_ = 256;
|
||||
}
|
||||
}
|
||||
|
||||
// Prog::Flatten() implements a graph rewriting algorithm.
|
||||
//
|
||||
// The overall process is similar to epsilon removal, but retains some epsilon
|
||||
// transitions: those from Capture and EmptyWidth instructions; and those from
|
||||
// nullable subexpressions. (The latter avoids quadratic blowup in transitions
|
||||
// in the worst case.) It might be best thought of as Alt instruction elision.
|
||||
//
|
||||
// In conceptual terms, it divides the Prog into "trees" of instructions, then
|
||||
// traverses the "trees" in order to produce "lists" of instructions. A "tree"
|
||||
// is one or more instructions that grow from one "root" instruction to one or
|
||||
// more "leaf" instructions; if a "tree" has exactly one instruction, then the
|
||||
// "root" is also the "leaf". In most cases, a "root" is the successor of some
|
||||
// "leaf" (i.e. the "leaf" instruction's out() returns the "root" instruction)
|
||||
// and is considered a "successor root". A "leaf" can be a ByteRange, Capture,
|
||||
// EmptyWidth or Match instruction. However, this is insufficient for handling
|
||||
// nested nullable subexpressions correctly, so in some cases, a "root" is the
|
||||
// dominator of the instructions reachable from some "successor root" (i.e. it
|
||||
// has an unreachable predecessor) and is considered a "dominator root". Since
|
||||
// only Alt instructions can be "dominator roots" (other instructions would be
|
||||
// "leaves"), only Alt instructions are required to be marked as predecessors.
|
||||
//
|
||||
// Dividing the Prog into "trees" comprises two passes: marking the "successor
|
||||
// roots" and the predecessors; and marking the "dominator roots". Sorting the
|
||||
// "successor roots" by their bytecode offsets enables iteration in order from
|
||||
// greatest to least during the second pass; by working backwards in this case
|
||||
// and flooding the graph no further than "leaves" and already marked "roots",
|
||||
// it becomes possible to mark "dominator roots" without doing excessive work.
|
||||
//
|
||||
// Traversing the "trees" is just iterating over the "roots" in order of their
|
||||
// marking and flooding the graph no further than "leaves" and "roots". When a
|
||||
// "leaf" is reached, the instruction is copied with its successor remapped to
|
||||
// its "root" number. When a "root" is reached, a Nop instruction is generated
|
||||
// with its successor remapped similarly. As each "list" is produced, its last
|
||||
// instruction is marked as such. After all of the "lists" have been produced,
|
||||
// a pass over their instructions remaps their successors to bytecode offsets.
|
||||
void Prog::Flatten() {
|
||||
if (did_flatten_)
|
||||
return;
|
||||
did_flatten_ = true;
|
||||
|
||||
// Scratch structures. It's important that these are reused by functions
|
||||
// that we call in loops because they would thrash the heap otherwise.
|
||||
SparseSet reachable(size());
|
||||
std::vector<int> stk;
|
||||
stk.reserve(size());
|
||||
|
||||
// First pass: Marks "successor roots" and predecessors.
|
||||
// Builds the mapping from inst-ids to root-ids.
|
||||
SparseArray<int> rootmap(size());
|
||||
SparseArray<int> predmap(size());
|
||||
std::vector<std::vector<int>> predvec;
|
||||
MarkSuccessors(&rootmap, &predmap, &predvec, &reachable, &stk);
|
||||
|
||||
// Second pass: Marks "dominator roots".
|
||||
SparseArray<int> sorted(rootmap);
|
||||
std::sort(sorted.begin(), sorted.end(), sorted.less);
|
||||
for (SparseArray<int>::const_iterator i = sorted.end() - 1;
|
||||
i != sorted.begin();
|
||||
--i) {
|
||||
if (i->index() != start_unanchored() && i->index() != start())
|
||||
MarkDominator(i->index(), &rootmap, &predmap, &predvec, &reachable, &stk);
|
||||
}
|
||||
|
||||
// Third pass: Emits "lists". Remaps outs to root-ids.
|
||||
// Builds the mapping from root-ids to flat-ids.
|
||||
std::vector<int> flatmap(rootmap.size());
|
||||
std::vector<Inst> flat;
|
||||
flat.reserve(size());
|
||||
for (SparseArray<int>::const_iterator i = rootmap.begin();
|
||||
i != rootmap.end();
|
||||
++i) {
|
||||
flatmap[i->value()] = static_cast<int>(flat.size());
|
||||
EmitList(i->index(), &rootmap, &flat, &reachable, &stk);
|
||||
flat.back().set_last();
|
||||
// We have the bounds of the "list", so this is the
|
||||
// most convenient point at which to compute hints.
|
||||
ComputeHints(&flat, flatmap[i->value()], static_cast<int>(flat.size()));
|
||||
}
|
||||
|
||||
list_count_ = static_cast<int>(flatmap.size());
|
||||
for (int i = 0; i < kNumInst; i++)
|
||||
inst_count_[i] = 0;
|
||||
|
||||
// Fourth pass: Remaps outs to flat-ids.
|
||||
// Counts instructions by opcode.
|
||||
for (int id = 0; id < static_cast<int>(flat.size()); id++) {
|
||||
Inst* ip = &flat[id];
|
||||
if (ip->opcode() != kInstAltMatch) // handled in EmitList()
|
||||
ip->set_out(flatmap[ip->out()]);
|
||||
inst_count_[ip->opcode()]++;
|
||||
}
|
||||
|
||||
int total = 0;
|
||||
for (int i = 0; i < kNumInst; i++)
|
||||
total += inst_count_[i];
|
||||
DCHECK_EQ(total, static_cast<int>(flat.size()));
|
||||
|
||||
// Remap start_unanchored and start.
|
||||
if (start_unanchored() == 0) {
|
||||
DCHECK_EQ(start(), 0);
|
||||
} else if (start_unanchored() == start()) {
|
||||
set_start_unanchored(flatmap[1]);
|
||||
set_start(flatmap[1]);
|
||||
} else {
|
||||
set_start_unanchored(flatmap[1]);
|
||||
set_start(flatmap[2]);
|
||||
}
|
||||
|
||||
// Finally, replace the old instructions with the new instructions.
|
||||
size_ = static_cast<int>(flat.size());
|
||||
inst_ = PODArray<Inst>(size_);
|
||||
memmove(inst_.data(), flat.data(), size_*sizeof inst_[0]);
|
||||
|
||||
// Populate the list heads for BitState.
|
||||
// 512 instructions limits the memory footprint to 1KiB.
|
||||
if (size_ <= 512) {
|
||||
list_heads_ = PODArray<uint16_t>(size_);
|
||||
// 0xFF makes it more obvious if we try to look up a non-head.
|
||||
memset(list_heads_.data(), 0xFF, size_*sizeof list_heads_[0]);
|
||||
for (int i = 0; i < list_count_; ++i)
|
||||
list_heads_[flatmap[i]] = i;
|
||||
}
|
||||
}
|
||||
|
||||
void Prog::MarkSuccessors(SparseArray<int>* rootmap,
|
||||
SparseArray<int>* predmap,
|
||||
std::vector<std::vector<int>>* predvec,
|
||||
SparseSet* reachable, std::vector<int>* stk) {
|
||||
// Mark the kInstFail instruction.
|
||||
rootmap->set_new(0, rootmap->size());
|
||||
|
||||
// Mark the start_unanchored and start instructions.
|
||||
if (!rootmap->has_index(start_unanchored()))
|
||||
rootmap->set_new(start_unanchored(), rootmap->size());
|
||||
if (!rootmap->has_index(start()))
|
||||
rootmap->set_new(start(), rootmap->size());
|
||||
|
||||
reachable->clear();
|
||||
stk->clear();
|
||||
stk->push_back(start_unanchored());
|
||||
while (!stk->empty()) {
|
||||
int id = stk->back();
|
||||
stk->pop_back();
|
||||
Loop:
|
||||
if (reachable->contains(id))
|
||||
continue;
|
||||
reachable->insert_new(id);
|
||||
|
||||
Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
case kInstAlt:
|
||||
// Mark this instruction as a predecessor of each out.
|
||||
for (int out : {ip->out(), ip->out1()}) {
|
||||
if (!predmap->has_index(out)) {
|
||||
predmap->set_new(out, static_cast<int>(predvec->size()));
|
||||
predvec->emplace_back();
|
||||
}
|
||||
(*predvec)[predmap->get_existing(out)].emplace_back(id);
|
||||
}
|
||||
stk->push_back(ip->out1());
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstByteRange:
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
// Mark the out of this instruction as a "root".
|
||||
if (!rootmap->has_index(ip->out()))
|
||||
rootmap->set_new(ip->out(), rootmap->size());
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstNop:
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstMatch:
|
||||
case kInstFail:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Prog::MarkDominator(int root, SparseArray<int>* rootmap,
|
||||
SparseArray<int>* predmap,
|
||||
std::vector<std::vector<int>>* predvec,
|
||||
SparseSet* reachable, std::vector<int>* stk) {
|
||||
reachable->clear();
|
||||
stk->clear();
|
||||
stk->push_back(root);
|
||||
while (!stk->empty()) {
|
||||
int id = stk->back();
|
||||
stk->pop_back();
|
||||
Loop:
|
||||
if (reachable->contains(id))
|
||||
continue;
|
||||
reachable->insert_new(id);
|
||||
|
||||
if (id != root && rootmap->has_index(id)) {
|
||||
// We reached another "tree" via epsilon transition.
|
||||
continue;
|
||||
}
|
||||
|
||||
Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
case kInstAlt:
|
||||
stk->push_back(ip->out1());
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstByteRange:
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
break;
|
||||
|
||||
case kInstNop:
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstMatch:
|
||||
case kInstFail:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (SparseSet::const_iterator i = reachable->begin();
|
||||
i != reachable->end();
|
||||
++i) {
|
||||
int id = *i;
|
||||
if (predmap->has_index(id)) {
|
||||
for (int pred : (*predvec)[predmap->get_existing(id)]) {
|
||||
if (!reachable->contains(pred)) {
|
||||
// id has a predecessor that cannot be reached from root!
|
||||
// Therefore, id must be a "root" too - mark it as such.
|
||||
if (!rootmap->has_index(id))
|
||||
rootmap->set_new(id, rootmap->size());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Prog::EmitList(int root, SparseArray<int>* rootmap,
|
||||
std::vector<Inst>* flat,
|
||||
SparseSet* reachable, std::vector<int>* stk) {
|
||||
reachable->clear();
|
||||
stk->clear();
|
||||
stk->push_back(root);
|
||||
while (!stk->empty()) {
|
||||
int id = stk->back();
|
||||
stk->pop_back();
|
||||
Loop:
|
||||
if (reachable->contains(id))
|
||||
continue;
|
||||
reachable->insert_new(id);
|
||||
|
||||
if (id != root && rootmap->has_index(id)) {
|
||||
// We reached another "tree" via epsilon transition. Emit a kInstNop
|
||||
// instruction so that the Prog does not become quadratically larger.
|
||||
flat->emplace_back();
|
||||
flat->back().set_opcode(kInstNop);
|
||||
flat->back().set_out(rootmap->get_existing(id));
|
||||
continue;
|
||||
}
|
||||
|
||||
Inst* ip = inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
|
||||
break;
|
||||
|
||||
case kInstAltMatch:
|
||||
flat->emplace_back();
|
||||
flat->back().set_opcode(kInstAltMatch);
|
||||
flat->back().set_out(static_cast<int>(flat->size()));
|
||||
flat->back().out1_ = static_cast<uint32_t>(flat->size())+1;
|
||||
FALLTHROUGH_INTENDED;
|
||||
|
||||
case kInstAlt:
|
||||
stk->push_back(ip->out1());
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstByteRange:
|
||||
case kInstCapture:
|
||||
case kInstEmptyWidth:
|
||||
flat->emplace_back();
|
||||
memmove(&flat->back(), ip, sizeof *ip);
|
||||
flat->back().set_out(rootmap->get_existing(ip->out()));
|
||||
break;
|
||||
|
||||
case kInstNop:
|
||||
id = ip->out();
|
||||
goto Loop;
|
||||
|
||||
case kInstMatch:
|
||||
case kInstFail:
|
||||
flat->emplace_back();
|
||||
memmove(&flat->back(), ip, sizeof *ip);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// For each ByteRange instruction in [begin, end), computes a hint to execution
|
||||
// engines: the delta to the next instruction (in flat) worth exploring iff the
|
||||
// current instruction matched.
|
||||
//
|
||||
// Implements a coloring algorithm related to ByteMapBuilder, but in this case,
|
||||
// colors are instructions and recoloring ranges precisely identifies conflicts
|
||||
// between instructions. Iterating backwards over [begin, end) is guaranteed to
|
||||
// identify the nearest conflict (if any) with only linear complexity.
|
||||
void Prog::ComputeHints(std::vector<Inst>* flat, int begin, int end) {
|
||||
Bitmap256 splits;
|
||||
int colors[256];
|
||||
|
||||
bool dirty = false;
|
||||
for (int id = end; id >= begin; --id) {
|
||||
if (id == end ||
|
||||
(*flat)[id].opcode() != kInstByteRange) {
|
||||
if (dirty) {
|
||||
dirty = false;
|
||||
splits.Clear();
|
||||
}
|
||||
splits.Set(255);
|
||||
colors[255] = id;
|
||||
// At this point, the [0-255] range is colored with id.
|
||||
// Thus, hints cannot point beyond id; and if id == end,
|
||||
// hints that would have pointed to id will be 0 instead.
|
||||
continue;
|
||||
}
|
||||
dirty = true;
|
||||
|
||||
// We recolor the [lo-hi] range with id. Note that first ratchets backwards
|
||||
// from end to the nearest conflict (if any) during recoloring.
|
||||
int first = end;
|
||||
auto Recolor = [&](int lo, int hi) {
|
||||
// Like ByteMapBuilder, we split at lo-1 and at hi.
|
||||
--lo;
|
||||
|
||||
if (0 <= lo && !splits.Test(lo)) {
|
||||
splits.Set(lo);
|
||||
int next = splits.FindNextSetBit(lo+1);
|
||||
colors[lo] = colors[next];
|
||||
}
|
||||
if (!splits.Test(hi)) {
|
||||
splits.Set(hi);
|
||||
int next = splits.FindNextSetBit(hi+1);
|
||||
colors[hi] = colors[next];
|
||||
}
|
||||
|
||||
int c = lo+1;
|
||||
while (c < 256) {
|
||||
int next = splits.FindNextSetBit(c);
|
||||
// Ratchet backwards...
|
||||
first = std::min(first, colors[next]);
|
||||
// Recolor with id - because it's the new nearest conflict!
|
||||
colors[next] = id;
|
||||
if (next == hi)
|
||||
break;
|
||||
c = next+1;
|
||||
}
|
||||
};
|
||||
|
||||
Inst* ip = &(*flat)[id];
|
||||
int lo = ip->lo();
|
||||
int hi = ip->hi();
|
||||
Recolor(lo, hi);
|
||||
if (ip->foldcase() && lo <= 'z' && hi >= 'a') {
|
||||
int foldlo = lo;
|
||||
int foldhi = hi;
|
||||
if (foldlo < 'a')
|
||||
foldlo = 'a';
|
||||
if (foldhi > 'z')
|
||||
foldhi = 'z';
|
||||
if (foldlo <= foldhi) {
|
||||
foldlo += 'A' - 'a';
|
||||
foldhi += 'A' - 'a';
|
||||
Recolor(foldlo, foldhi);
|
||||
}
|
||||
}
|
||||
|
||||
if (first != end) {
|
||||
uint16_t hint = static_cast<uint16_t>(std::min(first - id, 32767));
|
||||
ip->hint_foldcase_ |= hint<<1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
432
extern/re2/re2/prog.h
vendored
Normal file
432
extern/re2/re2/prog.h
vendored
Normal file
@ -0,0 +1,432 @@
|
||||
// Copyright 2007 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_PROG_H_
|
||||
#define RE2_PROG_H_
|
||||
|
||||
// Compiled representation of regular expressions.
|
||||
// See regexp.h for the Regexp class, which represents a regular
|
||||
// expression symbolically.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <functional>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <type_traits>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "util/sparse_array.h"
|
||||
#include "util/sparse_set.h"
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Opcodes for Inst
|
||||
enum InstOp {
|
||||
kInstAlt = 0, // choose between out_ and out1_
|
||||
kInstAltMatch, // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa.
|
||||
kInstByteRange, // next (possible case-folded) byte must be in [lo_, hi_]
|
||||
kInstCapture, // capturing parenthesis number cap_
|
||||
kInstEmptyWidth, // empty-width special (^ $ ...); bit(s) set in empty_
|
||||
kInstMatch, // found a match!
|
||||
kInstNop, // no-op; occasionally unavoidable
|
||||
kInstFail, // never match; occasionally unavoidable
|
||||
kNumInst,
|
||||
};
|
||||
|
||||
// Bit flags for empty-width specials
|
||||
enum EmptyOp {
|
||||
kEmptyBeginLine = 1<<0, // ^ - beginning of line
|
||||
kEmptyEndLine = 1<<1, // $ - end of line
|
||||
kEmptyBeginText = 1<<2, // \A - beginning of text
|
||||
kEmptyEndText = 1<<3, // \z - end of text
|
||||
kEmptyWordBoundary = 1<<4, // \b - word boundary
|
||||
kEmptyNonWordBoundary = 1<<5, // \B - not \b
|
||||
kEmptyAllFlags = (1<<6)-1,
|
||||
};
|
||||
|
||||
class DFA;
|
||||
class Regexp;
|
||||
|
||||
// Compiled form of regexp program.
|
||||
class Prog {
|
||||
public:
|
||||
Prog();
|
||||
~Prog();
|
||||
|
||||
// Single instruction in regexp program.
|
||||
class Inst {
|
||||
public:
|
||||
// See the assertion below for why this is so.
|
||||
Inst() = default;
|
||||
|
||||
// Copyable.
|
||||
Inst(const Inst&) = default;
|
||||
Inst& operator=(const Inst&) = default;
|
||||
|
||||
// Constructors per opcode
|
||||
void InitAlt(uint32_t out, uint32_t out1);
|
||||
void InitByteRange(int lo, int hi, int foldcase, uint32_t out);
|
||||
void InitCapture(int cap, uint32_t out);
|
||||
void InitEmptyWidth(EmptyOp empty, uint32_t out);
|
||||
void InitMatch(int id);
|
||||
void InitNop(uint32_t out);
|
||||
void InitFail();
|
||||
|
||||
// Getters
|
||||
int id(Prog* p) { return static_cast<int>(this - p->inst_.data()); }
|
||||
InstOp opcode() { return static_cast<InstOp>(out_opcode_&7); }
|
||||
int last() { return (out_opcode_>>3)&1; }
|
||||
int out() { return out_opcode_>>4; }
|
||||
int out1() { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; }
|
||||
int cap() { DCHECK_EQ(opcode(), kInstCapture); return cap_; }
|
||||
int lo() { DCHECK_EQ(opcode(), kInstByteRange); return lo_; }
|
||||
int hi() { DCHECK_EQ(opcode(), kInstByteRange); return hi_; }
|
||||
int foldcase() { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_&1; }
|
||||
int hint() { DCHECK_EQ(opcode(), kInstByteRange); return hint_foldcase_>>1; }
|
||||
int match_id() { DCHECK_EQ(opcode(), kInstMatch); return match_id_; }
|
||||
EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; }
|
||||
|
||||
bool greedy(Prog* p) {
|
||||
DCHECK_EQ(opcode(), kInstAltMatch);
|
||||
return p->inst(out())->opcode() == kInstByteRange ||
|
||||
(p->inst(out())->opcode() == kInstNop &&
|
||||
p->inst(p->inst(out())->out())->opcode() == kInstByteRange);
|
||||
}
|
||||
|
||||
// Does this inst (an kInstByteRange) match c?
|
||||
inline bool Matches(int c) {
|
||||
DCHECK_EQ(opcode(), kInstByteRange);
|
||||
if (foldcase() && 'A' <= c && c <= 'Z')
|
||||
c += 'a' - 'A';
|
||||
return lo_ <= c && c <= hi_;
|
||||
}
|
||||
|
||||
// Returns string representation for debugging.
|
||||
std::string Dump();
|
||||
|
||||
// Maximum instruction id.
|
||||
// (Must fit in out_opcode_. PatchList/last steal another bit.)
|
||||
static const int kMaxInst = (1<<28) - 1;
|
||||
|
||||
private:
|
||||
void set_opcode(InstOp opcode) {
|
||||
out_opcode_ = (out()<<4) | (last()<<3) | opcode;
|
||||
}
|
||||
|
||||
void set_last() {
|
||||
out_opcode_ = (out()<<4) | (1<<3) | opcode();
|
||||
}
|
||||
|
||||
void set_out(int out) {
|
||||
out_opcode_ = (out<<4) | (last()<<3) | opcode();
|
||||
}
|
||||
|
||||
void set_out_opcode(int out, InstOp opcode) {
|
||||
out_opcode_ = (out<<4) | (last()<<3) | opcode;
|
||||
}
|
||||
|
||||
uint32_t out_opcode_; // 28 bits: out, 1 bit: last, 3 (low) bits: opcode
|
||||
union { // additional instruction arguments:
|
||||
uint32_t out1_; // opcode == kInstAlt
|
||||
// alternate next instruction
|
||||
|
||||
int32_t cap_; // opcode == kInstCapture
|
||||
// Index of capture register (holds text
|
||||
// position recorded by capturing parentheses).
|
||||
// For \n (the submatch for the nth parentheses),
|
||||
// the left parenthesis captures into register 2*n
|
||||
// and the right one captures into register 2*n+1.
|
||||
|
||||
int32_t match_id_; // opcode == kInstMatch
|
||||
// Match ID to identify this match (for re2::Set).
|
||||
|
||||
struct { // opcode == kInstByteRange
|
||||
uint8_t lo_; // byte range is lo_-hi_ inclusive
|
||||
uint8_t hi_; //
|
||||
uint16_t hint_foldcase_; // 15 bits: hint, 1 (low) bit: foldcase
|
||||
// hint to execution engines: the delta to the
|
||||
// next instruction (in the current list) worth
|
||||
// exploring iff this instruction matched; 0
|
||||
// means there are no remaining possibilities,
|
||||
// which is most likely for character classes.
|
||||
// foldcase: A-Z -> a-z before checking range.
|
||||
};
|
||||
|
||||
EmptyOp empty_; // opcode == kInstEmptyWidth
|
||||
// empty_ is bitwise OR of kEmpty* flags above.
|
||||
};
|
||||
|
||||
friend class Compiler;
|
||||
friend struct PatchList;
|
||||
friend class Prog;
|
||||
};
|
||||
|
||||
// Inst must be trivial so that we can freely clear it with memset(3).
|
||||
// Arrays of Inst are initialised by copying the initial elements with
|
||||
// memmove(3) and then clearing any remaining elements with memset(3).
|
||||
static_assert(std::is_trivial<Inst>::value, "Inst must be trivial");
|
||||
|
||||
// Whether to anchor the search.
|
||||
enum Anchor {
|
||||
kUnanchored, // match anywhere
|
||||
kAnchored, // match only starting at beginning of text
|
||||
};
|
||||
|
||||
// Kind of match to look for (for anchor != kFullMatch)
|
||||
//
|
||||
// kLongestMatch mode finds the overall longest
|
||||
// match but still makes its submatch choices the way
|
||||
// Perl would, not in the way prescribed by POSIX.
|
||||
// The POSIX rules are much more expensive to implement,
|
||||
// and no one has needed them.
|
||||
//
|
||||
// kFullMatch is not strictly necessary -- we could use
|
||||
// kLongestMatch and then check the length of the match -- but
|
||||
// the matching code can run faster if it knows to consider only
|
||||
// full matches.
|
||||
enum MatchKind {
|
||||
kFirstMatch, // like Perl, PCRE
|
||||
kLongestMatch, // like egrep or POSIX
|
||||
kFullMatch, // match only entire text; implies anchor==kAnchored
|
||||
kManyMatch // for SearchDFA, records set of matches
|
||||
};
|
||||
|
||||
Inst *inst(int id) { return &inst_[id]; }
|
||||
int start() { return start_; }
|
||||
int start_unanchored() { return start_unanchored_; }
|
||||
void set_start(int start) { start_ = start; }
|
||||
void set_start_unanchored(int start) { start_unanchored_ = start; }
|
||||
int size() { return size_; }
|
||||
bool reversed() { return reversed_; }
|
||||
void set_reversed(bool reversed) { reversed_ = reversed; }
|
||||
int list_count() { return list_count_; }
|
||||
int inst_count(InstOp op) { return inst_count_[op]; }
|
||||
uint16_t* list_heads() { return list_heads_.data(); }
|
||||
void set_dfa_mem(int64_t dfa_mem) { dfa_mem_ = dfa_mem; }
|
||||
int64_t dfa_mem() { return dfa_mem_; }
|
||||
int flags() { return flags_; }
|
||||
void set_flags(int flags) { flags_ = flags; }
|
||||
bool anchor_start() { return anchor_start_; }
|
||||
void set_anchor_start(bool b) { anchor_start_ = b; }
|
||||
bool anchor_end() { return anchor_end_; }
|
||||
void set_anchor_end(bool b) { anchor_end_ = b; }
|
||||
int bytemap_range() { return bytemap_range_; }
|
||||
const uint8_t* bytemap() { return bytemap_; }
|
||||
|
||||
// Lazily computed.
|
||||
int first_byte();
|
||||
|
||||
// Returns string representation of program for debugging.
|
||||
std::string Dump();
|
||||
std::string DumpUnanchored();
|
||||
std::string DumpByteMap();
|
||||
|
||||
// Returns the set of kEmpty flags that are in effect at
|
||||
// position p within context.
|
||||
static uint32_t EmptyFlags(const StringPiece& context, const char* p);
|
||||
|
||||
// Returns whether byte c is a word character: ASCII only.
|
||||
// Used by the implementation of \b and \B.
|
||||
// This is not right for Unicode, but:
|
||||
// - it's hard to get right in a byte-at-a-time matching world
|
||||
// (the DFA has only one-byte lookahead).
|
||||
// - even if the lookahead were possible, the Progs would be huge.
|
||||
// This crude approximation is the same one PCRE uses.
|
||||
static bool IsWordChar(uint8_t c) {
|
||||
return ('A' <= c && c <= 'Z') ||
|
||||
('a' <= c && c <= 'z') ||
|
||||
('0' <= c && c <= '9') ||
|
||||
c == '_';
|
||||
}
|
||||
|
||||
// Execution engines. They all search for the regexp (run the prog)
|
||||
// in text, which is in the larger context (used for ^ $ \b etc).
|
||||
// Anchor and kind control the kind of search.
|
||||
// Returns true if match found, false if not.
|
||||
// If match found, fills match[0..nmatch-1] with submatch info.
|
||||
// match[0] is overall match, match[1] is first set of parens, etc.
|
||||
// If a particular submatch is not matched during the regexp match,
|
||||
// it is set to NULL.
|
||||
//
|
||||
// Matching text == StringPiece(NULL, 0) is treated as any other empty
|
||||
// string, but note that on return, it will not be possible to distinguish
|
||||
// submatches that matched that empty string from submatches that didn't
|
||||
// match anything. Either way, match[i] == NULL.
|
||||
|
||||
// Search using NFA: can find submatches but kind of slow.
|
||||
bool SearchNFA(const StringPiece& text, const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch);
|
||||
|
||||
// Search using DFA: much faster than NFA but only finds
|
||||
// end of match and can use a lot more memory.
|
||||
// Returns whether a match was found.
|
||||
// If the DFA runs out of memory, sets *failed to true and returns false.
|
||||
// If matches != NULL and kind == kManyMatch and there is a match,
|
||||
// SearchDFA fills matches with the match IDs of the final matching state.
|
||||
bool SearchDFA(const StringPiece& text, const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind, StringPiece* match0,
|
||||
bool* failed, SparseSet* matches);
|
||||
|
||||
// The callback issued after building each DFA state with BuildEntireDFA().
|
||||
// If next is null, then the memory budget has been exhausted and building
|
||||
// will halt. Otherwise, the state has been built and next points to an array
|
||||
// of bytemap_range()+1 slots holding the next states as per the bytemap and
|
||||
// kByteEndText. The number of the state is implied by the callback sequence:
|
||||
// the first callback is for state 0, the second callback is for state 1, ...
|
||||
// match indicates whether the state is a matching state.
|
||||
using DFAStateCallback = std::function<void(const int* next, bool match)>;
|
||||
|
||||
// Build the entire DFA for the given match kind.
|
||||
// Usually the DFA is built out incrementally, as needed, which
|
||||
// avoids lots of unnecessary work.
|
||||
// If cb is not empty, it receives one callback per state built.
|
||||
// Returns the number of states built.
|
||||
// FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
|
||||
int BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb);
|
||||
|
||||
// Controls whether the DFA should bail out early if the NFA would be faster.
|
||||
// FOR TESTING ONLY.
|
||||
static void TEST_dfa_should_bail_when_slow(bool b);
|
||||
|
||||
// Compute bytemap.
|
||||
void ComputeByteMap();
|
||||
|
||||
// Computes whether all matches must begin with the same first
|
||||
// byte, and if so, returns that byte. If not, returns -1.
|
||||
int ComputeFirstByte();
|
||||
|
||||
// Run peep-hole optimizer on program.
|
||||
void Optimize();
|
||||
|
||||
// One-pass NFA: only correct if IsOnePass() is true,
|
||||
// but much faster than NFA (competitive with PCRE)
|
||||
// for those expressions.
|
||||
bool IsOnePass();
|
||||
bool SearchOnePass(const StringPiece& text, const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch);
|
||||
|
||||
// Bit-state backtracking. Fast on small cases but uses memory
|
||||
// proportional to the product of the list count and the text size.
|
||||
bool CanBitState() { return list_heads_.data() != NULL; }
|
||||
bool SearchBitState(const StringPiece& text, const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch);
|
||||
|
||||
static const int kMaxOnePassCapture = 5; // $0 through $4
|
||||
|
||||
// Backtracking search: the gold standard against which the other
|
||||
// implementations are checked. FOR TESTING ONLY.
|
||||
// It allocates a ton of memory to avoid running forever.
|
||||
// It is also recursive, so can't use in production (will overflow stacks).
|
||||
// The name "Unsafe" here is supposed to be a flag that
|
||||
// you should not be using this function.
|
||||
bool UnsafeSearchBacktrack(const StringPiece& text,
|
||||
const StringPiece& context,
|
||||
Anchor anchor, MatchKind kind,
|
||||
StringPiece* match, int nmatch);
|
||||
|
||||
// Computes range for any strings matching regexp. The min and max can in
|
||||
// some cases be arbitrarily precise, so the caller gets to specify the
|
||||
// maximum desired length of string returned.
|
||||
//
|
||||
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
|
||||
// string s that is an anchored match for this regexp satisfies
|
||||
// min <= s && s <= max.
|
||||
//
|
||||
// Note that PossibleMatchRange() will only consider the first copy of an
|
||||
// infinitely repeated element (i.e., any regexp element followed by a '*' or
|
||||
// '+' operator). Regexps with "{N}" constructions are not affected, as those
|
||||
// do not compile down to infinite repetitions.
|
||||
//
|
||||
// Returns true on success, false on error.
|
||||
bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
|
||||
|
||||
// EXPERIMENTAL! SUBJECT TO CHANGE!
|
||||
// Outputs the program fanout into the given sparse array.
|
||||
void Fanout(SparseArray<int>* fanout);
|
||||
|
||||
// Compiles a collection of regexps to Prog. Each regexp will have
|
||||
// its own Match instruction recording the index in the output vector.
|
||||
static Prog* CompileSet(Regexp* re, RE2::Anchor anchor, int64_t max_mem);
|
||||
|
||||
// Flattens the Prog from "tree" form to "list" form. This is an in-place
|
||||
// operation in the sense that the old instructions are lost.
|
||||
void Flatten();
|
||||
|
||||
// Walks the Prog; the "successor roots" or predecessors of the reachable
|
||||
// instructions are marked in rootmap or predmap/predvec, respectively.
|
||||
// reachable and stk are preallocated scratch structures.
|
||||
void MarkSuccessors(SparseArray<int>* rootmap,
|
||||
SparseArray<int>* predmap,
|
||||
std::vector<std::vector<int>>* predvec,
|
||||
SparseSet* reachable, std::vector<int>* stk);
|
||||
|
||||
// Walks the Prog from the given "root" instruction; the "dominator root"
|
||||
// of the reachable instructions (if such exists) is marked in rootmap.
|
||||
// reachable and stk are preallocated scratch structures.
|
||||
void MarkDominator(int root, SparseArray<int>* rootmap,
|
||||
SparseArray<int>* predmap,
|
||||
std::vector<std::vector<int>>* predvec,
|
||||
SparseSet* reachable, std::vector<int>* stk);
|
||||
|
||||
// Walks the Prog from the given "root" instruction; the reachable
|
||||
// instructions are emitted in "list" form and appended to flat.
|
||||
// reachable and stk are preallocated scratch structures.
|
||||
void EmitList(int root, SparseArray<int>* rootmap,
|
||||
std::vector<Inst>* flat,
|
||||
SparseSet* reachable, std::vector<int>* stk);
|
||||
|
||||
// Computes hints for ByteRange instructions in [begin, end).
|
||||
void ComputeHints(std::vector<Inst>* flat, int begin, int end);
|
||||
|
||||
private:
|
||||
friend class Compiler;
|
||||
|
||||
DFA* GetDFA(MatchKind kind);
|
||||
void DeleteDFA(DFA* dfa);
|
||||
|
||||
bool anchor_start_; // regexp has explicit start anchor
|
||||
bool anchor_end_; // regexp has explicit end anchor
|
||||
bool reversed_; // whether program runs backward over input
|
||||
bool did_flatten_; // has Flatten been called?
|
||||
bool did_onepass_; // has IsOnePass been called?
|
||||
|
||||
int start_; // entry point for program
|
||||
int start_unanchored_; // unanchored entry point for program
|
||||
int size_; // number of instructions
|
||||
int bytemap_range_; // bytemap_[x] < bytemap_range_
|
||||
int first_byte_; // required first byte for match, or -1 if none
|
||||
int flags_; // regexp parse flags
|
||||
|
||||
int list_count_; // count of lists (see above)
|
||||
int inst_count_[kNumInst]; // count of instructions by opcode
|
||||
PODArray<uint16_t> list_heads_; // sparse array enumerating list heads
|
||||
// not populated if size_ is overly large
|
||||
|
||||
PODArray<Inst> inst_; // pointer to instruction array
|
||||
PODArray<uint8_t> onepass_nodes_; // data for OnePass nodes
|
||||
|
||||
int64_t dfa_mem_; // Maximum memory for DFAs.
|
||||
DFA* dfa_first_; // DFA cached for kFirstMatch/kManyMatch
|
||||
DFA* dfa_longest_; // DFA cached for kLongestMatch/kFullMatch
|
||||
|
||||
uint8_t bytemap_[256]; // map from input bytes to byte classes
|
||||
|
||||
std::once_flag first_byte_once_;
|
||||
std::once_flag dfa_first_once_;
|
||||
std::once_flag dfa_longest_once_;
|
||||
|
||||
Prog(const Prog&) = delete;
|
||||
Prog& operator=(const Prog&) = delete;
|
||||
};
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_PROG_H_
|
1236
extern/re2/re2/re2.cc
vendored
Normal file
1236
extern/re2/re2/re2.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
959
extern/re2/re2/re2.h
vendored
Normal file
959
extern/re2/re2/re2.h
vendored
Normal file
@ -0,0 +1,959 @@
|
||||
// Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_RE2_H_
|
||||
#define RE2_RE2_H_
|
||||
|
||||
// C++ interface to the re2 regular-expression library.
|
||||
// RE2 supports Perl-style regular expressions (with extensions like
|
||||
// \d, \w, \s, ...).
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// REGEXP SYNTAX:
|
||||
//
|
||||
// This module uses the re2 library and hence supports
|
||||
// its syntax for regular expressions, which is similar to Perl's with
|
||||
// some of the more complicated things thrown away. In particular,
|
||||
// backreferences and generalized assertions are not available, nor is \Z.
|
||||
//
|
||||
// See https://github.com/google/re2/wiki/Syntax for the syntax
|
||||
// supported by RE2, and a comparison with PCRE and PERL regexps.
|
||||
//
|
||||
// For those not familiar with Perl's regular expressions,
|
||||
// here are some examples of the most commonly used extensions:
|
||||
//
|
||||
// "hello (\\w+) world" -- \w matches a "word" character
|
||||
// "version (\\d+)" -- \d matches a digit
|
||||
// "hello\\s+world" -- \s matches any whitespace character
|
||||
// "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary
|
||||
// "(?i)hello" -- (?i) turns on case-insensitive matching
|
||||
// "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// MATCHING INTERFACE:
|
||||
//
|
||||
// The "FullMatch" operation checks that supplied text matches a
|
||||
// supplied pattern exactly.
|
||||
//
|
||||
// Example: successful match
|
||||
// CHECK(RE2::FullMatch("hello", "h.*o"));
|
||||
//
|
||||
// Example: unsuccessful match (requires full match):
|
||||
// CHECK(!RE2::FullMatch("hello", "e"));
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// UTF-8 AND THE MATCHING INTERFACE:
|
||||
//
|
||||
// By default, the pattern and input text are interpreted as UTF-8.
|
||||
// The RE2::Latin1 option causes them to be interpreted as Latin-1.
|
||||
//
|
||||
// Example:
|
||||
// CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern)));
|
||||
// CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1)));
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// MATCHING WITH SUBSTRING EXTRACTION:
|
||||
//
|
||||
// You can supply extra pointer arguments to extract matched substrings.
|
||||
// On match failure, none of the pointees will have been modified.
|
||||
// On match success, the substrings will be converted (as necessary) and
|
||||
// their values will be assigned to their pointees until all conversions
|
||||
// have succeeded or one conversion has failed.
|
||||
// On conversion failure, the pointees will be in an indeterminate state
|
||||
// because the caller has no way of knowing which conversion failed.
|
||||
// However, conversion cannot fail for types like string and StringPiece
|
||||
// that do not inspect the substring contents. Hence, in the common case
|
||||
// where all of the pointees are of such types, failure is always due to
|
||||
// match failure and thus none of the pointees will have been modified.
|
||||
//
|
||||
// Example: extracts "ruby" into "s" and 1234 into "i"
|
||||
// int i;
|
||||
// std::string s;
|
||||
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i));
|
||||
//
|
||||
// Example: fails because string cannot be stored in integer
|
||||
// CHECK(!RE2::FullMatch("ruby", "(.*)", &i));
|
||||
//
|
||||
// Example: fails because there aren't enough sub-patterns
|
||||
// CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s));
|
||||
//
|
||||
// Example: does not try to extract any extra sub-patterns
|
||||
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s));
|
||||
//
|
||||
// Example: does not try to extract into NULL
|
||||
// CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i));
|
||||
//
|
||||
// Example: integer overflow causes failure
|
||||
// CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i));
|
||||
//
|
||||
// NOTE(rsc): Asking for substrings slows successful matches quite a bit.
|
||||
// This may get a little faster in the future, but right now is slower
|
||||
// than PCRE. On the other hand, failed matches run *very* fast (faster
|
||||
// than PCRE), as do matches without substring extraction.
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// PARTIAL MATCHES
|
||||
//
|
||||
// You can use the "PartialMatch" operation when you want the pattern
|
||||
// to match any substring of the text.
|
||||
//
|
||||
// Example: simple search for a string:
|
||||
// CHECK(RE2::PartialMatch("hello", "ell"));
|
||||
//
|
||||
// Example: find first number in a string
|
||||
// int number;
|
||||
// CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number));
|
||||
// CHECK_EQ(number, 100);
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// PRE-COMPILED REGULAR EXPRESSIONS
|
||||
//
|
||||
// RE2 makes it easy to use any string as a regular expression, without
|
||||
// requiring a separate compilation step.
|
||||
//
|
||||
// If speed is of the essence, you can create a pre-compiled "RE2"
|
||||
// object from the pattern and use it multiple times. If you do so,
|
||||
// you can typically parse text faster than with sscanf.
|
||||
//
|
||||
// Example: precompile pattern for faster matching:
|
||||
// RE2 pattern("h.*o");
|
||||
// while (ReadLine(&str)) {
|
||||
// if (RE2::FullMatch(str, pattern)) ...;
|
||||
// }
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// SCANNING TEXT INCREMENTALLY
|
||||
//
|
||||
// The "Consume" operation may be useful if you want to repeatedly
|
||||
// match regular expressions at the front of a string and skip over
|
||||
// them as they match. This requires use of the "StringPiece" type,
|
||||
// which represents a sub-range of a real string.
|
||||
//
|
||||
// Example: read lines of the form "var = value" from a string.
|
||||
// std::string contents = ...; // Fill string somehow
|
||||
// StringPiece input(contents); // Wrap a StringPiece around it
|
||||
//
|
||||
// std::string var;
|
||||
// int value;
|
||||
// while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) {
|
||||
// ...;
|
||||
// }
|
||||
//
|
||||
// Each successful call to "Consume" will set "var/value", and also
|
||||
// advance "input" so it points past the matched text. Note that if the
|
||||
// regular expression matches an empty string, input will advance
|
||||
// by 0 bytes. If the regular expression being used might match
|
||||
// an empty string, the loop body must check for this case and either
|
||||
// advance the string or break out of the loop.
|
||||
//
|
||||
// The "FindAndConsume" operation is similar to "Consume" but does not
|
||||
// anchor your match at the beginning of the string. For example, you
|
||||
// could extract all words from a string by repeatedly calling
|
||||
// RE2::FindAndConsume(&input, "(\\w+)", &word)
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// USING VARIABLE NUMBER OF ARGUMENTS
|
||||
//
|
||||
// The above operations require you to know the number of arguments
|
||||
// when you write the code. This is not always possible or easy (for
|
||||
// example, the regular expression may be calculated at run time).
|
||||
// You can use the "N" version of the operations when the number of
|
||||
// match arguments are determined at run time.
|
||||
//
|
||||
// Example:
|
||||
// const RE2::Arg* args[10];
|
||||
// int n;
|
||||
// // ... populate args with pointers to RE2::Arg values ...
|
||||
// // ... set n to the number of RE2::Arg objects ...
|
||||
// bool match = RE2::FullMatchN(input, pattern, args, n);
|
||||
//
|
||||
// The last statement is equivalent to
|
||||
//
|
||||
// bool match = RE2::FullMatch(input, pattern,
|
||||
// *args[0], *args[1], ..., *args[n - 1]);
|
||||
//
|
||||
// -----------------------------------------------------------------------
|
||||
// PARSING HEX/OCTAL/C-RADIX NUMBERS
|
||||
//
|
||||
// By default, if you pass a pointer to a numeric value, the
|
||||
// corresponding text is interpreted as a base-10 number. You can
|
||||
// instead wrap the pointer with a call to one of the operators Hex(),
|
||||
// Octal(), or CRadix() to interpret the text in another base. The
|
||||
// CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
|
||||
// prefixes, but defaults to base-10.
|
||||
//
|
||||
// Example:
|
||||
// int a, b, c, d;
|
||||
// CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)",
|
||||
// RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d));
|
||||
// will leave 64 in a, b, c, and d.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
namespace re2 {
|
||||
class Prog;
|
||||
class Regexp;
|
||||
} // namespace re2
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Interface for regular expression matching. Also corresponds to a
|
||||
// pre-compiled regular expression. An "RE2" object is safe for
|
||||
// concurrent use by multiple threads.
|
||||
class RE2 {
|
||||
public:
|
||||
// We convert user-passed pointers into special Arg objects
|
||||
class Arg;
|
||||
class Options;
|
||||
|
||||
// Defined in set.h.
|
||||
class Set;
|
||||
|
||||
enum ErrorCode {
|
||||
NoError = 0,
|
||||
|
||||
// Unexpected error
|
||||
ErrorInternal,
|
||||
|
||||
// Parse errors
|
||||
ErrorBadEscape, // bad escape sequence
|
||||
ErrorBadCharClass, // bad character class
|
||||
ErrorBadCharRange, // bad character class range
|
||||
ErrorMissingBracket, // missing closing ]
|
||||
ErrorMissingParen, // missing closing )
|
||||
ErrorTrailingBackslash, // trailing \ at end of regexp
|
||||
ErrorRepeatArgument, // repeat argument missing, e.g. "*"
|
||||
ErrorRepeatSize, // bad repetition argument
|
||||
ErrorRepeatOp, // bad repetition operator
|
||||
ErrorBadPerlOp, // bad perl operator
|
||||
ErrorBadUTF8, // invalid UTF-8 in regexp
|
||||
ErrorBadNamedCapture, // bad named capture group
|
||||
ErrorPatternTooLarge // pattern too large (compile failed)
|
||||
};
|
||||
|
||||
// Predefined common options.
|
||||
// If you need more complicated things, instantiate
|
||||
// an Option class, possibly passing one of these to
|
||||
// the Option constructor, change the settings, and pass that
|
||||
// Option class to the RE2 constructor.
|
||||
enum CannedOptions {
|
||||
DefaultOptions = 0,
|
||||
Latin1, // treat input as Latin-1 (default UTF-8)
|
||||
POSIX, // POSIX syntax, leftmost-longest match
|
||||
Quiet // do not log about regexp parse errors
|
||||
};
|
||||
|
||||
// Need to have the const char* and const std::string& forms for implicit
|
||||
// conversions when passing string literals to FullMatch and PartialMatch.
|
||||
// Otherwise the StringPiece form would be sufficient.
|
||||
#ifndef SWIG
|
||||
RE2(const char* pattern);
|
||||
RE2(const std::string& pattern);
|
||||
#endif
|
||||
RE2(const StringPiece& pattern);
|
||||
RE2(const StringPiece& pattern, const Options& options);
|
||||
~RE2();
|
||||
|
||||
// Returns whether RE2 was created properly.
|
||||
bool ok() const { return error_code() == NoError; }
|
||||
|
||||
// The string specification for this RE2. E.g.
|
||||
// RE2 re("ab*c?d+");
|
||||
// re.pattern(); // "ab*c?d+"
|
||||
const std::string& pattern() const { return pattern_; }
|
||||
|
||||
// If RE2 could not be created properly, returns an error string.
|
||||
// Else returns the empty string.
|
||||
const std::string& error() const { return *error_; }
|
||||
|
||||
// If RE2 could not be created properly, returns an error code.
|
||||
// Else returns RE2::NoError (== 0).
|
||||
ErrorCode error_code() const { return error_code_; }
|
||||
|
||||
// If RE2 could not be created properly, returns the offending
|
||||
// portion of the regexp.
|
||||
const std::string& error_arg() const { return error_arg_; }
|
||||
|
||||
// Returns the program size, a very approximate measure of a regexp's "cost".
|
||||
// Larger numbers are more expensive than smaller numbers.
|
||||
int ProgramSize() const;
|
||||
int ReverseProgramSize() const;
|
||||
|
||||
// EXPERIMENTAL! SUBJECT TO CHANGE!
|
||||
// Outputs the program fanout as a histogram bucketed by powers of 2.
|
||||
// Returns the number of the largest non-empty bucket.
|
||||
int ProgramFanout(std::map<int, int>* histogram) const;
|
||||
int ReverseProgramFanout(std::map<int, int>* histogram) const;
|
||||
|
||||
// Returns the underlying Regexp; not for general use.
|
||||
// Returns entire_regexp_ so that callers don't need
|
||||
// to know about prefix_ and prefix_foldcase_.
|
||||
re2::Regexp* Regexp() const { return entire_regexp_; }
|
||||
|
||||
/***** The array-based matching interface ******/
|
||||
|
||||
// The functions here have names ending in 'N' and are used to implement
|
||||
// the functions whose names are the prefix before the 'N'. It is sometimes
|
||||
// useful to invoke them directly, but the syntax is awkward, so the 'N'-less
|
||||
// versions should be preferred.
|
||||
static bool FullMatchN(const StringPiece& text, const RE2& re,
|
||||
const Arg* const args[], int n);
|
||||
static bool PartialMatchN(const StringPiece& text, const RE2& re,
|
||||
const Arg* const args[], int n);
|
||||
static bool ConsumeN(StringPiece* input, const RE2& re,
|
||||
const Arg* const args[], int n);
|
||||
static bool FindAndConsumeN(StringPiece* input, const RE2& re,
|
||||
const Arg* const args[], int n);
|
||||
|
||||
#ifndef SWIG
|
||||
private:
|
||||
template <typename F, typename SP>
|
||||
static inline bool Apply(F f, SP sp, const RE2& re) {
|
||||
return f(sp, re, NULL, 0);
|
||||
}
|
||||
|
||||
template <typename F, typename SP, typename... A>
|
||||
static inline bool Apply(F f, SP sp, const RE2& re, const A&... a) {
|
||||
const Arg* const args[] = {&a...};
|
||||
const int n = sizeof...(a);
|
||||
return f(sp, re, args, n);
|
||||
}
|
||||
|
||||
public:
|
||||
// In order to allow FullMatch() et al. to be called with a varying number
|
||||
// of arguments of varying types, we use two layers of variadic templates.
|
||||
// The first layer constructs the temporary Arg objects. The second layer
|
||||
// (above) constructs the array of pointers to the temporary Arg objects.
|
||||
|
||||
/***** The useful part: the matching interface *****/
|
||||
|
||||
// Matches "text" against "re". If pointer arguments are
|
||||
// supplied, copies matched sub-patterns into them.
|
||||
//
|
||||
// You can pass in a "const char*" or a "std::string" for "text".
|
||||
// You can pass in a "const char*" or a "std::string" or a "RE2" for "re".
|
||||
//
|
||||
// The provided pointer arguments can be pointers to any scalar numeric
|
||||
// type, or one of:
|
||||
// std::string (matched piece is copied to string)
|
||||
// StringPiece (StringPiece is mutated to point to matched piece)
|
||||
// T (where "bool T::ParseFrom(const char*, size_t)" exists)
|
||||
// (void*)NULL (the corresponding matched sub-pattern is not copied)
|
||||
//
|
||||
// Returns true iff all of the following conditions are satisfied:
|
||||
// a. "text" matches "re" exactly
|
||||
// b. The number of matched sub-patterns is >= number of supplied pointers
|
||||
// c. The "i"th argument has a suitable type for holding the
|
||||
// string captured as the "i"th sub-pattern. If you pass in
|
||||
// NULL for the "i"th argument, or pass fewer arguments than
|
||||
// number of sub-patterns, "i"th captured sub-pattern is
|
||||
// ignored.
|
||||
//
|
||||
// CAVEAT: An optional sub-pattern that does not exist in the
|
||||
// matched string is assigned the empty string. Therefore, the
|
||||
// following will return false (because the empty string is not a
|
||||
// valid number):
|
||||
// int number;
|
||||
// RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number);
|
||||
template <typename... A>
|
||||
static bool FullMatch(const StringPiece& text, const RE2& re, A&&... a) {
|
||||
return Apply(FullMatchN, text, re, Arg(std::forward<A>(a))...);
|
||||
}
|
||||
|
||||
// Exactly like FullMatch(), except that "re" is allowed to match
|
||||
// a substring of "text".
|
||||
template <typename... A>
|
||||
static bool PartialMatch(const StringPiece& text, const RE2& re, A&&... a) {
|
||||
return Apply(PartialMatchN, text, re, Arg(std::forward<A>(a))...);
|
||||
}
|
||||
|
||||
// Like FullMatch() and PartialMatch(), except that "re" has to match
|
||||
// a prefix of the text, and "input" is advanced past the matched
|
||||
// text. Note: "input" is modified iff this routine returns true
|
||||
// and "re" matched a non-empty substring of "text".
|
||||
template <typename... A>
|
||||
static bool Consume(StringPiece* input, const RE2& re, A&&... a) {
|
||||
return Apply(ConsumeN, input, re, Arg(std::forward<A>(a))...);
|
||||
}
|
||||
|
||||
// Like Consume(), but does not anchor the match at the beginning of
|
||||
// the text. That is, "re" need not start its match at the beginning
|
||||
// of "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds
|
||||
// the next word in "s" and stores it in "word".
|
||||
template <typename... A>
|
||||
static bool FindAndConsume(StringPiece* input, const RE2& re, A&&... a) {
|
||||
return Apply(FindAndConsumeN, input, re, Arg(std::forward<A>(a))...);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Replace the first match of "re" in "str" with "rewrite".
|
||||
// Within "rewrite", backslash-escaped digits (\1 to \9) can be
|
||||
// used to insert text matching corresponding parenthesized group
|
||||
// from the pattern. \0 in "rewrite" refers to the entire matching
|
||||
// text. E.g.,
|
||||
//
|
||||
// std::string s = "yabba dabba doo";
|
||||
// CHECK(RE2::Replace(&s, "b+", "d"));
|
||||
//
|
||||
// will leave "s" containing "yada dabba doo"
|
||||
//
|
||||
// Returns true if the pattern matches and a replacement occurs,
|
||||
// false otherwise.
|
||||
static bool Replace(std::string* str,
|
||||
const RE2& re,
|
||||
const StringPiece& rewrite);
|
||||
|
||||
// Like Replace(), except replaces successive non-overlapping occurrences
|
||||
// of the pattern in the string with the rewrite. E.g.
|
||||
//
|
||||
// std::string s = "yabba dabba doo";
|
||||
// CHECK(RE2::GlobalReplace(&s, "b+", "d"));
|
||||
//
|
||||
// will leave "s" containing "yada dada doo"
|
||||
// Replacements are not subject to re-matching.
|
||||
//
|
||||
// Because GlobalReplace only replaces non-overlapping matches,
|
||||
// replacing "ana" within "banana" makes only one replacement, not two.
|
||||
//
|
||||
// Returns the number of replacements made.
|
||||
static int GlobalReplace(std::string* str,
|
||||
const RE2& re,
|
||||
const StringPiece& rewrite);
|
||||
|
||||
// Like Replace, except that if the pattern matches, "rewrite"
|
||||
// is copied into "out" with substitutions. The non-matching
|
||||
// portions of "text" are ignored.
|
||||
//
|
||||
// Returns true iff a match occurred and the extraction happened
|
||||
// successfully; if no match occurs, the string is left unaffected.
|
||||
//
|
||||
// REQUIRES: "text" must not alias any part of "*out".
|
||||
static bool Extract(const StringPiece& text,
|
||||
const RE2& re,
|
||||
const StringPiece& rewrite,
|
||||
std::string* out);
|
||||
|
||||
// Escapes all potentially meaningful regexp characters in
|
||||
// 'unquoted'. The returned string, used as a regular expression,
|
||||
// will exactly match the original string. For example,
|
||||
// 1.5-2.0?
|
||||
// may become:
|
||||
// 1\.5\-2\.0\?
|
||||
static std::string QuoteMeta(const StringPiece& unquoted);
|
||||
|
||||
// Computes range for any strings matching regexp. The min and max can in
|
||||
// some cases be arbitrarily precise, so the caller gets to specify the
|
||||
// maximum desired length of string returned.
|
||||
//
|
||||
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
|
||||
// string s that is an anchored match for this regexp satisfies
|
||||
// min <= s && s <= max.
|
||||
//
|
||||
// Note that PossibleMatchRange() will only consider the first copy of an
|
||||
// infinitely repeated element (i.e., any regexp element followed by a '*' or
|
||||
// '+' operator). Regexps with "{N}" constructions are not affected, as those
|
||||
// do not compile down to infinite repetitions.
|
||||
//
|
||||
// Returns true on success, false on error.
|
||||
bool PossibleMatchRange(std::string* min, std::string* max,
|
||||
int maxlen) const;
|
||||
|
||||
// Generic matching interface
|
||||
|
||||
// Type of match.
|
||||
enum Anchor {
|
||||
UNANCHORED, // No anchoring
|
||||
ANCHOR_START, // Anchor at start only
|
||||
ANCHOR_BOTH // Anchor at start and end
|
||||
};
|
||||
|
||||
// Return the number of capturing subpatterns, or -1 if the
|
||||
// regexp wasn't valid on construction. The overall match ($0)
|
||||
// does not count: if the regexp is "(a)(b)", returns 2.
|
||||
int NumberOfCapturingGroups() const { return num_captures_; }
|
||||
|
||||
// Return a map from names to capturing indices.
|
||||
// The map records the index of the leftmost group
|
||||
// with the given name.
|
||||
// Only valid until the re is deleted.
|
||||
const std::map<std::string, int>& NamedCapturingGroups() const;
|
||||
|
||||
// Return a map from capturing indices to names.
|
||||
// The map has no entries for unnamed groups.
|
||||
// Only valid until the re is deleted.
|
||||
const std::map<int, std::string>& CapturingGroupNames() const;
|
||||
|
||||
// General matching routine.
|
||||
// Match against text starting at offset startpos
|
||||
// and stopping the search at offset endpos.
|
||||
// Returns true if match found, false if not.
|
||||
// On a successful match, fills in submatch[] (up to nsubmatch entries)
|
||||
// with information about submatches.
|
||||
// I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, with
|
||||
// submatch[0] = "barbaz", submatch[1].data() = NULL, submatch[2] = "bar",
|
||||
// submatch[3].data() = NULL, ..., up to submatch[nsubmatch-1].data() = NULL.
|
||||
// Caveat: submatch[] may be clobbered even on match failure.
|
||||
//
|
||||
// Don't ask for more match information than you will use:
|
||||
// runs much faster with nsubmatch == 1 than nsubmatch > 1, and
|
||||
// runs even faster if nsubmatch == 0.
|
||||
// Doesn't make sense to use nsubmatch > 1 + NumberOfCapturingGroups(),
|
||||
// but will be handled correctly.
|
||||
//
|
||||
// Passing text == StringPiece(NULL, 0) will be handled like any other
|
||||
// empty string, but note that on return, it will not be possible to tell
|
||||
// whether submatch i matched the empty string or did not match:
|
||||
// either way, submatch[i].data() == NULL.
|
||||
bool Match(const StringPiece& text,
|
||||
size_t startpos,
|
||||
size_t endpos,
|
||||
Anchor re_anchor,
|
||||
StringPiece* submatch,
|
||||
int nsubmatch) const;
|
||||
|
||||
// Check that the given rewrite string is suitable for use with this
|
||||
// regular expression. It checks that:
|
||||
// * The regular expression has enough parenthesized subexpressions
|
||||
// to satisfy all of the \N tokens in rewrite
|
||||
// * The rewrite string doesn't have any syntax errors. E.g.,
|
||||
// '\' followed by anything other than a digit or '\'.
|
||||
// A true return value guarantees that Replace() and Extract() won't
|
||||
// fail because of a bad rewrite string.
|
||||
bool CheckRewriteString(const StringPiece& rewrite,
|
||||
std::string* error) const;
|
||||
|
||||
// Returns the maximum submatch needed for the rewrite to be done by
|
||||
// Replace(). E.g. if rewrite == "foo \\2,\\1", returns 2.
|
||||
static int MaxSubmatch(const StringPiece& rewrite);
|
||||
|
||||
// Append the "rewrite" string, with backslash subsitutions from "vec",
|
||||
// to string "out".
|
||||
// Returns true on success. This method can fail because of a malformed
|
||||
// rewrite string. CheckRewriteString guarantees that the rewrite will
|
||||
// be sucessful.
|
||||
bool Rewrite(std::string* out,
|
||||
const StringPiece& rewrite,
|
||||
const StringPiece* vec,
|
||||
int veclen) const;
|
||||
|
||||
// Constructor options
|
||||
class Options {
|
||||
public:
|
||||
// The options are (defaults in parentheses):
|
||||
//
|
||||
// utf8 (true) text and pattern are UTF-8; otherwise Latin-1
|
||||
// posix_syntax (false) restrict regexps to POSIX egrep syntax
|
||||
// longest_match (false) search for longest match, not first match
|
||||
// log_errors (true) log syntax and execution errors to ERROR
|
||||
// max_mem (see below) approx. max memory footprint of RE2
|
||||
// literal (false) interpret string as literal, not regexp
|
||||
// never_nl (false) never match \n, even if it is in regexp
|
||||
// dot_nl (false) dot matches everything including new line
|
||||
// never_capture (false) parse all parens as non-capturing
|
||||
// case_sensitive (true) match is case-sensitive (regexp can override
|
||||
// with (?i) unless in posix_syntax mode)
|
||||
//
|
||||
// The following options are only consulted when posix_syntax == true.
|
||||
// When posix_syntax == false, these features are always enabled and
|
||||
// cannot be turned off; to perform multi-line matching in that case,
|
||||
// begin the regexp with (?m).
|
||||
// perl_classes (false) allow Perl's \d \s \w \D \S \W
|
||||
// word_boundary (false) allow Perl's \b \B (word boundary and not)
|
||||
// one_line (false) ^ and $ only match beginning and end of text
|
||||
//
|
||||
// The max_mem option controls how much memory can be used
|
||||
// to hold the compiled form of the regexp (the Prog) and
|
||||
// its cached DFA graphs. Code Search placed limits on the number
|
||||
// of Prog instructions and DFA states: 10,000 for both.
|
||||
// In RE2, those limits would translate to about 240 KB per Prog
|
||||
// and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a
|
||||
// better job of keeping them small than Code Search did).
|
||||
// Each RE2 has two Progs (one forward, one reverse), and each Prog
|
||||
// can have two DFAs (one first match, one longest match).
|
||||
// That makes 4 DFAs:
|
||||
//
|
||||
// forward, first-match - used for UNANCHORED or ANCHOR_START searches
|
||||
// if opt.longest_match() == false
|
||||
// forward, longest-match - used for all ANCHOR_BOTH searches,
|
||||
// and the other two kinds if
|
||||
// opt.longest_match() == true
|
||||
// reverse, first-match - never used
|
||||
// reverse, longest-match - used as second phase for unanchored searches
|
||||
//
|
||||
// The RE2 memory budget is statically divided between the two
|
||||
// Progs and then the DFAs: two thirds to the forward Prog
|
||||
// and one third to the reverse Prog. The forward Prog gives half
|
||||
// of what it has left over to each of its DFAs. The reverse Prog
|
||||
// gives it all to its longest-match DFA.
|
||||
//
|
||||
// Once a DFA fills its budget, it flushes its cache and starts over.
|
||||
// If this happens too often, RE2 falls back on the NFA implementation.
|
||||
|
||||
// For now, make the default budget something close to Code Search.
|
||||
static const int kDefaultMaxMem = 8<<20;
|
||||
|
||||
enum Encoding {
|
||||
EncodingUTF8 = 1,
|
||||
EncodingLatin1
|
||||
};
|
||||
|
||||
Options() :
|
||||
encoding_(EncodingUTF8),
|
||||
posix_syntax_(false),
|
||||
longest_match_(false),
|
||||
log_errors_(true),
|
||||
max_mem_(kDefaultMaxMem),
|
||||
literal_(false),
|
||||
never_nl_(false),
|
||||
dot_nl_(false),
|
||||
never_capture_(false),
|
||||
case_sensitive_(true),
|
||||
perl_classes_(false),
|
||||
word_boundary_(false),
|
||||
one_line_(false) {
|
||||
}
|
||||
|
||||
/*implicit*/ Options(CannedOptions);
|
||||
|
||||
Encoding encoding() const { return encoding_; }
|
||||
void set_encoding(Encoding encoding) { encoding_ = encoding; }
|
||||
|
||||
// Legacy interface to encoding.
|
||||
// TODO(rsc): Remove once clients have been converted.
|
||||
bool utf8() const { return encoding_ == EncodingUTF8; }
|
||||
void set_utf8(bool b) {
|
||||
if (b) {
|
||||
encoding_ = EncodingUTF8;
|
||||
} else {
|
||||
encoding_ = EncodingLatin1;
|
||||
}
|
||||
}
|
||||
|
||||
bool posix_syntax() const { return posix_syntax_; }
|
||||
void set_posix_syntax(bool b) { posix_syntax_ = b; }
|
||||
|
||||
bool longest_match() const { return longest_match_; }
|
||||
void set_longest_match(bool b) { longest_match_ = b; }
|
||||
|
||||
bool log_errors() const { return log_errors_; }
|
||||
void set_log_errors(bool b) { log_errors_ = b; }
|
||||
|
||||
int64_t max_mem() const { return max_mem_; }
|
||||
void set_max_mem(int64_t m) { max_mem_ = m; }
|
||||
|
||||
bool literal() const { return literal_; }
|
||||
void set_literal(bool b) { literal_ = b; }
|
||||
|
||||
bool never_nl() const { return never_nl_; }
|
||||
void set_never_nl(bool b) { never_nl_ = b; }
|
||||
|
||||
bool dot_nl() const { return dot_nl_; }
|
||||
void set_dot_nl(bool b) { dot_nl_ = b; }
|
||||
|
||||
bool never_capture() const { return never_capture_; }
|
||||
void set_never_capture(bool b) { never_capture_ = b; }
|
||||
|
||||
bool case_sensitive() const { return case_sensitive_; }
|
||||
void set_case_sensitive(bool b) { case_sensitive_ = b; }
|
||||
|
||||
bool perl_classes() const { return perl_classes_; }
|
||||
void set_perl_classes(bool b) { perl_classes_ = b; }
|
||||
|
||||
bool word_boundary() const { return word_boundary_; }
|
||||
void set_word_boundary(bool b) { word_boundary_ = b; }
|
||||
|
||||
bool one_line() const { return one_line_; }
|
||||
void set_one_line(bool b) { one_line_ = b; }
|
||||
|
||||
void Copy(const Options& src) {
|
||||
*this = src;
|
||||
}
|
||||
|
||||
int ParseFlags() const;
|
||||
|
||||
private:
|
||||
Encoding encoding_;
|
||||
bool posix_syntax_;
|
||||
bool longest_match_;
|
||||
bool log_errors_;
|
||||
int64_t max_mem_;
|
||||
bool literal_;
|
||||
bool never_nl_;
|
||||
bool dot_nl_;
|
||||
bool never_capture_;
|
||||
bool case_sensitive_;
|
||||
bool perl_classes_;
|
||||
bool word_boundary_;
|
||||
bool one_line_;
|
||||
};
|
||||
|
||||
// Returns the options set in the constructor.
|
||||
const Options& options() const { return options_; }
|
||||
|
||||
// Argument converters; see below.
|
||||
static inline Arg CRadix(short* x);
|
||||
static inline Arg CRadix(unsigned short* x);
|
||||
static inline Arg CRadix(int* x);
|
||||
static inline Arg CRadix(unsigned int* x);
|
||||
static inline Arg CRadix(long* x);
|
||||
static inline Arg CRadix(unsigned long* x);
|
||||
static inline Arg CRadix(long long* x);
|
||||
static inline Arg CRadix(unsigned long long* x);
|
||||
|
||||
static inline Arg Hex(short* x);
|
||||
static inline Arg Hex(unsigned short* x);
|
||||
static inline Arg Hex(int* x);
|
||||
static inline Arg Hex(unsigned int* x);
|
||||
static inline Arg Hex(long* x);
|
||||
static inline Arg Hex(unsigned long* x);
|
||||
static inline Arg Hex(long long* x);
|
||||
static inline Arg Hex(unsigned long long* x);
|
||||
|
||||
static inline Arg Octal(short* x);
|
||||
static inline Arg Octal(unsigned short* x);
|
||||
static inline Arg Octal(int* x);
|
||||
static inline Arg Octal(unsigned int* x);
|
||||
static inline Arg Octal(long* x);
|
||||
static inline Arg Octal(unsigned long* x);
|
||||
static inline Arg Octal(long long* x);
|
||||
static inline Arg Octal(unsigned long long* x);
|
||||
|
||||
private:
|
||||
void Init(const StringPiece& pattern, const Options& options);
|
||||
|
||||
bool DoMatch(const StringPiece& text,
|
||||
Anchor re_anchor,
|
||||
size_t* consumed,
|
||||
const Arg* const args[],
|
||||
int n) const;
|
||||
|
||||
re2::Prog* ReverseProg() const;
|
||||
|
||||
std::string pattern_; // string regular expression
|
||||
Options options_; // option flags
|
||||
std::string prefix_; // required prefix (before regexp_)
|
||||
bool prefix_foldcase_; // prefix is ASCII case-insensitive
|
||||
re2::Regexp* entire_regexp_; // parsed regular expression
|
||||
re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed
|
||||
re2::Prog* prog_; // compiled program for regexp
|
||||
int num_captures_; // Number of capturing groups
|
||||
bool is_one_pass_; // can use prog_->SearchOnePass?
|
||||
|
||||
mutable re2::Prog* rprog_; // reverse program for regexp
|
||||
mutable const std::string* error_; // Error indicator
|
||||
// (or points to empty string)
|
||||
mutable ErrorCode error_code_; // Error code
|
||||
mutable std::string error_arg_; // Fragment of regexp showing error
|
||||
|
||||
// Map from capture names to indices
|
||||
mutable const std::map<std::string, int>* named_groups_;
|
||||
|
||||
// Map from capture indices to names
|
||||
mutable const std::map<int, std::string>* group_names_;
|
||||
|
||||
// Onces for lazy computations.
|
||||
mutable std::once_flag rprog_once_;
|
||||
mutable std::once_flag named_groups_once_;
|
||||
mutable std::once_flag group_names_once_;
|
||||
|
||||
RE2(const RE2&) = delete;
|
||||
RE2& operator=(const RE2&) = delete;
|
||||
};
|
||||
|
||||
/***** Implementation details *****/
|
||||
|
||||
// Hex/Octal/Binary?
|
||||
|
||||
// Special class for parsing into objects that define a ParseFrom() method
|
||||
template <class T>
|
||||
class _RE2_MatchObject {
|
||||
public:
|
||||
static inline bool Parse(const char* str, size_t n, void* dest) {
|
||||
if (dest == NULL) return true;
|
||||
T* object = reinterpret_cast<T*>(dest);
|
||||
return object->ParseFrom(str, n);
|
||||
}
|
||||
};
|
||||
|
||||
class RE2::Arg {
|
||||
public:
|
||||
// Empty constructor so we can declare arrays of RE2::Arg
|
||||
Arg();
|
||||
|
||||
// Constructor specially designed for NULL arguments
|
||||
Arg(void*);
|
||||
Arg(std::nullptr_t);
|
||||
|
||||
typedef bool (*Parser)(const char* str, size_t n, void* dest);
|
||||
|
||||
// Type-specific parsers
|
||||
#define MAKE_PARSER(type, name) \
|
||||
Arg(type* p) : arg_(p), parser_(name) {} \
|
||||
Arg(type* p, Parser parser) : arg_(p), parser_(parser) {}
|
||||
|
||||
MAKE_PARSER(char, parse_char)
|
||||
MAKE_PARSER(signed char, parse_schar)
|
||||
MAKE_PARSER(unsigned char, parse_uchar)
|
||||
MAKE_PARSER(float, parse_float)
|
||||
MAKE_PARSER(double, parse_double)
|
||||
MAKE_PARSER(std::string, parse_string)
|
||||
MAKE_PARSER(StringPiece, parse_stringpiece)
|
||||
|
||||
MAKE_PARSER(short, parse_short)
|
||||
MAKE_PARSER(unsigned short, parse_ushort)
|
||||
MAKE_PARSER(int, parse_int)
|
||||
MAKE_PARSER(unsigned int, parse_uint)
|
||||
MAKE_PARSER(long, parse_long)
|
||||
MAKE_PARSER(unsigned long, parse_ulong)
|
||||
MAKE_PARSER(long long, parse_longlong)
|
||||
MAKE_PARSER(unsigned long long, parse_ulonglong)
|
||||
|
||||
#undef MAKE_PARSER
|
||||
|
||||
// Generic constructor templates
|
||||
template <class T> Arg(T* p)
|
||||
: arg_(p), parser_(_RE2_MatchObject<T>::Parse) { }
|
||||
template <class T> Arg(T* p, Parser parser)
|
||||
: arg_(p), parser_(parser) { }
|
||||
|
||||
// Parse the data
|
||||
bool Parse(const char* str, size_t n) const;
|
||||
|
||||
private:
|
||||
void* arg_;
|
||||
Parser parser_;
|
||||
|
||||
static bool parse_null (const char* str, size_t n, void* dest);
|
||||
static bool parse_char (const char* str, size_t n, void* dest);
|
||||
static bool parse_schar (const char* str, size_t n, void* dest);
|
||||
static bool parse_uchar (const char* str, size_t n, void* dest);
|
||||
static bool parse_float (const char* str, size_t n, void* dest);
|
||||
static bool parse_double (const char* str, size_t n, void* dest);
|
||||
static bool parse_string (const char* str, size_t n, void* dest);
|
||||
static bool parse_stringpiece (const char* str, size_t n, void* dest);
|
||||
|
||||
#define DECLARE_INTEGER_PARSER(name) \
|
||||
private: \
|
||||
static bool parse_##name(const char* str, size_t n, void* dest); \
|
||||
static bool parse_##name##_radix(const char* str, size_t n, void* dest, \
|
||||
int radix); \
|
||||
\
|
||||
public: \
|
||||
static bool parse_##name##_hex(const char* str, size_t n, void* dest); \
|
||||
static bool parse_##name##_octal(const char* str, size_t n, void* dest); \
|
||||
static bool parse_##name##_cradix(const char* str, size_t n, void* dest);
|
||||
|
||||
DECLARE_INTEGER_PARSER(short)
|
||||
DECLARE_INTEGER_PARSER(ushort)
|
||||
DECLARE_INTEGER_PARSER(int)
|
||||
DECLARE_INTEGER_PARSER(uint)
|
||||
DECLARE_INTEGER_PARSER(long)
|
||||
DECLARE_INTEGER_PARSER(ulong)
|
||||
DECLARE_INTEGER_PARSER(longlong)
|
||||
DECLARE_INTEGER_PARSER(ulonglong)
|
||||
|
||||
#undef DECLARE_INTEGER_PARSER
|
||||
|
||||
};
|
||||
|
||||
inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { }
|
||||
inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { }
|
||||
inline RE2::Arg::Arg(std::nullptr_t p) : arg_(p), parser_(parse_null) { }
|
||||
|
||||
inline bool RE2::Arg::Parse(const char* str, size_t n) const {
|
||||
return (*parser_)(str, n, arg_);
|
||||
}
|
||||
|
||||
// This part of the parser, appropriate only for ints, deals with bases
|
||||
#define MAKE_INTEGER_PARSER(type, name) \
|
||||
inline RE2::Arg RE2::Hex(type* ptr) { \
|
||||
return RE2::Arg(ptr, RE2::Arg::parse_##name##_hex); \
|
||||
} \
|
||||
inline RE2::Arg RE2::Octal(type* ptr) { \
|
||||
return RE2::Arg(ptr, RE2::Arg::parse_##name##_octal); \
|
||||
} \
|
||||
inline RE2::Arg RE2::CRadix(type* ptr) { \
|
||||
return RE2::Arg(ptr, RE2::Arg::parse_##name##_cradix); \
|
||||
}
|
||||
|
||||
MAKE_INTEGER_PARSER(short, short)
|
||||
MAKE_INTEGER_PARSER(unsigned short, ushort)
|
||||
MAKE_INTEGER_PARSER(int, int)
|
||||
MAKE_INTEGER_PARSER(unsigned int, uint)
|
||||
MAKE_INTEGER_PARSER(long, long)
|
||||
MAKE_INTEGER_PARSER(unsigned long, ulong)
|
||||
MAKE_INTEGER_PARSER(long long, longlong)
|
||||
MAKE_INTEGER_PARSER(unsigned long long, ulonglong)
|
||||
|
||||
#undef MAKE_INTEGER_PARSER
|
||||
|
||||
#ifndef SWIG
|
||||
|
||||
// Silence warnings about missing initializers for members of LazyRE2.
|
||||
// Note that we test for Clang first because it defines __GNUC__ as well.
|
||||
#if defined(__clang__)
|
||||
#elif defined(__GNUC__) && __GNUC__ >= 6
|
||||
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
|
||||
#endif
|
||||
|
||||
// Helper for writing global or static RE2s safely.
|
||||
// Write
|
||||
// static LazyRE2 re = {".*"};
|
||||
// and then use *re instead of writing
|
||||
// static RE2 re(".*");
|
||||
// The former is more careful about multithreaded
|
||||
// situations than the latter.
|
||||
//
|
||||
// N.B. This class never deletes the RE2 object that
|
||||
// it constructs: that's a feature, so that it can be used
|
||||
// for global and function static variables.
|
||||
class LazyRE2 {
|
||||
private:
|
||||
struct NoArg {};
|
||||
|
||||
public:
|
||||
typedef RE2 element_type; // support std::pointer_traits
|
||||
|
||||
// Constructor omitted to preserve braced initialization in C++98.
|
||||
|
||||
// Pretend to be a pointer to Type (never NULL due to on-demand creation):
|
||||
RE2& operator*() const { return *get(); }
|
||||
RE2* operator->() const { return get(); }
|
||||
|
||||
// Named accessor/initializer:
|
||||
RE2* get() const {
|
||||
std::call_once(once_, &LazyRE2::Init, this);
|
||||
return ptr_;
|
||||
}
|
||||
|
||||
// All data fields must be public to support {"foo"} initialization.
|
||||
const char* pattern_;
|
||||
RE2::CannedOptions options_;
|
||||
NoArg barrier_against_excess_initializers_;
|
||||
|
||||
mutable RE2* ptr_;
|
||||
mutable std::once_flag once_;
|
||||
|
||||
private:
|
||||
static void Init(const LazyRE2* lazy_re2) {
|
||||
lazy_re2->ptr_ = new RE2(lazy_re2->pattern_, lazy_re2->options_);
|
||||
}
|
||||
|
||||
void operator=(const LazyRE2&); // disallowed
|
||||
};
|
||||
#endif // SWIG
|
||||
|
||||
} // namespace re2
|
||||
|
||||
using re2::RE2;
|
||||
using re2::LazyRE2;
|
||||
|
||||
#endif // RE2_RE2_H_
|
971
extern/re2/re2/regexp.cc
vendored
Normal file
971
extern/re2/re2/regexp.cc
vendored
Normal file
@ -0,0 +1,971 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Regular expression representation.
|
||||
// Tested by parse_test.cc
|
||||
|
||||
#include "re2/regexp.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/mutex.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/stringpiece.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Constructor. Allocates vectors as appropriate for operator.
|
||||
Regexp::Regexp(RegexpOp op, ParseFlags parse_flags)
|
||||
: op_(static_cast<uint8_t>(op)),
|
||||
simple_(false),
|
||||
parse_flags_(static_cast<uint16_t>(parse_flags)),
|
||||
ref_(1),
|
||||
nsub_(0),
|
||||
down_(NULL) {
|
||||
subone_ = NULL;
|
||||
memset(the_union_, 0, sizeof the_union_);
|
||||
}
|
||||
|
||||
// Destructor. Assumes already cleaned up children.
|
||||
// Private: use Decref() instead of delete to destroy Regexps.
|
||||
// Can't call Decref on the sub-Regexps here because
|
||||
// that could cause arbitrarily deep recursion, so
|
||||
// required Decref() to have handled them for us.
|
||||
Regexp::~Regexp() {
|
||||
if (nsub_ > 0)
|
||||
LOG(DFATAL) << "Regexp not destroyed.";
|
||||
|
||||
switch (op_) {
|
||||
default:
|
||||
break;
|
||||
case kRegexpCapture:
|
||||
delete name_;
|
||||
break;
|
||||
case kRegexpLiteralString:
|
||||
delete[] runes_;
|
||||
break;
|
||||
case kRegexpCharClass:
|
||||
if (cc_)
|
||||
cc_->Delete();
|
||||
delete ccb_;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If it's possible to destroy this regexp without recurring,
|
||||
// do so and return true. Else return false.
|
||||
bool Regexp::QuickDestroy() {
|
||||
if (nsub_ == 0) {
|
||||
delete this;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Lazily allocated.
|
||||
static Mutex* ref_mutex;
|
||||
static std::map<Regexp*, int>* ref_map;
|
||||
|
||||
int Regexp::Ref() {
|
||||
if (ref_ < kMaxRef)
|
||||
return ref_;
|
||||
|
||||
MutexLock l(ref_mutex);
|
||||
return (*ref_map)[this];
|
||||
}
|
||||
|
||||
// Increments reference count, returns object as convenience.
|
||||
Regexp* Regexp::Incref() {
|
||||
if (ref_ >= kMaxRef-1) {
|
||||
static std::once_flag ref_once;
|
||||
std::call_once(ref_once, []() {
|
||||
ref_mutex = new Mutex;
|
||||
ref_map = new std::map<Regexp*, int>;
|
||||
});
|
||||
|
||||
// Store ref count in overflow map.
|
||||
MutexLock l(ref_mutex);
|
||||
if (ref_ == kMaxRef) {
|
||||
// already overflowed
|
||||
(*ref_map)[this]++;
|
||||
} else {
|
||||
// overflowing now
|
||||
(*ref_map)[this] = kMaxRef;
|
||||
ref_ = kMaxRef;
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
ref_++;
|
||||
return this;
|
||||
}
|
||||
|
||||
// Decrements reference count and deletes this object if count reaches 0.
|
||||
void Regexp::Decref() {
|
||||
if (ref_ == kMaxRef) {
|
||||
// Ref count is stored in overflow map.
|
||||
MutexLock l(ref_mutex);
|
||||
int r = (*ref_map)[this] - 1;
|
||||
if (r < kMaxRef) {
|
||||
ref_ = static_cast<uint16_t>(r);
|
||||
ref_map->erase(this);
|
||||
} else {
|
||||
(*ref_map)[this] = r;
|
||||
}
|
||||
return;
|
||||
}
|
||||
ref_--;
|
||||
if (ref_ == 0)
|
||||
Destroy();
|
||||
}
|
||||
|
||||
// Deletes this object; ref count has count reached 0.
|
||||
void Regexp::Destroy() {
|
||||
if (QuickDestroy())
|
||||
return;
|
||||
|
||||
// Handle recursive Destroy with explicit stack
|
||||
// to avoid arbitrarily deep recursion on process stack [sigh].
|
||||
down_ = NULL;
|
||||
Regexp* stack = this;
|
||||
while (stack != NULL) {
|
||||
Regexp* re = stack;
|
||||
stack = re->down_;
|
||||
if (re->ref_ != 0)
|
||||
LOG(DFATAL) << "Bad reference count " << re->ref_;
|
||||
if (re->nsub_ > 0) {
|
||||
Regexp** subs = re->sub();
|
||||
for (int i = 0; i < re->nsub_; i++) {
|
||||
Regexp* sub = subs[i];
|
||||
if (sub == NULL)
|
||||
continue;
|
||||
if (sub->ref_ == kMaxRef)
|
||||
sub->Decref();
|
||||
else
|
||||
--sub->ref_;
|
||||
if (sub->ref_ == 0 && !sub->QuickDestroy()) {
|
||||
sub->down_ = stack;
|
||||
stack = sub;
|
||||
}
|
||||
}
|
||||
if (re->nsub_ > 1)
|
||||
delete[] subs;
|
||||
re->nsub_ = 0;
|
||||
}
|
||||
delete re;
|
||||
}
|
||||
}
|
||||
|
||||
void Regexp::AddRuneToString(Rune r) {
|
||||
DCHECK(op_ == kRegexpLiteralString);
|
||||
if (nrunes_ == 0) {
|
||||
// start with 8
|
||||
runes_ = new Rune[8];
|
||||
} else if (nrunes_ >= 8 && (nrunes_ & (nrunes_ - 1)) == 0) {
|
||||
// double on powers of two
|
||||
Rune *old = runes_;
|
||||
runes_ = new Rune[nrunes_ * 2];
|
||||
for (int i = 0; i < nrunes_; i++)
|
||||
runes_[i] = old[i];
|
||||
delete[] old;
|
||||
}
|
||||
|
||||
runes_[nrunes_++] = r;
|
||||
}
|
||||
|
||||
Regexp* Regexp::HaveMatch(int match_id, ParseFlags flags) {
|
||||
Regexp* re = new Regexp(kRegexpHaveMatch, flags);
|
||||
re->match_id_ = match_id;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::StarPlusOrQuest(RegexpOp op, Regexp* sub, ParseFlags flags) {
|
||||
// Squash **, ++ and ??.
|
||||
if (op == sub->op() && flags == sub->parse_flags())
|
||||
return sub;
|
||||
|
||||
// Squash *+, *?, +*, +?, ?* and ?+. They all squash to *, so because
|
||||
// op is Star/Plus/Quest, we just have to check that sub->op() is too.
|
||||
if ((sub->op() == kRegexpStar ||
|
||||
sub->op() == kRegexpPlus ||
|
||||
sub->op() == kRegexpQuest) &&
|
||||
flags == sub->parse_flags()) {
|
||||
// If sub is Star, no need to rewrite it.
|
||||
if (sub->op() == kRegexpStar)
|
||||
return sub;
|
||||
|
||||
// Rewrite sub to Star.
|
||||
Regexp* re = new Regexp(kRegexpStar, flags);
|
||||
re->AllocSub(1);
|
||||
re->sub()[0] = sub->sub()[0]->Incref();
|
||||
sub->Decref(); // We didn't consume the reference after all.
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* re = new Regexp(op, flags);
|
||||
re->AllocSub(1);
|
||||
re->sub()[0] = sub;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::Plus(Regexp* sub, ParseFlags flags) {
|
||||
return StarPlusOrQuest(kRegexpPlus, sub, flags);
|
||||
}
|
||||
|
||||
Regexp* Regexp::Star(Regexp* sub, ParseFlags flags) {
|
||||
return StarPlusOrQuest(kRegexpStar, sub, flags);
|
||||
}
|
||||
|
||||
Regexp* Regexp::Quest(Regexp* sub, ParseFlags flags) {
|
||||
return StarPlusOrQuest(kRegexpQuest, sub, flags);
|
||||
}
|
||||
|
||||
Regexp* Regexp::ConcatOrAlternate(RegexpOp op, Regexp** sub, int nsub,
|
||||
ParseFlags flags, bool can_factor) {
|
||||
if (nsub == 1)
|
||||
return sub[0];
|
||||
|
||||
if (nsub == 0) {
|
||||
if (op == kRegexpAlternate)
|
||||
return new Regexp(kRegexpNoMatch, flags);
|
||||
else
|
||||
return new Regexp(kRegexpEmptyMatch, flags);
|
||||
}
|
||||
|
||||
Regexp** subcopy = NULL;
|
||||
if (op == kRegexpAlternate && can_factor) {
|
||||
// Going to edit sub; make a copy so we don't step on caller.
|
||||
subcopy = new Regexp*[nsub];
|
||||
memmove(subcopy, sub, nsub * sizeof sub[0]);
|
||||
sub = subcopy;
|
||||
nsub = FactorAlternation(sub, nsub, flags);
|
||||
if (nsub == 1) {
|
||||
Regexp* re = sub[0];
|
||||
delete[] subcopy;
|
||||
return re;
|
||||
}
|
||||
}
|
||||
|
||||
if (nsub > kMaxNsub) {
|
||||
// Too many subexpressions to fit in a single Regexp.
|
||||
// Make a two-level tree. Two levels gets us to 65535^2.
|
||||
int nbigsub = (nsub+kMaxNsub-1)/kMaxNsub;
|
||||
Regexp* re = new Regexp(op, flags);
|
||||
re->AllocSub(nbigsub);
|
||||
Regexp** subs = re->sub();
|
||||
for (int i = 0; i < nbigsub - 1; i++)
|
||||
subs[i] = ConcatOrAlternate(op, sub+i*kMaxNsub, kMaxNsub, flags, false);
|
||||
subs[nbigsub - 1] = ConcatOrAlternate(op, sub+(nbigsub-1)*kMaxNsub,
|
||||
nsub - (nbigsub-1)*kMaxNsub, flags,
|
||||
false);
|
||||
delete[] subcopy;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* re = new Regexp(op, flags);
|
||||
re->AllocSub(nsub);
|
||||
Regexp** subs = re->sub();
|
||||
for (int i = 0; i < nsub; i++)
|
||||
subs[i] = sub[i];
|
||||
|
||||
delete[] subcopy;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::Concat(Regexp** sub, int nsub, ParseFlags flags) {
|
||||
return ConcatOrAlternate(kRegexpConcat, sub, nsub, flags, false);
|
||||
}
|
||||
|
||||
Regexp* Regexp::Alternate(Regexp** sub, int nsub, ParseFlags flags) {
|
||||
return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, true);
|
||||
}
|
||||
|
||||
Regexp* Regexp::AlternateNoFactor(Regexp** sub, int nsub, ParseFlags flags) {
|
||||
return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, false);
|
||||
}
|
||||
|
||||
Regexp* Regexp::Capture(Regexp* sub, ParseFlags flags, int cap) {
|
||||
Regexp* re = new Regexp(kRegexpCapture, flags);
|
||||
re->AllocSub(1);
|
||||
re->sub()[0] = sub;
|
||||
re->cap_ = cap;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::Repeat(Regexp* sub, ParseFlags flags, int min, int max) {
|
||||
Regexp* re = new Regexp(kRegexpRepeat, flags);
|
||||
re->AllocSub(1);
|
||||
re->sub()[0] = sub;
|
||||
re->min_ = min;
|
||||
re->max_ = max;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::NewLiteral(Rune rune, ParseFlags flags) {
|
||||
Regexp* re = new Regexp(kRegexpLiteral, flags);
|
||||
re->rune_ = rune;
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::LiteralString(Rune* runes, int nrunes, ParseFlags flags) {
|
||||
if (nrunes <= 0)
|
||||
return new Regexp(kRegexpEmptyMatch, flags);
|
||||
if (nrunes == 1)
|
||||
return NewLiteral(runes[0], flags);
|
||||
Regexp* re = new Regexp(kRegexpLiteralString, flags);
|
||||
for (int i = 0; i < nrunes; i++)
|
||||
re->AddRuneToString(runes[i]);
|
||||
return re;
|
||||
}
|
||||
|
||||
Regexp* Regexp::NewCharClass(CharClass* cc, ParseFlags flags) {
|
||||
Regexp* re = new Regexp(kRegexpCharClass, flags);
|
||||
re->cc_ = cc;
|
||||
return re;
|
||||
}
|
||||
|
||||
void Regexp::Swap(Regexp* that) {
|
||||
// Regexp is not trivially copyable, so we cannot freely copy it with
|
||||
// memmove(3), but swapping objects like so is safe for our purposes.
|
||||
char tmp[sizeof *this];
|
||||
void* vthis = reinterpret_cast<void*>(this);
|
||||
void* vthat = reinterpret_cast<void*>(that);
|
||||
memmove(tmp, vthis, sizeof *this);
|
||||
memmove(vthis, vthat, sizeof *this);
|
||||
memmove(vthat, tmp, sizeof *this);
|
||||
}
|
||||
|
||||
// Tests equality of all top-level structure but not subregexps.
|
||||
static bool TopEqual(Regexp* a, Regexp* b) {
|
||||
if (a->op() != b->op())
|
||||
return false;
|
||||
|
||||
switch (a->op()) {
|
||||
case kRegexpNoMatch:
|
||||
case kRegexpEmptyMatch:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
case kRegexpBeginLine:
|
||||
case kRegexpEndLine:
|
||||
case kRegexpWordBoundary:
|
||||
case kRegexpNoWordBoundary:
|
||||
case kRegexpBeginText:
|
||||
return true;
|
||||
|
||||
case kRegexpEndText:
|
||||
// The parse flags remember whether it's \z or (?-m:$),
|
||||
// which matters when testing against PCRE.
|
||||
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::WasDollar) == 0;
|
||||
|
||||
case kRegexpLiteral:
|
||||
return a->rune() == b->rune() &&
|
||||
((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0;
|
||||
|
||||
case kRegexpLiteralString:
|
||||
return a->nrunes() == b->nrunes() &&
|
||||
((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0 &&
|
||||
memcmp(a->runes(), b->runes(),
|
||||
a->nrunes() * sizeof a->runes()[0]) == 0;
|
||||
|
||||
case kRegexpAlternate:
|
||||
case kRegexpConcat:
|
||||
return a->nsub() == b->nsub();
|
||||
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0;
|
||||
|
||||
case kRegexpRepeat:
|
||||
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0 &&
|
||||
a->min() == b->min() &&
|
||||
a->max() == b->max();
|
||||
|
||||
case kRegexpCapture:
|
||||
return a->cap() == b->cap() && a->name() == b->name();
|
||||
|
||||
case kRegexpHaveMatch:
|
||||
return a->match_id() == b->match_id();
|
||||
|
||||
case kRegexpCharClass: {
|
||||
CharClass* acc = a->cc();
|
||||
CharClass* bcc = b->cc();
|
||||
return acc->size() == bcc->size() &&
|
||||
acc->end() - acc->begin() == bcc->end() - bcc->begin() &&
|
||||
memcmp(acc->begin(), bcc->begin(),
|
||||
(acc->end() - acc->begin()) * sizeof acc->begin()[0]) == 0;
|
||||
}
|
||||
}
|
||||
|
||||
LOG(DFATAL) << "Unexpected op in Regexp::Equal: " << a->op();
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool Regexp::Equal(Regexp* a, Regexp* b) {
|
||||
if (a == NULL || b == NULL)
|
||||
return a == b;
|
||||
|
||||
if (!TopEqual(a, b))
|
||||
return false;
|
||||
|
||||
// Fast path:
|
||||
// return without allocating vector if there are no subregexps.
|
||||
switch (a->op()) {
|
||||
case kRegexpAlternate:
|
||||
case kRegexpConcat:
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
case kRegexpRepeat:
|
||||
case kRegexpCapture:
|
||||
break;
|
||||
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
|
||||
// Committed to doing real work.
|
||||
// The stack (vector) has pairs of regexps waiting to
|
||||
// be compared. The regexps are only equal if
|
||||
// all the pairs end up being equal.
|
||||
std::vector<Regexp*> stk;
|
||||
|
||||
for (;;) {
|
||||
// Invariant: TopEqual(a, b) == true.
|
||||
Regexp* a2;
|
||||
Regexp* b2;
|
||||
switch (a->op()) {
|
||||
default:
|
||||
break;
|
||||
case kRegexpAlternate:
|
||||
case kRegexpConcat:
|
||||
for (int i = 0; i < a->nsub(); i++) {
|
||||
a2 = a->sub()[i];
|
||||
b2 = b->sub()[i];
|
||||
if (!TopEqual(a2, b2))
|
||||
return false;
|
||||
stk.push_back(a2);
|
||||
stk.push_back(b2);
|
||||
}
|
||||
break;
|
||||
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
case kRegexpRepeat:
|
||||
case kRegexpCapture:
|
||||
a2 = a->sub()[0];
|
||||
b2 = b->sub()[0];
|
||||
if (!TopEqual(a2, b2))
|
||||
return false;
|
||||
// Really:
|
||||
// stk.push_back(a2);
|
||||
// stk.push_back(b2);
|
||||
// break;
|
||||
// but faster to assign directly and loop.
|
||||
a = a2;
|
||||
b = b2;
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t n = stk.size();
|
||||
if (n == 0)
|
||||
break;
|
||||
|
||||
DCHECK_GE(n, 2);
|
||||
a = stk[n-2];
|
||||
b = stk[n-1];
|
||||
stk.resize(n-2);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Keep in sync with enum RegexpStatusCode in regexp.h
|
||||
static const char *kErrorStrings[] = {
|
||||
"no error",
|
||||
"unexpected error",
|
||||
"invalid escape sequence",
|
||||
"invalid character class",
|
||||
"invalid character class range",
|
||||
"missing ]",
|
||||
"missing )",
|
||||
"trailing \\",
|
||||
"no argument for repetition operator",
|
||||
"invalid repetition size",
|
||||
"bad repetition operator",
|
||||
"invalid perl operator",
|
||||
"invalid UTF-8",
|
||||
"invalid named capture group",
|
||||
};
|
||||
|
||||
std::string RegexpStatus::CodeText(enum RegexpStatusCode code) {
|
||||
if (code < 0 || code >= arraysize(kErrorStrings))
|
||||
code = kRegexpInternalError;
|
||||
return kErrorStrings[code];
|
||||
}
|
||||
|
||||
std::string RegexpStatus::Text() const {
|
||||
if (error_arg_.empty())
|
||||
return CodeText(code_);
|
||||
std::string s;
|
||||
s.append(CodeText(code_));
|
||||
s.append(": ");
|
||||
s.append(error_arg_.data(), error_arg_.size());
|
||||
return s;
|
||||
}
|
||||
|
||||
void RegexpStatus::Copy(const RegexpStatus& status) {
|
||||
code_ = status.code_;
|
||||
error_arg_ = status.error_arg_;
|
||||
}
|
||||
|
||||
typedef int Ignored; // Walker<void> doesn't exist
|
||||
|
||||
// Walker subclass to count capturing parens in regexp.
|
||||
class NumCapturesWalker : public Regexp::Walker<Ignored> {
|
||||
public:
|
||||
NumCapturesWalker() : ncapture_(0) {}
|
||||
int ncapture() { return ncapture_; }
|
||||
|
||||
virtual Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
||||
if (re->op() == kRegexpCapture)
|
||||
ncapture_++;
|
||||
return ignored;
|
||||
}
|
||||
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "NumCapturesWalker::ShortVisit called";
|
||||
return ignored;
|
||||
}
|
||||
|
||||
private:
|
||||
int ncapture_;
|
||||
|
||||
NumCapturesWalker(const NumCapturesWalker&) = delete;
|
||||
NumCapturesWalker& operator=(const NumCapturesWalker&) = delete;
|
||||
};
|
||||
|
||||
int Regexp::NumCaptures() {
|
||||
NumCapturesWalker w;
|
||||
w.Walk(this, 0);
|
||||
return w.ncapture();
|
||||
}
|
||||
|
||||
// Walker class to build map of named capture groups and their indices.
|
||||
class NamedCapturesWalker : public Regexp::Walker<Ignored> {
|
||||
public:
|
||||
NamedCapturesWalker() : map_(NULL) {}
|
||||
~NamedCapturesWalker() { delete map_; }
|
||||
|
||||
std::map<std::string, int>* TakeMap() {
|
||||
std::map<std::string, int>* m = map_;
|
||||
map_ = NULL;
|
||||
return m;
|
||||
}
|
||||
|
||||
Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
||||
if (re->op() == kRegexpCapture && re->name() != NULL) {
|
||||
// Allocate map once we find a name.
|
||||
if (map_ == NULL)
|
||||
map_ = new std::map<std::string, int>;
|
||||
|
||||
// Record first occurrence of each name.
|
||||
// (The rule is that if you have the same name
|
||||
// multiple times, only the leftmost one counts.)
|
||||
if (map_->find(*re->name()) == map_->end())
|
||||
(*map_)[*re->name()] = re->cap();
|
||||
}
|
||||
return ignored;
|
||||
}
|
||||
|
||||
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "NamedCapturesWalker::ShortVisit called";
|
||||
return ignored;
|
||||
}
|
||||
|
||||
private:
|
||||
std::map<std::string, int>* map_;
|
||||
|
||||
NamedCapturesWalker(const NamedCapturesWalker&) = delete;
|
||||
NamedCapturesWalker& operator=(const NamedCapturesWalker&) = delete;
|
||||
};
|
||||
|
||||
std::map<std::string, int>* Regexp::NamedCaptures() {
|
||||
NamedCapturesWalker w;
|
||||
w.Walk(this, 0);
|
||||
return w.TakeMap();
|
||||
}
|
||||
|
||||
// Walker class to build map from capture group indices to their names.
|
||||
class CaptureNamesWalker : public Regexp::Walker<Ignored> {
|
||||
public:
|
||||
CaptureNamesWalker() : map_(NULL) {}
|
||||
~CaptureNamesWalker() { delete map_; }
|
||||
|
||||
std::map<int, std::string>* TakeMap() {
|
||||
std::map<int, std::string>* m = map_;
|
||||
map_ = NULL;
|
||||
return m;
|
||||
}
|
||||
|
||||
Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
||||
if (re->op() == kRegexpCapture && re->name() != NULL) {
|
||||
// Allocate map once we find a name.
|
||||
if (map_ == NULL)
|
||||
map_ = new std::map<int, std::string>;
|
||||
|
||||
(*map_)[re->cap()] = *re->name();
|
||||
}
|
||||
return ignored;
|
||||
}
|
||||
|
||||
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "CaptureNamesWalker::ShortVisit called";
|
||||
return ignored;
|
||||
}
|
||||
|
||||
private:
|
||||
std::map<int, std::string>* map_;
|
||||
|
||||
CaptureNamesWalker(const CaptureNamesWalker&) = delete;
|
||||
CaptureNamesWalker& operator=(const CaptureNamesWalker&) = delete;
|
||||
};
|
||||
|
||||
std::map<int, std::string>* Regexp::CaptureNames() {
|
||||
CaptureNamesWalker w;
|
||||
w.Walk(this, 0);
|
||||
return w.TakeMap();
|
||||
}
|
||||
|
||||
// Determines whether regexp matches must be anchored
|
||||
// with a fixed string prefix. If so, returns the prefix and
|
||||
// the regexp that remains after the prefix. The prefix might
|
||||
// be ASCII case-insensitive.
|
||||
bool Regexp::RequiredPrefix(std::string* prefix, bool* foldcase,
|
||||
Regexp** suffix) {
|
||||
// No need for a walker: the regexp must be of the form
|
||||
// 1. some number of ^ anchors
|
||||
// 2. a literal char or string
|
||||
// 3. the rest
|
||||
prefix->clear();
|
||||
*foldcase = false;
|
||||
*suffix = NULL;
|
||||
if (op_ != kRegexpConcat)
|
||||
return false;
|
||||
|
||||
// Some number of anchors, then a literal or concatenation.
|
||||
int i = 0;
|
||||
Regexp** sub = this->sub();
|
||||
while (i < nsub_ && sub[i]->op_ == kRegexpBeginText)
|
||||
i++;
|
||||
if (i == 0 || i >= nsub_)
|
||||
return false;
|
||||
|
||||
Regexp* re = sub[i];
|
||||
switch (re->op_) {
|
||||
default:
|
||||
return false;
|
||||
|
||||
case kRegexpLiteralString:
|
||||
// Convert to string in proper encoding.
|
||||
if (re->parse_flags() & Latin1) {
|
||||
prefix->resize(re->nrunes_);
|
||||
for (int j = 0; j < re->nrunes_; j++)
|
||||
(*prefix)[j] = static_cast<char>(re->runes_[j]);
|
||||
} else {
|
||||
// Convert to UTF-8 in place.
|
||||
// Assume worst-case space and then trim.
|
||||
prefix->resize(re->nrunes_ * UTFmax);
|
||||
char *p = &(*prefix)[0];
|
||||
for (int j = 0; j < re->nrunes_; j++) {
|
||||
Rune r = re->runes_[j];
|
||||
if (r < Runeself)
|
||||
*p++ = static_cast<char>(r);
|
||||
else
|
||||
p += runetochar(p, &r);
|
||||
}
|
||||
prefix->resize(p - &(*prefix)[0]);
|
||||
}
|
||||
break;
|
||||
|
||||
case kRegexpLiteral:
|
||||
if ((re->parse_flags() & Latin1) || re->rune_ < Runeself) {
|
||||
prefix->append(1, static_cast<char>(re->rune_));
|
||||
} else {
|
||||
char buf[UTFmax];
|
||||
prefix->append(buf, runetochar(buf, &re->rune_));
|
||||
}
|
||||
break;
|
||||
}
|
||||
*foldcase = (sub[i]->parse_flags() & FoldCase) != 0;
|
||||
i++;
|
||||
|
||||
// The rest.
|
||||
if (i < nsub_) {
|
||||
for (int j = i; j < nsub_; j++)
|
||||
sub[j]->Incref();
|
||||
re = Concat(sub + i, nsub_ - i, parse_flags());
|
||||
} else {
|
||||
re = new Regexp(kRegexpEmptyMatch, parse_flags());
|
||||
}
|
||||
*suffix = re;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Character class builder is a balanced binary tree (STL set)
|
||||
// containing non-overlapping, non-abutting RuneRanges.
|
||||
// The less-than operator used in the tree treats two
|
||||
// ranges as equal if they overlap at all, so that
|
||||
// lookups for a particular Rune are possible.
|
||||
|
||||
CharClassBuilder::CharClassBuilder() {
|
||||
nrunes_ = 0;
|
||||
upper_ = 0;
|
||||
lower_ = 0;
|
||||
}
|
||||
|
||||
// Add lo-hi to the class; return whether class got bigger.
|
||||
bool CharClassBuilder::AddRange(Rune lo, Rune hi) {
|
||||
if (hi < lo)
|
||||
return false;
|
||||
|
||||
if (lo <= 'z' && hi >= 'A') {
|
||||
// Overlaps some alpha, maybe not all.
|
||||
// Update bitmaps telling which ASCII letters are in the set.
|
||||
Rune lo1 = std::max<Rune>(lo, 'A');
|
||||
Rune hi1 = std::min<Rune>(hi, 'Z');
|
||||
if (lo1 <= hi1)
|
||||
upper_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'A');
|
||||
|
||||
lo1 = std::max<Rune>(lo, 'a');
|
||||
hi1 = std::min<Rune>(hi, 'z');
|
||||
if (lo1 <= hi1)
|
||||
lower_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'a');
|
||||
}
|
||||
|
||||
{ // Check whether lo, hi is already in the class.
|
||||
iterator it = ranges_.find(RuneRange(lo, lo));
|
||||
if (it != end() && it->lo <= lo && hi <= it->hi)
|
||||
return false;
|
||||
}
|
||||
|
||||
// Look for a range abutting lo on the left.
|
||||
// If it exists, take it out and increase our range.
|
||||
if (lo > 0) {
|
||||
iterator it = ranges_.find(RuneRange(lo-1, lo-1));
|
||||
if (it != end()) {
|
||||
lo = it->lo;
|
||||
if (it->hi > hi)
|
||||
hi = it->hi;
|
||||
nrunes_ -= it->hi - it->lo + 1;
|
||||
ranges_.erase(it);
|
||||
}
|
||||
}
|
||||
|
||||
// Look for a range abutting hi on the right.
|
||||
// If it exists, take it out and increase our range.
|
||||
if (hi < Runemax) {
|
||||
iterator it = ranges_.find(RuneRange(hi+1, hi+1));
|
||||
if (it != end()) {
|
||||
hi = it->hi;
|
||||
nrunes_ -= it->hi - it->lo + 1;
|
||||
ranges_.erase(it);
|
||||
}
|
||||
}
|
||||
|
||||
// Look for ranges between lo and hi. Take them out.
|
||||
// This is only safe because the set has no overlapping ranges.
|
||||
// We've already removed any ranges abutting lo and hi, so
|
||||
// any that overlap [lo, hi] must be contained within it.
|
||||
for (;;) {
|
||||
iterator it = ranges_.find(RuneRange(lo, hi));
|
||||
if (it == end())
|
||||
break;
|
||||
nrunes_ -= it->hi - it->lo + 1;
|
||||
ranges_.erase(it);
|
||||
}
|
||||
|
||||
// Finally, add [lo, hi].
|
||||
nrunes_ += hi - lo + 1;
|
||||
ranges_.insert(RuneRange(lo, hi));
|
||||
return true;
|
||||
}
|
||||
|
||||
void CharClassBuilder::AddCharClass(CharClassBuilder *cc) {
|
||||
for (iterator it = cc->begin(); it != cc->end(); ++it)
|
||||
AddRange(it->lo, it->hi);
|
||||
}
|
||||
|
||||
bool CharClassBuilder::Contains(Rune r) {
|
||||
return ranges_.find(RuneRange(r, r)) != end();
|
||||
}
|
||||
|
||||
// Does the character class behave the same on A-Z as on a-z?
|
||||
bool CharClassBuilder::FoldsASCII() {
|
||||
return ((upper_ ^ lower_) & AlphaMask) == 0;
|
||||
}
|
||||
|
||||
CharClassBuilder* CharClassBuilder::Copy() {
|
||||
CharClassBuilder* cc = new CharClassBuilder;
|
||||
for (iterator it = begin(); it != end(); ++it)
|
||||
cc->ranges_.insert(RuneRange(it->lo, it->hi));
|
||||
cc->upper_ = upper_;
|
||||
cc->lower_ = lower_;
|
||||
cc->nrunes_ = nrunes_;
|
||||
return cc;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void CharClassBuilder::RemoveAbove(Rune r) {
|
||||
if (r >= Runemax)
|
||||
return;
|
||||
|
||||
if (r < 'z') {
|
||||
if (r < 'a')
|
||||
lower_ = 0;
|
||||
else
|
||||
lower_ &= AlphaMask >> ('z' - r);
|
||||
}
|
||||
|
||||
if (r < 'Z') {
|
||||
if (r < 'A')
|
||||
upper_ = 0;
|
||||
else
|
||||
upper_ &= AlphaMask >> ('Z' - r);
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
|
||||
iterator it = ranges_.find(RuneRange(r + 1, Runemax));
|
||||
if (it == end())
|
||||
break;
|
||||
RuneRange rr = *it;
|
||||
ranges_.erase(it);
|
||||
nrunes_ -= rr.hi - rr.lo + 1;
|
||||
if (rr.lo <= r) {
|
||||
rr.hi = r;
|
||||
ranges_.insert(rr);
|
||||
nrunes_ += rr.hi - rr.lo + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CharClassBuilder::Negate() {
|
||||
// Build up negation and then copy in.
|
||||
// Could edit ranges in place, but C++ won't let me.
|
||||
std::vector<RuneRange> v;
|
||||
v.reserve(ranges_.size() + 1);
|
||||
|
||||
// In negation, first range begins at 0, unless
|
||||
// the current class begins at 0.
|
||||
iterator it = begin();
|
||||
if (it == end()) {
|
||||
v.push_back(RuneRange(0, Runemax));
|
||||
} else {
|
||||
int nextlo = 0;
|
||||
if (it->lo == 0) {
|
||||
nextlo = it->hi + 1;
|
||||
++it;
|
||||
}
|
||||
for (; it != end(); ++it) {
|
||||
v.push_back(RuneRange(nextlo, it->lo - 1));
|
||||
nextlo = it->hi + 1;
|
||||
}
|
||||
if (nextlo <= Runemax)
|
||||
v.push_back(RuneRange(nextlo, Runemax));
|
||||
}
|
||||
|
||||
ranges_.clear();
|
||||
for (size_t i = 0; i < v.size(); i++)
|
||||
ranges_.insert(v[i]);
|
||||
|
||||
upper_ = AlphaMask & ~upper_;
|
||||
lower_ = AlphaMask & ~lower_;
|
||||
nrunes_ = Runemax+1 - nrunes_;
|
||||
}
|
||||
|
||||
// Character class is a sorted list of ranges.
|
||||
// The ranges are allocated in the same block as the header,
|
||||
// necessitating a special allocator and Delete method.
|
||||
|
||||
CharClass* CharClass::New(int maxranges) {
|
||||
CharClass* cc;
|
||||
uint8_t* data = new uint8_t[sizeof *cc + maxranges*sizeof cc->ranges_[0]];
|
||||
cc = reinterpret_cast<CharClass*>(data);
|
||||
cc->ranges_ = reinterpret_cast<RuneRange*>(data + sizeof *cc);
|
||||
cc->nranges_ = 0;
|
||||
cc->folds_ascii_ = false;
|
||||
cc->nrunes_ = 0;
|
||||
return cc;
|
||||
}
|
||||
|
||||
void CharClass::Delete() {
|
||||
uint8_t* data = reinterpret_cast<uint8_t*>(this);
|
||||
delete[] data;
|
||||
}
|
||||
|
||||
CharClass* CharClass::Negate() {
|
||||
CharClass* cc = CharClass::New(nranges_+1);
|
||||
cc->folds_ascii_ = folds_ascii_;
|
||||
cc->nrunes_ = Runemax + 1 - nrunes_;
|
||||
int n = 0;
|
||||
int nextlo = 0;
|
||||
for (CharClass::iterator it = begin(); it != end(); ++it) {
|
||||
if (it->lo == nextlo) {
|
||||
nextlo = it->hi + 1;
|
||||
} else {
|
||||
cc->ranges_[n++] = RuneRange(nextlo, it->lo - 1);
|
||||
nextlo = it->hi + 1;
|
||||
}
|
||||
}
|
||||
if (nextlo <= Runemax)
|
||||
cc->ranges_[n++] = RuneRange(nextlo, Runemax);
|
||||
cc->nranges_ = n;
|
||||
return cc;
|
||||
}
|
||||
|
||||
bool CharClass::Contains(Rune r) {
|
||||
RuneRange* rr = ranges_;
|
||||
int n = nranges_;
|
||||
while (n > 0) {
|
||||
int m = n/2;
|
||||
if (rr[m].hi < r) {
|
||||
rr += m+1;
|
||||
n -= m+1;
|
||||
} else if (r < rr[m].lo) {
|
||||
n = m;
|
||||
} else { // rr[m].lo <= r && r <= rr[m].hi
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
CharClass* CharClassBuilder::GetCharClass() {
|
||||
CharClass* cc = CharClass::New(static_cast<int>(ranges_.size()));
|
||||
int n = 0;
|
||||
for (iterator it = begin(); it != end(); ++it)
|
||||
cc->ranges_[n++] = *it;
|
||||
cc->nranges_ = n;
|
||||
DCHECK_LE(n, static_cast<int>(ranges_.size()));
|
||||
cc->nrunes_ = nrunes_;
|
||||
cc->folds_ascii_ = FoldsASCII();
|
||||
return cc;
|
||||
}
|
||||
|
||||
} // namespace re2
|
652
extern/re2/re2/regexp.h
vendored
Normal file
652
extern/re2/re2/regexp.h
vendored
Normal file
@ -0,0 +1,652 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_REGEXP_H_
|
||||
#define RE2_REGEXP_H_
|
||||
|
||||
// --- SPONSORED LINK --------------------------------------------------
|
||||
// If you want to use this library for regular expression matching,
|
||||
// you should use re2/re2.h, which provides a class RE2 that
|
||||
// mimics the PCRE interface provided by PCRE's C++ wrappers.
|
||||
// This header describes the low-level interface used to implement RE2
|
||||
// and may change in backwards-incompatible ways from time to time.
|
||||
// In contrast, RE2's interface will not.
|
||||
// ---------------------------------------------------------------------
|
||||
|
||||
// Regular expression library: parsing, execution, and manipulation
|
||||
// of regular expressions.
|
||||
//
|
||||
// Any operation that traverses the Regexp structures should be written
|
||||
// using Regexp::Walker (see walker-inl.h), not recursively, because deeply nested
|
||||
// regular expressions such as x++++++++++++++++++++... might cause recursive
|
||||
// traversals to overflow the stack.
|
||||
//
|
||||
// It is the caller's responsibility to provide appropriate mutual exclusion
|
||||
// around manipulation of the regexps. RE2 does this.
|
||||
//
|
||||
// PARSING
|
||||
//
|
||||
// Regexp::Parse parses regular expressions encoded in UTF-8.
|
||||
// The default syntax is POSIX extended regular expressions,
|
||||
// with the following changes:
|
||||
//
|
||||
// 1. Backreferences (optional in POSIX EREs) are not supported.
|
||||
// (Supporting them precludes the use of DFA-based
|
||||
// matching engines.)
|
||||
//
|
||||
// 2. Collating elements and collation classes are not supported.
|
||||
// (No one has needed or wanted them.)
|
||||
//
|
||||
// The exact syntax accepted can be modified by passing flags to
|
||||
// Regexp::Parse. In particular, many of the basic Perl additions
|
||||
// are available. The flags are documented below (search for LikePerl).
|
||||
//
|
||||
// If parsed with the flag Regexp::Latin1, both the regular expression
|
||||
// and the input to the matching routines are assumed to be encoded in
|
||||
// Latin-1, not UTF-8.
|
||||
//
|
||||
// EXECUTION
|
||||
//
|
||||
// Once Regexp has parsed a regular expression, it provides methods
|
||||
// to search text using that regular expression. These methods are
|
||||
// implemented via calling out to other regular expression libraries.
|
||||
// (Let's call them the sublibraries.)
|
||||
//
|
||||
// To call a sublibrary, Regexp does not simply prepare a
|
||||
// string version of the regular expression and hand it to the
|
||||
// sublibrary. Instead, Regexp prepares, from its own parsed form, the
|
||||
// corresponding internal representation used by the sublibrary.
|
||||
// This has the drawback of needing to know the internal representation
|
||||
// used by the sublibrary, but it has two important benefits:
|
||||
//
|
||||
// 1. The syntax and meaning of regular expressions is guaranteed
|
||||
// to be that used by Regexp's parser, not the syntax expected
|
||||
// by the sublibrary. Regexp might accept a restricted or
|
||||
// expanded syntax for regular expressions as compared with
|
||||
// the sublibrary. As long as Regexp can translate from its
|
||||
// internal form into the sublibrary's, clients need not know
|
||||
// exactly which sublibrary they are using.
|
||||
//
|
||||
// 2. The sublibrary parsers are bypassed. For whatever reason,
|
||||
// sublibrary regular expression parsers often have security
|
||||
// problems. For example, plan9grep's regular expression parser
|
||||
// has a buffer overflow in its handling of large character
|
||||
// classes, and PCRE's parser has had buffer overflow problems
|
||||
// in the past. Security-team requires sandboxing of sublibrary
|
||||
// regular expression parsers. Avoiding the sublibrary parsers
|
||||
// avoids the sandbox.
|
||||
//
|
||||
// The execution methods we use now are provided by the compiled form,
|
||||
// Prog, described in prog.h
|
||||
//
|
||||
// MANIPULATION
|
||||
//
|
||||
// Unlike other regular expression libraries, Regexp makes its parsed
|
||||
// form accessible to clients, so that client code can analyze the
|
||||
// parsed regular expressions.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <string>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Keep in sync with string list kOpcodeNames[] in testing/dump.cc
|
||||
enum RegexpOp {
|
||||
// Matches no strings.
|
||||
kRegexpNoMatch = 1,
|
||||
|
||||
// Matches empty string.
|
||||
kRegexpEmptyMatch,
|
||||
|
||||
// Matches rune_.
|
||||
kRegexpLiteral,
|
||||
|
||||
// Matches runes_.
|
||||
kRegexpLiteralString,
|
||||
|
||||
// Matches concatenation of sub_[0..nsub-1].
|
||||
kRegexpConcat,
|
||||
// Matches union of sub_[0..nsub-1].
|
||||
kRegexpAlternate,
|
||||
|
||||
// Matches sub_[0] zero or more times.
|
||||
kRegexpStar,
|
||||
// Matches sub_[0] one or more times.
|
||||
kRegexpPlus,
|
||||
// Matches sub_[0] zero or one times.
|
||||
kRegexpQuest,
|
||||
|
||||
// Matches sub_[0] at least min_ times, at most max_ times.
|
||||
// max_ == -1 means no upper limit.
|
||||
kRegexpRepeat,
|
||||
|
||||
// Parenthesized (capturing) subexpression. Index is cap_.
|
||||
// Optionally, capturing name is name_.
|
||||
kRegexpCapture,
|
||||
|
||||
// Matches any character.
|
||||
kRegexpAnyChar,
|
||||
|
||||
// Matches any byte [sic].
|
||||
kRegexpAnyByte,
|
||||
|
||||
// Matches empty string at beginning of line.
|
||||
kRegexpBeginLine,
|
||||
// Matches empty string at end of line.
|
||||
kRegexpEndLine,
|
||||
|
||||
// Matches word boundary "\b".
|
||||
kRegexpWordBoundary,
|
||||
// Matches not-a-word boundary "\B".
|
||||
kRegexpNoWordBoundary,
|
||||
|
||||
// Matches empty string at beginning of text.
|
||||
kRegexpBeginText,
|
||||
// Matches empty string at end of text.
|
||||
kRegexpEndText,
|
||||
|
||||
// Matches character class given by cc_.
|
||||
kRegexpCharClass,
|
||||
|
||||
// Forces match of entire expression right now,
|
||||
// with match ID match_id_ (used by RE2::Set).
|
||||
kRegexpHaveMatch,
|
||||
|
||||
kMaxRegexpOp = kRegexpHaveMatch,
|
||||
};
|
||||
|
||||
// Keep in sync with string list in regexp.cc
|
||||
enum RegexpStatusCode {
|
||||
// No error
|
||||
kRegexpSuccess = 0,
|
||||
|
||||
// Unexpected error
|
||||
kRegexpInternalError,
|
||||
|
||||
// Parse errors
|
||||
kRegexpBadEscape, // bad escape sequence
|
||||
kRegexpBadCharClass, // bad character class
|
||||
kRegexpBadCharRange, // bad character class range
|
||||
kRegexpMissingBracket, // missing closing ]
|
||||
kRegexpMissingParen, // missing closing )
|
||||
kRegexpTrailingBackslash, // at end of regexp
|
||||
kRegexpRepeatArgument, // repeat argument missing, e.g. "*"
|
||||
kRegexpRepeatSize, // bad repetition argument
|
||||
kRegexpRepeatOp, // bad repetition operator
|
||||
kRegexpBadPerlOp, // bad perl operator
|
||||
kRegexpBadUTF8, // invalid UTF-8 in regexp
|
||||
kRegexpBadNamedCapture, // bad named capture
|
||||
};
|
||||
|
||||
// Error status for certain operations.
|
||||
class RegexpStatus {
|
||||
public:
|
||||
RegexpStatus() : code_(kRegexpSuccess), tmp_(NULL) {}
|
||||
~RegexpStatus() { delete tmp_; }
|
||||
|
||||
void set_code(RegexpStatusCode code) { code_ = code; }
|
||||
void set_error_arg(const StringPiece& error_arg) { error_arg_ = error_arg; }
|
||||
void set_tmp(std::string* tmp) { delete tmp_; tmp_ = tmp; }
|
||||
RegexpStatusCode code() const { return code_; }
|
||||
const StringPiece& error_arg() const { return error_arg_; }
|
||||
bool ok() const { return code() == kRegexpSuccess; }
|
||||
|
||||
// Copies state from status.
|
||||
void Copy(const RegexpStatus& status);
|
||||
|
||||
// Returns text equivalent of code, e.g.:
|
||||
// "Bad character class"
|
||||
static std::string CodeText(RegexpStatusCode code);
|
||||
|
||||
// Returns text describing error, e.g.:
|
||||
// "Bad character class: [z-a]"
|
||||
std::string Text() const;
|
||||
|
||||
private:
|
||||
RegexpStatusCode code_; // Kind of error
|
||||
StringPiece error_arg_; // Piece of regexp containing syntax error.
|
||||
std::string* tmp_; // Temporary storage, possibly where error_arg_ is.
|
||||
|
||||
RegexpStatus(const RegexpStatus&) = delete;
|
||||
RegexpStatus& operator=(const RegexpStatus&) = delete;
|
||||
};
|
||||
|
||||
// Compiled form; see prog.h
|
||||
class Prog;
|
||||
|
||||
struct RuneRange {
|
||||
RuneRange() : lo(0), hi(0) { }
|
||||
RuneRange(int l, int h) : lo(l), hi(h) { }
|
||||
Rune lo;
|
||||
Rune hi;
|
||||
};
|
||||
|
||||
// Less-than on RuneRanges treats a == b if they overlap at all.
|
||||
// This lets us look in a set to find the range covering a particular Rune.
|
||||
struct RuneRangeLess {
|
||||
bool operator()(const RuneRange& a, const RuneRange& b) const {
|
||||
return a.hi < b.lo;
|
||||
}
|
||||
};
|
||||
|
||||
class CharClassBuilder;
|
||||
|
||||
class CharClass {
|
||||
public:
|
||||
void Delete();
|
||||
|
||||
typedef RuneRange* iterator;
|
||||
iterator begin() { return ranges_; }
|
||||
iterator end() { return ranges_ + nranges_; }
|
||||
|
||||
int size() { return nrunes_; }
|
||||
bool empty() { return nrunes_ == 0; }
|
||||
bool full() { return nrunes_ == Runemax+1; }
|
||||
bool FoldsASCII() { return folds_ascii_; }
|
||||
|
||||
bool Contains(Rune r);
|
||||
CharClass* Negate();
|
||||
|
||||
private:
|
||||
CharClass(); // not implemented
|
||||
~CharClass(); // not implemented
|
||||
static CharClass* New(int maxranges);
|
||||
|
||||
friend class CharClassBuilder;
|
||||
|
||||
bool folds_ascii_;
|
||||
int nrunes_;
|
||||
RuneRange *ranges_;
|
||||
int nranges_;
|
||||
|
||||
CharClass(const CharClass&) = delete;
|
||||
CharClass& operator=(const CharClass&) = delete;
|
||||
};
|
||||
|
||||
class Regexp {
|
||||
public:
|
||||
|
||||
// Flags for parsing. Can be ORed together.
|
||||
enum ParseFlags {
|
||||
NoParseFlags = 0,
|
||||
FoldCase = 1<<0, // Fold case during matching (case-insensitive).
|
||||
Literal = 1<<1, // Treat s as literal string instead of a regexp.
|
||||
ClassNL = 1<<2, // Allow char classes like [^a-z] and \D and \s
|
||||
// and [[:space:]] to match newline.
|
||||
DotNL = 1<<3, // Allow . to match newline.
|
||||
MatchNL = ClassNL | DotNL,
|
||||
OneLine = 1<<4, // Treat ^ and $ as only matching at beginning and
|
||||
// end of text, not around embedded newlines.
|
||||
// (Perl's default)
|
||||
Latin1 = 1<<5, // Regexp and text are in Latin1, not UTF-8.
|
||||
NonGreedy = 1<<6, // Repetition operators are non-greedy by default.
|
||||
PerlClasses = 1<<7, // Allow Perl character classes like \d.
|
||||
PerlB = 1<<8, // Allow Perl's \b and \B.
|
||||
PerlX = 1<<9, // Perl extensions:
|
||||
// non-capturing parens - (?: )
|
||||
// non-greedy operators - *? +? ?? {}?
|
||||
// flag edits - (?i) (?-i) (?i: )
|
||||
// i - FoldCase
|
||||
// m - !OneLine
|
||||
// s - DotNL
|
||||
// U - NonGreedy
|
||||
// line ends: \A \z
|
||||
// \Q and \E to disable/enable metacharacters
|
||||
// (?P<name>expr) for named captures
|
||||
// \C to match any single byte
|
||||
UnicodeGroups = 1<<10, // Allow \p{Han} for Unicode Han group
|
||||
// and \P{Han} for its negation.
|
||||
NeverNL = 1<<11, // Never match NL, even if the regexp mentions
|
||||
// it explicitly.
|
||||
NeverCapture = 1<<12, // Parse all parens as non-capturing.
|
||||
|
||||
// As close to Perl as we can get.
|
||||
LikePerl = ClassNL | OneLine | PerlClasses | PerlB | PerlX |
|
||||
UnicodeGroups,
|
||||
|
||||
// Internal use only.
|
||||
WasDollar = 1<<13, // on kRegexpEndText: was $ in regexp text
|
||||
AllParseFlags = (1<<14)-1,
|
||||
};
|
||||
|
||||
// Get. No set, Regexps are logically immutable once created.
|
||||
RegexpOp op() { return static_cast<RegexpOp>(op_); }
|
||||
int nsub() { return nsub_; }
|
||||
bool simple() { return simple_ != 0; }
|
||||
ParseFlags parse_flags() { return static_cast<ParseFlags>(parse_flags_); }
|
||||
int Ref(); // For testing.
|
||||
|
||||
Regexp** sub() {
|
||||
if(nsub_ <= 1)
|
||||
return &subone_;
|
||||
else
|
||||
return submany_;
|
||||
}
|
||||
|
||||
int min() { DCHECK_EQ(op_, kRegexpRepeat); return min_; }
|
||||
int max() { DCHECK_EQ(op_, kRegexpRepeat); return max_; }
|
||||
Rune rune() { DCHECK_EQ(op_, kRegexpLiteral); return rune_; }
|
||||
CharClass* cc() { DCHECK_EQ(op_, kRegexpCharClass); return cc_; }
|
||||
int cap() { DCHECK_EQ(op_, kRegexpCapture); return cap_; }
|
||||
const std::string* name() { DCHECK_EQ(op_, kRegexpCapture); return name_; }
|
||||
Rune* runes() { DCHECK_EQ(op_, kRegexpLiteralString); return runes_; }
|
||||
int nrunes() { DCHECK_EQ(op_, kRegexpLiteralString); return nrunes_; }
|
||||
int match_id() { DCHECK_EQ(op_, kRegexpHaveMatch); return match_id_; }
|
||||
|
||||
// Increments reference count, returns object as convenience.
|
||||
Regexp* Incref();
|
||||
|
||||
// Decrements reference count and deletes this object if count reaches 0.
|
||||
void Decref();
|
||||
|
||||
// Parses string s to produce regular expression, returned.
|
||||
// Caller must release return value with re->Decref().
|
||||
// On failure, sets *status (if status != NULL) and returns NULL.
|
||||
static Regexp* Parse(const StringPiece& s, ParseFlags flags,
|
||||
RegexpStatus* status);
|
||||
|
||||
// Returns a _new_ simplified version of the current regexp.
|
||||
// Does not edit the current regexp.
|
||||
// Caller must release return value with re->Decref().
|
||||
// Simplified means that counted repetition has been rewritten
|
||||
// into simpler terms and all Perl/POSIX features have been
|
||||
// removed. The result will capture exactly the same
|
||||
// subexpressions the original did, unless formatted with ToString.
|
||||
Regexp* Simplify();
|
||||
friend class CoalesceWalker;
|
||||
friend class SimplifyWalker;
|
||||
|
||||
// Parses the regexp src and then simplifies it and sets *dst to the
|
||||
// string representation of the simplified form. Returns true on success.
|
||||
// Returns false and sets *status (if status != NULL) on parse error.
|
||||
static bool SimplifyRegexp(const StringPiece& src, ParseFlags flags,
|
||||
std::string* dst, RegexpStatus* status);
|
||||
|
||||
// Returns the number of capturing groups in the regexp.
|
||||
int NumCaptures();
|
||||
friend class NumCapturesWalker;
|
||||
|
||||
// Returns a map from names to capturing group indices,
|
||||
// or NULL if the regexp contains no named capture groups.
|
||||
// The caller is responsible for deleting the map.
|
||||
std::map<std::string, int>* NamedCaptures();
|
||||
|
||||
// Returns a map from capturing group indices to capturing group
|
||||
// names or NULL if the regexp contains no named capture groups. The
|
||||
// caller is responsible for deleting the map.
|
||||
std::map<int, std::string>* CaptureNames();
|
||||
|
||||
// Returns a string representation of the current regexp,
|
||||
// using as few parentheses as possible.
|
||||
std::string ToString();
|
||||
|
||||
// Convenience functions. They consume the passed reference,
|
||||
// so in many cases you should use, e.g., Plus(re->Incref(), flags).
|
||||
// They do not consume allocated arrays like subs or runes.
|
||||
static Regexp* Plus(Regexp* sub, ParseFlags flags);
|
||||
static Regexp* Star(Regexp* sub, ParseFlags flags);
|
||||
static Regexp* Quest(Regexp* sub, ParseFlags flags);
|
||||
static Regexp* Concat(Regexp** subs, int nsubs, ParseFlags flags);
|
||||
static Regexp* Alternate(Regexp** subs, int nsubs, ParseFlags flags);
|
||||
static Regexp* Capture(Regexp* sub, ParseFlags flags, int cap);
|
||||
static Regexp* Repeat(Regexp* sub, ParseFlags flags, int min, int max);
|
||||
static Regexp* NewLiteral(Rune rune, ParseFlags flags);
|
||||
static Regexp* NewCharClass(CharClass* cc, ParseFlags flags);
|
||||
static Regexp* LiteralString(Rune* runes, int nrunes, ParseFlags flags);
|
||||
static Regexp* HaveMatch(int match_id, ParseFlags flags);
|
||||
|
||||
// Like Alternate but does not factor out common prefixes.
|
||||
static Regexp* AlternateNoFactor(Regexp** subs, int nsubs, ParseFlags flags);
|
||||
|
||||
// Debugging function. Returns string format for regexp
|
||||
// that makes structure clear. Does NOT use regexp syntax.
|
||||
std::string Dump();
|
||||
|
||||
// Helper traversal class, defined fully in walker-inl.h.
|
||||
template<typename T> class Walker;
|
||||
|
||||
// Compile to Prog. See prog.h
|
||||
// Reverse prog expects to be run over text backward.
|
||||
// Construction and execution of prog will
|
||||
// stay within approximately max_mem bytes of memory.
|
||||
// If max_mem <= 0, a reasonable default is used.
|
||||
Prog* CompileToProg(int64_t max_mem);
|
||||
Prog* CompileToReverseProg(int64_t max_mem);
|
||||
|
||||
// Whether to expect this library to find exactly the same answer as PCRE
|
||||
// when running this regexp. Most regexps do mimic PCRE exactly, but a few
|
||||
// obscure cases behave differently. Technically this is more a property
|
||||
// of the Prog than the Regexp, but the computation is much easier to do
|
||||
// on the Regexp. See mimics_pcre.cc for the exact conditions.
|
||||
bool MimicsPCRE();
|
||||
|
||||
// Benchmarking function.
|
||||
void NullWalk();
|
||||
|
||||
// Whether every match of this regexp must be anchored and
|
||||
// begin with a non-empty fixed string (perhaps after ASCII
|
||||
// case-folding). If so, returns the prefix and the sub-regexp that
|
||||
// follows it.
|
||||
// Callers should expect *prefix, *foldcase and *suffix to be "zeroed"
|
||||
// regardless of the return value.
|
||||
bool RequiredPrefix(std::string* prefix, bool* foldcase,
|
||||
Regexp** suffix);
|
||||
|
||||
private:
|
||||
// Constructor allocates vectors as appropriate for operator.
|
||||
explicit Regexp(RegexpOp op, ParseFlags parse_flags);
|
||||
|
||||
// Use Decref() instead of delete to release Regexps.
|
||||
// This is private to catch deletes at compile time.
|
||||
~Regexp();
|
||||
void Destroy();
|
||||
bool QuickDestroy();
|
||||
|
||||
// Helpers for Parse. Listed here so they can edit Regexps.
|
||||
class ParseState;
|
||||
|
||||
friend class ParseState;
|
||||
friend bool ParseCharClass(StringPiece* s, Regexp** out_re,
|
||||
RegexpStatus* status);
|
||||
|
||||
// Helper for testing [sic].
|
||||
friend bool RegexpEqualTestingOnly(Regexp*, Regexp*);
|
||||
|
||||
// Computes whether Regexp is already simple.
|
||||
bool ComputeSimple();
|
||||
|
||||
// Constructor that generates a Star, Plus or Quest,
|
||||
// squashing the pair if sub is also a Star, Plus or Quest.
|
||||
static Regexp* StarPlusOrQuest(RegexpOp op, Regexp* sub, ParseFlags flags);
|
||||
|
||||
// Constructor that generates a concatenation or alternation,
|
||||
// enforcing the limit on the number of subexpressions for
|
||||
// a particular Regexp.
|
||||
static Regexp* ConcatOrAlternate(RegexpOp op, Regexp** subs, int nsubs,
|
||||
ParseFlags flags, bool can_factor);
|
||||
|
||||
// Returns the leading string that re starts with.
|
||||
// The returned Rune* points into a piece of re,
|
||||
// so it must not be used after the caller calls re->Decref().
|
||||
static Rune* LeadingString(Regexp* re, int* nrune, ParseFlags* flags);
|
||||
|
||||
// Removes the first n leading runes from the beginning of re.
|
||||
// Edits re in place.
|
||||
static void RemoveLeadingString(Regexp* re, int n);
|
||||
|
||||
// Returns the leading regexp in re's top-level concatenation.
|
||||
// The returned Regexp* points at re or a sub-expression of re,
|
||||
// so it must not be used after the caller calls re->Decref().
|
||||
static Regexp* LeadingRegexp(Regexp* re);
|
||||
|
||||
// Removes LeadingRegexp(re) from re and returns the remainder.
|
||||
// Might edit re in place.
|
||||
static Regexp* RemoveLeadingRegexp(Regexp* re);
|
||||
|
||||
// Simplifies an alternation of literal strings by factoring out
|
||||
// common prefixes.
|
||||
static int FactorAlternation(Regexp** sub, int nsub, ParseFlags flags);
|
||||
friend class FactorAlternationImpl;
|
||||
|
||||
// Is a == b? Only efficient on regexps that have not been through
|
||||
// Simplify yet - the expansion of a kRegexpRepeat will make this
|
||||
// take a long time. Do not call on such regexps, hence private.
|
||||
static bool Equal(Regexp* a, Regexp* b);
|
||||
|
||||
// Allocate space for n sub-regexps.
|
||||
void AllocSub(int n) {
|
||||
DCHECK(n >= 0 && static_cast<uint16_t>(n) == n);
|
||||
if (n > 1)
|
||||
submany_ = new Regexp*[n];
|
||||
nsub_ = static_cast<uint16_t>(n);
|
||||
}
|
||||
|
||||
// Add Rune to LiteralString
|
||||
void AddRuneToString(Rune r);
|
||||
|
||||
// Swaps this with that, in place.
|
||||
void Swap(Regexp *that);
|
||||
|
||||
// Operator. See description of operators above.
|
||||
// uint8_t instead of RegexpOp to control space usage.
|
||||
uint8_t op_;
|
||||
|
||||
// Is this regexp structure already simple
|
||||
// (has it been returned by Simplify)?
|
||||
// uint8_t instead of bool to control space usage.
|
||||
uint8_t simple_;
|
||||
|
||||
// Flags saved from parsing and used during execution.
|
||||
// (Only FoldCase is used.)
|
||||
// uint16_t instead of ParseFlags to control space usage.
|
||||
uint16_t parse_flags_;
|
||||
|
||||
// Reference count. Exists so that SimplifyRegexp can build
|
||||
// regexp structures that are dags rather than trees to avoid
|
||||
// exponential blowup in space requirements.
|
||||
// uint16_t to control space usage.
|
||||
// The standard regexp routines will never generate a
|
||||
// ref greater than the maximum repeat count (kMaxRepeat),
|
||||
// but even so, Incref and Decref consult an overflow map
|
||||
// when ref_ reaches kMaxRef.
|
||||
uint16_t ref_;
|
||||
static const uint16_t kMaxRef = 0xffff;
|
||||
|
||||
// Subexpressions.
|
||||
// uint16_t to control space usage.
|
||||
// Concat and Alternate handle larger numbers of subexpressions
|
||||
// by building concatenation or alternation trees.
|
||||
// Other routines should call Concat or Alternate instead of
|
||||
// filling in sub() by hand.
|
||||
uint16_t nsub_;
|
||||
static const uint16_t kMaxNsub = 0xffff;
|
||||
union {
|
||||
Regexp** submany_; // if nsub_ > 1
|
||||
Regexp* subone_; // if nsub_ == 1
|
||||
};
|
||||
|
||||
// Extra space for parse and teardown stacks.
|
||||
Regexp* down_;
|
||||
|
||||
// Arguments to operator. See description of operators above.
|
||||
union {
|
||||
struct { // Repeat
|
||||
int max_;
|
||||
int min_;
|
||||
};
|
||||
struct { // Capture
|
||||
int cap_;
|
||||
std::string* name_;
|
||||
};
|
||||
struct { // LiteralString
|
||||
int nrunes_;
|
||||
Rune* runes_;
|
||||
};
|
||||
struct { // CharClass
|
||||
// These two could be in separate union members,
|
||||
// but it wouldn't save any space (there are other two-word structs)
|
||||
// and keeping them separate avoids confusion during parsing.
|
||||
CharClass* cc_;
|
||||
CharClassBuilder* ccb_;
|
||||
};
|
||||
Rune rune_; // Literal
|
||||
int match_id_; // HaveMatch
|
||||
void *the_union_[2]; // as big as any other element, for memset
|
||||
};
|
||||
|
||||
Regexp(const Regexp&) = delete;
|
||||
Regexp& operator=(const Regexp&) = delete;
|
||||
};
|
||||
|
||||
// Character class set: contains non-overlapping, non-abutting RuneRanges.
|
||||
typedef std::set<RuneRange, RuneRangeLess> RuneRangeSet;
|
||||
|
||||
class CharClassBuilder {
|
||||
public:
|
||||
CharClassBuilder();
|
||||
|
||||
typedef RuneRangeSet::iterator iterator;
|
||||
iterator begin() { return ranges_.begin(); }
|
||||
iterator end() { return ranges_.end(); }
|
||||
|
||||
int size() { return nrunes_; }
|
||||
bool empty() { return nrunes_ == 0; }
|
||||
bool full() { return nrunes_ == Runemax+1; }
|
||||
|
||||
bool Contains(Rune r);
|
||||
bool FoldsASCII();
|
||||
bool AddRange(Rune lo, Rune hi); // returns whether class changed
|
||||
CharClassBuilder* Copy();
|
||||
void AddCharClass(CharClassBuilder* cc);
|
||||
void Negate();
|
||||
void RemoveAbove(Rune r);
|
||||
CharClass* GetCharClass();
|
||||
void AddRangeFlags(Rune lo, Rune hi, Regexp::ParseFlags parse_flags);
|
||||
|
||||
private:
|
||||
static const uint32_t AlphaMask = (1<<26) - 1;
|
||||
uint32_t upper_; // bitmap of A-Z
|
||||
uint32_t lower_; // bitmap of a-z
|
||||
int nrunes_;
|
||||
RuneRangeSet ranges_;
|
||||
|
||||
CharClassBuilder(const CharClassBuilder&) = delete;
|
||||
CharClassBuilder& operator=(const CharClassBuilder&) = delete;
|
||||
};
|
||||
|
||||
// Bitwise ops on ParseFlags produce ParseFlags.
|
||||
inline Regexp::ParseFlags operator|(Regexp::ParseFlags a,
|
||||
Regexp::ParseFlags b) {
|
||||
return static_cast<Regexp::ParseFlags>(
|
||||
static_cast<int>(a) | static_cast<int>(b));
|
||||
}
|
||||
|
||||
inline Regexp::ParseFlags operator^(Regexp::ParseFlags a,
|
||||
Regexp::ParseFlags b) {
|
||||
return static_cast<Regexp::ParseFlags>(
|
||||
static_cast<int>(a) ^ static_cast<int>(b));
|
||||
}
|
||||
|
||||
inline Regexp::ParseFlags operator&(Regexp::ParseFlags a,
|
||||
Regexp::ParseFlags b) {
|
||||
return static_cast<Regexp::ParseFlags>(
|
||||
static_cast<int>(a) & static_cast<int>(b));
|
||||
}
|
||||
|
||||
inline Regexp::ParseFlags operator~(Regexp::ParseFlags a) {
|
||||
// Attempting to produce a value out of enum's range has undefined behaviour.
|
||||
return static_cast<Regexp::ParseFlags>(
|
||||
~static_cast<int>(a) & static_cast<int>(Regexp::AllParseFlags));
|
||||
}
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_REGEXP_H_
|
153
extern/re2/re2/set.cc
vendored
Normal file
153
extern/re2/re2/set.cc
vendored
Normal file
@ -0,0 +1,153 @@
|
||||
// Copyright 2010 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "re2/set.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "re2/stringpiece.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
RE2::Set::Set(const RE2::Options& options, RE2::Anchor anchor) {
|
||||
options_.Copy(options);
|
||||
options_.set_never_capture(true); // might unblock some optimisations
|
||||
anchor_ = anchor;
|
||||
prog_ = NULL;
|
||||
compiled_ = false;
|
||||
size_ = 0;
|
||||
}
|
||||
|
||||
RE2::Set::~Set() {
|
||||
for (size_t i = 0; i < elem_.size(); i++)
|
||||
elem_[i].second->Decref();
|
||||
delete prog_;
|
||||
}
|
||||
|
||||
int RE2::Set::Add(const StringPiece& pattern, std::string* error) {
|
||||
if (compiled_) {
|
||||
LOG(DFATAL) << "RE2::Set::Add() called after compiling";
|
||||
return -1;
|
||||
}
|
||||
|
||||
Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(
|
||||
options_.ParseFlags());
|
||||
RegexpStatus status;
|
||||
re2::Regexp* re = Regexp::Parse(pattern, pf, &status);
|
||||
if (re == NULL) {
|
||||
if (error != NULL)
|
||||
*error = status.Text();
|
||||
if (options_.log_errors())
|
||||
LOG(ERROR) << "Error parsing '" << pattern << "': " << status.Text();
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Concatenate with match index and push on vector.
|
||||
int n = static_cast<int>(elem_.size());
|
||||
re2::Regexp* m = re2::Regexp::HaveMatch(n, pf);
|
||||
if (re->op() == kRegexpConcat) {
|
||||
int nsub = re->nsub();
|
||||
PODArray<re2::Regexp*> sub(nsub + 1);
|
||||
for (int i = 0; i < nsub; i++)
|
||||
sub[i] = re->sub()[i]->Incref();
|
||||
sub[nsub] = m;
|
||||
re->Decref();
|
||||
re = re2::Regexp::Concat(sub.data(), nsub + 1, pf);
|
||||
} else {
|
||||
re2::Regexp* sub[2];
|
||||
sub[0] = re;
|
||||
sub[1] = m;
|
||||
re = re2::Regexp::Concat(sub, 2, pf);
|
||||
}
|
||||
elem_.emplace_back(std::string(pattern), re);
|
||||
return n;
|
||||
}
|
||||
|
||||
bool RE2::Set::Compile() {
|
||||
if (compiled_) {
|
||||
LOG(DFATAL) << "RE2::Set::Compile() called more than once";
|
||||
return false;
|
||||
}
|
||||
compiled_ = true;
|
||||
size_ = static_cast<int>(elem_.size());
|
||||
|
||||
// Sort the elements by their patterns. This is good enough for now
|
||||
// until we have a Regexp comparison function. (Maybe someday...)
|
||||
std::sort(elem_.begin(), elem_.end(),
|
||||
[](const Elem& a, const Elem& b) -> bool {
|
||||
return a.first < b.first;
|
||||
});
|
||||
|
||||
PODArray<re2::Regexp*> sub(size_);
|
||||
for (int i = 0; i < size_; i++)
|
||||
sub[i] = elem_[i].second;
|
||||
elem_.clear();
|
||||
elem_.shrink_to_fit();
|
||||
|
||||
Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(
|
||||
options_.ParseFlags());
|
||||
re2::Regexp* re = re2::Regexp::Alternate(sub.data(), size_, pf);
|
||||
|
||||
prog_ = Prog::CompileSet(re, anchor_, options_.max_mem());
|
||||
re->Decref();
|
||||
return prog_ != NULL;
|
||||
}
|
||||
|
||||
bool RE2::Set::Match(const StringPiece& text, std::vector<int>* v) const {
|
||||
return Match(text, v, NULL);
|
||||
}
|
||||
|
||||
bool RE2::Set::Match(const StringPiece& text, std::vector<int>* v,
|
||||
ErrorInfo* error_info) const {
|
||||
if (!compiled_) {
|
||||
LOG(DFATAL) << "RE2::Set::Match() called before compiling";
|
||||
if (error_info != NULL)
|
||||
error_info->kind = kNotCompiled;
|
||||
return false;
|
||||
}
|
||||
bool dfa_failed = false;
|
||||
std::unique_ptr<SparseSet> matches;
|
||||
if (v != NULL) {
|
||||
matches.reset(new SparseSet(size_));
|
||||
v->clear();
|
||||
}
|
||||
bool ret = prog_->SearchDFA(text, text, Prog::kAnchored, Prog::kManyMatch,
|
||||
NULL, &dfa_failed, matches.get());
|
||||
if (dfa_failed) {
|
||||
if (options_.log_errors())
|
||||
LOG(ERROR) << "DFA out of memory: size " << prog_->size() << ", "
|
||||
<< "bytemap range " << prog_->bytemap_range() << ", "
|
||||
<< "list count " << prog_->list_count();
|
||||
if (error_info != NULL)
|
||||
error_info->kind = kOutOfMemory;
|
||||
return false;
|
||||
}
|
||||
if (ret == false) {
|
||||
if (error_info != NULL)
|
||||
error_info->kind = kNoError;
|
||||
return false;
|
||||
}
|
||||
if (v != NULL) {
|
||||
if (matches->empty()) {
|
||||
LOG(DFATAL) << "RE2::Set::Match() matched, but no matches returned?!";
|
||||
if (error_info != NULL)
|
||||
error_info->kind = kInconsistent;
|
||||
return false;
|
||||
}
|
||||
v->assign(matches->begin(), matches->end());
|
||||
}
|
||||
if (error_info != NULL)
|
||||
error_info->kind = kNoError;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace re2
|
80
extern/re2/re2/set.h
vendored
Normal file
80
extern/re2/re2/set.h
vendored
Normal file
@ -0,0 +1,80 @@
|
||||
// Copyright 2010 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_SET_H_
|
||||
#define RE2_SET_H_
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
class Prog;
|
||||
class Regexp;
|
||||
} // namespace re2
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// An RE2::Set represents a collection of regexps that can
|
||||
// be searched for simultaneously.
|
||||
class RE2::Set {
|
||||
public:
|
||||
enum ErrorKind {
|
||||
kNoError = 0,
|
||||
kNotCompiled, // The set is not compiled.
|
||||
kOutOfMemory, // The DFA ran out of memory.
|
||||
kInconsistent, // The result is inconsistent. This should never happen.
|
||||
};
|
||||
|
||||
struct ErrorInfo {
|
||||
ErrorKind kind;
|
||||
};
|
||||
|
||||
Set(const RE2::Options& options, RE2::Anchor anchor);
|
||||
~Set();
|
||||
|
||||
// Adds pattern to the set using the options passed to the constructor.
|
||||
// Returns the index that will identify the regexp in the output of Match(),
|
||||
// or -1 if the regexp cannot be parsed.
|
||||
// Indices are assigned in sequential order starting from 0.
|
||||
// Errors do not increment the index; if error is not NULL, *error will hold
|
||||
// the error message from the parser.
|
||||
int Add(const StringPiece& pattern, std::string* error);
|
||||
|
||||
// Compiles the set in preparation for matching.
|
||||
// Returns false if the compiler runs out of memory.
|
||||
// Add() must not be called again after Compile().
|
||||
// Compile() must be called before Match().
|
||||
bool Compile();
|
||||
|
||||
// Returns true if text matches at least one of the regexps in the set.
|
||||
// Fills v (if not NULL) with the indices of the matching regexps.
|
||||
// Callers must not expect v to be sorted.
|
||||
bool Match(const StringPiece& text, std::vector<int>* v) const;
|
||||
|
||||
// As above, but populates error_info (if not NULL) when none of the regexps
|
||||
// in the set matched. This can inform callers when DFA execution fails, for
|
||||
// example, because they might wish to handle that case differently.
|
||||
bool Match(const StringPiece& text, std::vector<int>* v,
|
||||
ErrorInfo* error_info) const;
|
||||
|
||||
private:
|
||||
typedef std::pair<std::string, re2::Regexp*> Elem;
|
||||
|
||||
RE2::Options options_;
|
||||
RE2::Anchor anchor_;
|
||||
std::vector<Elem> elem_;
|
||||
re2::Prog* prog_;
|
||||
bool compiled_;
|
||||
int size_;
|
||||
|
||||
Set(const Set&) = delete;
|
||||
Set& operator=(const Set&) = delete;
|
||||
};
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_SET_H_
|
655
extern/re2/re2/simplify.cc
vendored
Normal file
655
extern/re2/re2/simplify.cc
vendored
Normal file
@ -0,0 +1,655 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Rewrite POSIX and other features in re
|
||||
// to use simple extended regular expression features.
|
||||
// Also sort and simplify character classes.
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/pod_array.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Parses the regexp src and then simplifies it and sets *dst to the
|
||||
// string representation of the simplified form. Returns true on success.
|
||||
// Returns false and sets *error (if error != NULL) on error.
|
||||
bool Regexp::SimplifyRegexp(const StringPiece& src, ParseFlags flags,
|
||||
std::string* dst, RegexpStatus* status) {
|
||||
Regexp* re = Parse(src, flags, status);
|
||||
if (re == NULL)
|
||||
return false;
|
||||
Regexp* sre = re->Simplify();
|
||||
re->Decref();
|
||||
if (sre == NULL) {
|
||||
// Should not happen, since Simplify never fails.
|
||||
LOG(ERROR) << "Simplify failed on " << src;
|
||||
if (status) {
|
||||
status->set_code(kRegexpInternalError);
|
||||
status->set_error_arg(src);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
*dst = sre->ToString();
|
||||
sre->Decref();
|
||||
return true;
|
||||
}
|
||||
|
||||
// Assuming the simple_ flags on the children are accurate,
|
||||
// is this Regexp* simple?
|
||||
bool Regexp::ComputeSimple() {
|
||||
Regexp** subs;
|
||||
switch (op_) {
|
||||
case kRegexpNoMatch:
|
||||
case kRegexpEmptyMatch:
|
||||
case kRegexpLiteral:
|
||||
case kRegexpLiteralString:
|
||||
case kRegexpBeginLine:
|
||||
case kRegexpEndLine:
|
||||
case kRegexpBeginText:
|
||||
case kRegexpWordBoundary:
|
||||
case kRegexpNoWordBoundary:
|
||||
case kRegexpEndText:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
case kRegexpHaveMatch:
|
||||
return true;
|
||||
case kRegexpConcat:
|
||||
case kRegexpAlternate:
|
||||
// These are simple as long as the subpieces are simple.
|
||||
subs = sub();
|
||||
for (int i = 0; i < nsub_; i++)
|
||||
if (!subs[i]->simple())
|
||||
return false;
|
||||
return true;
|
||||
case kRegexpCharClass:
|
||||
// Simple as long as the char class is not empty, not full.
|
||||
if (ccb_ != NULL)
|
||||
return !ccb_->empty() && !ccb_->full();
|
||||
return !cc_->empty() && !cc_->full();
|
||||
case kRegexpCapture:
|
||||
subs = sub();
|
||||
return subs[0]->simple();
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
subs = sub();
|
||||
if (!subs[0]->simple())
|
||||
return false;
|
||||
switch (subs[0]->op_) {
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
case kRegexpEmptyMatch:
|
||||
case kRegexpNoMatch:
|
||||
return false;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
case kRegexpRepeat:
|
||||
return false;
|
||||
}
|
||||
LOG(DFATAL) << "Case not handled in ComputeSimple: " << op_;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Walker subclass used by Simplify.
|
||||
// Coalesces runs of star/plus/quest/repeat of the same literal along with any
|
||||
// occurrences of that literal into repeats of that literal. It also works for
|
||||
// char classes, any char and any byte.
|
||||
// PostVisit creates the coalesced result, which should then be simplified.
|
||||
class CoalesceWalker : public Regexp::Walker<Regexp*> {
|
||||
public:
|
||||
CoalesceWalker() {}
|
||||
virtual Regexp* PostVisit(Regexp* re, Regexp* parent_arg, Regexp* pre_arg,
|
||||
Regexp** child_args, int nchild_args);
|
||||
virtual Regexp* Copy(Regexp* re);
|
||||
virtual Regexp* ShortVisit(Regexp* re, Regexp* parent_arg);
|
||||
|
||||
private:
|
||||
// These functions are declared inside CoalesceWalker so that
|
||||
// they can edit the private fields of the Regexps they construct.
|
||||
|
||||
// Returns true if r1 and r2 can be coalesced. In particular, ensures that
|
||||
// the parse flags are consistent. (They will not be checked again later.)
|
||||
static bool CanCoalesce(Regexp* r1, Regexp* r2);
|
||||
|
||||
// Coalesces *r1ptr and *r2ptr. In most cases, the array elements afterwards
|
||||
// will be empty match and the coalesced op. In other cases, where part of a
|
||||
// literal string was removed to be coalesced, the array elements afterwards
|
||||
// will be the coalesced op and the remainder of the literal string.
|
||||
static void DoCoalesce(Regexp** r1ptr, Regexp** r2ptr);
|
||||
|
||||
CoalesceWalker(const CoalesceWalker&) = delete;
|
||||
CoalesceWalker& operator=(const CoalesceWalker&) = delete;
|
||||
};
|
||||
|
||||
// Walker subclass used by Simplify.
|
||||
// The simplify walk is purely post-recursive: given the simplified children,
|
||||
// PostVisit creates the simplified result.
|
||||
// The child_args are simplified Regexp*s.
|
||||
class SimplifyWalker : public Regexp::Walker<Regexp*> {
|
||||
public:
|
||||
SimplifyWalker() {}
|
||||
virtual Regexp* PreVisit(Regexp* re, Regexp* parent_arg, bool* stop);
|
||||
virtual Regexp* PostVisit(Regexp* re, Regexp* parent_arg, Regexp* pre_arg,
|
||||
Regexp** child_args, int nchild_args);
|
||||
virtual Regexp* Copy(Regexp* re);
|
||||
virtual Regexp* ShortVisit(Regexp* re, Regexp* parent_arg);
|
||||
|
||||
private:
|
||||
// These functions are declared inside SimplifyWalker so that
|
||||
// they can edit the private fields of the Regexps they construct.
|
||||
|
||||
// Creates a concatenation of two Regexp, consuming refs to re1 and re2.
|
||||
// Caller must Decref return value when done with it.
|
||||
static Regexp* Concat2(Regexp* re1, Regexp* re2, Regexp::ParseFlags flags);
|
||||
|
||||
// Simplifies the expression re{min,max} in terms of *, +, and ?.
|
||||
// Returns a new regexp. Does not edit re. Does not consume reference to re.
|
||||
// Caller must Decref return value when done with it.
|
||||
static Regexp* SimplifyRepeat(Regexp* re, int min, int max,
|
||||
Regexp::ParseFlags parse_flags);
|
||||
|
||||
// Simplifies a character class by expanding any named classes
|
||||
// into rune ranges. Does not edit re. Does not consume ref to re.
|
||||
// Caller must Decref return value when done with it.
|
||||
static Regexp* SimplifyCharClass(Regexp* re);
|
||||
|
||||
SimplifyWalker(const SimplifyWalker&) = delete;
|
||||
SimplifyWalker& operator=(const SimplifyWalker&) = delete;
|
||||
};
|
||||
|
||||
// Simplifies a regular expression, returning a new regexp.
|
||||
// The new regexp uses traditional Unix egrep features only,
|
||||
// plus the Perl (?:) non-capturing parentheses.
|
||||
// Otherwise, no POSIX or Perl additions. The new regexp
|
||||
// captures exactly the same subexpressions (with the same indices)
|
||||
// as the original.
|
||||
// Does not edit current object.
|
||||
// Caller must Decref() return value when done with it.
|
||||
|
||||
Regexp* Regexp::Simplify() {
|
||||
CoalesceWalker cw;
|
||||
Regexp* cre = cw.Walk(this, NULL);
|
||||
if (cre == NULL)
|
||||
return cre;
|
||||
SimplifyWalker sw;
|
||||
Regexp* sre = sw.Walk(cre, NULL);
|
||||
cre->Decref();
|
||||
return sre;
|
||||
}
|
||||
|
||||
#define Simplify DontCallSimplify // Avoid accidental recursion
|
||||
|
||||
// Utility function for PostVisit implementations that compares re->sub() with
|
||||
// child_args to determine whether any child_args changed. In the common case,
|
||||
// where nothing changed, calls Decref() for all child_args and returns false,
|
||||
// so PostVisit must return re->Incref(). Otherwise, returns true.
|
||||
static bool ChildArgsChanged(Regexp* re, Regexp** child_args) {
|
||||
for (int i = 0; i < re->nsub(); i++) {
|
||||
Regexp* sub = re->sub()[i];
|
||||
Regexp* newsub = child_args[i];
|
||||
if (newsub != sub)
|
||||
return true;
|
||||
}
|
||||
for (int i = 0; i < re->nsub(); i++) {
|
||||
Regexp* newsub = child_args[i];
|
||||
newsub->Decref();
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Regexp* CoalesceWalker::Copy(Regexp* re) {
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
Regexp* CoalesceWalker::ShortVisit(Regexp* re, Regexp* parent_arg) {
|
||||
// This should never be called, since we use Walk and not
|
||||
// WalkExponential.
|
||||
LOG(DFATAL) << "CoalesceWalker::ShortVisit called";
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
Regexp* CoalesceWalker::PostVisit(Regexp* re,
|
||||
Regexp* parent_arg,
|
||||
Regexp* pre_arg,
|
||||
Regexp** child_args,
|
||||
int nchild_args) {
|
||||
if (re->nsub() == 0)
|
||||
return re->Incref();
|
||||
|
||||
if (re->op() != kRegexpConcat) {
|
||||
if (!ChildArgsChanged(re, child_args))
|
||||
return re->Incref();
|
||||
|
||||
// Something changed. Build a new op.
|
||||
Regexp* nre = new Regexp(re->op(), re->parse_flags());
|
||||
nre->AllocSub(re->nsub());
|
||||
Regexp** nre_subs = nre->sub();
|
||||
for (int i = 0; i < re->nsub(); i++)
|
||||
nre_subs[i] = child_args[i];
|
||||
// Repeats and Captures have additional data that must be copied.
|
||||
if (re->op() == kRegexpRepeat) {
|
||||
nre->min_ = re->min();
|
||||
nre->max_ = re->max();
|
||||
} else if (re->op() == kRegexpCapture) {
|
||||
nre->cap_ = re->cap();
|
||||
}
|
||||
return nre;
|
||||
}
|
||||
|
||||
bool can_coalesce = false;
|
||||
for (int i = 0; i < re->nsub(); i++) {
|
||||
if (i+1 < re->nsub() &&
|
||||
CanCoalesce(child_args[i], child_args[i+1])) {
|
||||
can_coalesce = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!can_coalesce) {
|
||||
if (!ChildArgsChanged(re, child_args))
|
||||
return re->Incref();
|
||||
|
||||
// Something changed. Build a new op.
|
||||
Regexp* nre = new Regexp(re->op(), re->parse_flags());
|
||||
nre->AllocSub(re->nsub());
|
||||
Regexp** nre_subs = nre->sub();
|
||||
for (int i = 0; i < re->nsub(); i++)
|
||||
nre_subs[i] = child_args[i];
|
||||
return nre;
|
||||
}
|
||||
|
||||
for (int i = 0; i < re->nsub(); i++) {
|
||||
if (i+1 < re->nsub() &&
|
||||
CanCoalesce(child_args[i], child_args[i+1]))
|
||||
DoCoalesce(&child_args[i], &child_args[i+1]);
|
||||
}
|
||||
// Determine how many empty matches were left by DoCoalesce.
|
||||
int n = 0;
|
||||
for (int i = n; i < re->nsub(); i++) {
|
||||
if (child_args[i]->op() == kRegexpEmptyMatch)
|
||||
n++;
|
||||
}
|
||||
// Build a new op.
|
||||
Regexp* nre = new Regexp(re->op(), re->parse_flags());
|
||||
nre->AllocSub(re->nsub() - n);
|
||||
Regexp** nre_subs = nre->sub();
|
||||
for (int i = 0, j = 0; i < re->nsub(); i++) {
|
||||
if (child_args[i]->op() == kRegexpEmptyMatch) {
|
||||
child_args[i]->Decref();
|
||||
continue;
|
||||
}
|
||||
nre_subs[j] = child_args[i];
|
||||
j++;
|
||||
}
|
||||
return nre;
|
||||
}
|
||||
|
||||
bool CoalesceWalker::CanCoalesce(Regexp* r1, Regexp* r2) {
|
||||
// r1 must be a star/plus/quest/repeat of a literal, char class, any char or
|
||||
// any byte.
|
||||
if ((r1->op() == kRegexpStar ||
|
||||
r1->op() == kRegexpPlus ||
|
||||
r1->op() == kRegexpQuest ||
|
||||
r1->op() == kRegexpRepeat) &&
|
||||
(r1->sub()[0]->op() == kRegexpLiteral ||
|
||||
r1->sub()[0]->op() == kRegexpCharClass ||
|
||||
r1->sub()[0]->op() == kRegexpAnyChar ||
|
||||
r1->sub()[0]->op() == kRegexpAnyByte)) {
|
||||
// r2 must be a star/plus/quest/repeat of the same literal, char class,
|
||||
// any char or any byte.
|
||||
if ((r2->op() == kRegexpStar ||
|
||||
r2->op() == kRegexpPlus ||
|
||||
r2->op() == kRegexpQuest ||
|
||||
r2->op() == kRegexpRepeat) &&
|
||||
Regexp::Equal(r1->sub()[0], r2->sub()[0]) &&
|
||||
// The parse flags must be consistent.
|
||||
((r1->parse_flags() & Regexp::NonGreedy) ==
|
||||
(r2->parse_flags() & Regexp::NonGreedy))) {
|
||||
return true;
|
||||
}
|
||||
// ... OR an occurrence of that literal, char class, any char or any byte
|
||||
if (Regexp::Equal(r1->sub()[0], r2)) {
|
||||
return true;
|
||||
}
|
||||
// ... OR a literal string that begins with that literal.
|
||||
if (r1->sub()[0]->op() == kRegexpLiteral &&
|
||||
r2->op() == kRegexpLiteralString &&
|
||||
r2->runes()[0] == r1->sub()[0]->rune() &&
|
||||
// The parse flags must be consistent.
|
||||
((r1->sub()[0]->parse_flags() & Regexp::FoldCase) ==
|
||||
(r2->parse_flags() & Regexp::FoldCase))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void CoalesceWalker::DoCoalesce(Regexp** r1ptr, Regexp** r2ptr) {
|
||||
Regexp* r1 = *r1ptr;
|
||||
Regexp* r2 = *r2ptr;
|
||||
|
||||
Regexp* nre = Regexp::Repeat(
|
||||
r1->sub()[0]->Incref(), r1->parse_flags(), 0, 0);
|
||||
|
||||
switch (r1->op()) {
|
||||
case kRegexpStar:
|
||||
nre->min_ = 0;
|
||||
nre->max_ = -1;
|
||||
break;
|
||||
|
||||
case kRegexpPlus:
|
||||
nre->min_ = 1;
|
||||
nre->max_ = -1;
|
||||
break;
|
||||
|
||||
case kRegexpQuest:
|
||||
nre->min_ = 0;
|
||||
nre->max_ = 1;
|
||||
break;
|
||||
|
||||
case kRegexpRepeat:
|
||||
nre->min_ = r1->min();
|
||||
nre->max_ = r1->max();
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG(DFATAL) << "DoCoalesce failed: r1->op() is " << r1->op();
|
||||
nre->Decref();
|
||||
return;
|
||||
}
|
||||
|
||||
switch (r2->op()) {
|
||||
case kRegexpStar:
|
||||
nre->max_ = -1;
|
||||
goto LeaveEmpty;
|
||||
|
||||
case kRegexpPlus:
|
||||
nre->min_++;
|
||||
nre->max_ = -1;
|
||||
goto LeaveEmpty;
|
||||
|
||||
case kRegexpQuest:
|
||||
if (nre->max() != -1)
|
||||
nre->max_++;
|
||||
goto LeaveEmpty;
|
||||
|
||||
case kRegexpRepeat:
|
||||
nre->min_ += r2->min();
|
||||
if (r2->max() == -1)
|
||||
nre->max_ = -1;
|
||||
else if (nre->max() != -1)
|
||||
nre->max_ += r2->max();
|
||||
goto LeaveEmpty;
|
||||
|
||||
case kRegexpLiteral:
|
||||
case kRegexpCharClass:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
nre->min_++;
|
||||
if (nre->max() != -1)
|
||||
nre->max_++;
|
||||
goto LeaveEmpty;
|
||||
|
||||
LeaveEmpty:
|
||||
*r1ptr = new Regexp(kRegexpEmptyMatch, Regexp::NoParseFlags);
|
||||
*r2ptr = nre;
|
||||
break;
|
||||
|
||||
case kRegexpLiteralString: {
|
||||
Rune r = r1->sub()[0]->rune();
|
||||
// Determine how much of the literal string is removed.
|
||||
// We know that we have at least one rune. :)
|
||||
int n = 1;
|
||||
while (n < r2->nrunes() && r2->runes()[n] == r)
|
||||
n++;
|
||||
nre->min_ += n;
|
||||
if (nre->max() != -1)
|
||||
nre->max_ += n;
|
||||
if (n == r2->nrunes())
|
||||
goto LeaveEmpty;
|
||||
*r1ptr = nre;
|
||||
*r2ptr = Regexp::LiteralString(
|
||||
&r2->runes()[n], r2->nrunes() - n, r2->parse_flags());
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
LOG(DFATAL) << "DoCoalesce failed: r2->op() is " << r2->op();
|
||||
nre->Decref();
|
||||
return;
|
||||
}
|
||||
|
||||
r1->Decref();
|
||||
r2->Decref();
|
||||
}
|
||||
|
||||
Regexp* SimplifyWalker::Copy(Regexp* re) {
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
Regexp* SimplifyWalker::ShortVisit(Regexp* re, Regexp* parent_arg) {
|
||||
// This should never be called, since we use Walk and not
|
||||
// WalkExponential.
|
||||
LOG(DFATAL) << "SimplifyWalker::ShortVisit called";
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
Regexp* SimplifyWalker::PreVisit(Regexp* re, Regexp* parent_arg, bool* stop) {
|
||||
if (re->simple()) {
|
||||
*stop = true;
|
||||
return re->Incref();
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Regexp* SimplifyWalker::PostVisit(Regexp* re,
|
||||
Regexp* parent_arg,
|
||||
Regexp* pre_arg,
|
||||
Regexp** child_args,
|
||||
int nchild_args) {
|
||||
switch (re->op()) {
|
||||
case kRegexpNoMatch:
|
||||
case kRegexpEmptyMatch:
|
||||
case kRegexpLiteral:
|
||||
case kRegexpLiteralString:
|
||||
case kRegexpBeginLine:
|
||||
case kRegexpEndLine:
|
||||
case kRegexpBeginText:
|
||||
case kRegexpWordBoundary:
|
||||
case kRegexpNoWordBoundary:
|
||||
case kRegexpEndText:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
case kRegexpHaveMatch:
|
||||
// All these are always simple.
|
||||
re->simple_ = true;
|
||||
return re->Incref();
|
||||
|
||||
case kRegexpConcat:
|
||||
case kRegexpAlternate: {
|
||||
// These are simple as long as the subpieces are simple.
|
||||
if (!ChildArgsChanged(re, child_args)) {
|
||||
re->simple_ = true;
|
||||
return re->Incref();
|
||||
}
|
||||
Regexp* nre = new Regexp(re->op(), re->parse_flags());
|
||||
nre->AllocSub(re->nsub());
|
||||
Regexp** nre_subs = nre->sub();
|
||||
for (int i = 0; i < re->nsub(); i++)
|
||||
nre_subs[i] = child_args[i];
|
||||
nre->simple_ = true;
|
||||
return nre;
|
||||
}
|
||||
|
||||
case kRegexpCapture: {
|
||||
Regexp* newsub = child_args[0];
|
||||
if (newsub == re->sub()[0]) {
|
||||
newsub->Decref();
|
||||
re->simple_ = true;
|
||||
return re->Incref();
|
||||
}
|
||||
Regexp* nre = new Regexp(kRegexpCapture, re->parse_flags());
|
||||
nre->AllocSub(1);
|
||||
nre->sub()[0] = newsub;
|
||||
nre->cap_ = re->cap();
|
||||
nre->simple_ = true;
|
||||
return nre;
|
||||
}
|
||||
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest: {
|
||||
Regexp* newsub = child_args[0];
|
||||
// Special case: repeat the empty string as much as
|
||||
// you want, but it's still the empty string.
|
||||
if (newsub->op() == kRegexpEmptyMatch)
|
||||
return newsub;
|
||||
|
||||
// These are simple as long as the subpiece is simple.
|
||||
if (newsub == re->sub()[0]) {
|
||||
newsub->Decref();
|
||||
re->simple_ = true;
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
// These are also idempotent if flags are constant.
|
||||
if (re->op() == newsub->op() &&
|
||||
re->parse_flags() == newsub->parse_flags())
|
||||
return newsub;
|
||||
|
||||
Regexp* nre = new Regexp(re->op(), re->parse_flags());
|
||||
nre->AllocSub(1);
|
||||
nre->sub()[0] = newsub;
|
||||
nre->simple_ = true;
|
||||
return nre;
|
||||
}
|
||||
|
||||
case kRegexpRepeat: {
|
||||
Regexp* newsub = child_args[0];
|
||||
// Special case: repeat the empty string as much as
|
||||
// you want, but it's still the empty string.
|
||||
if (newsub->op() == kRegexpEmptyMatch)
|
||||
return newsub;
|
||||
|
||||
Regexp* nre = SimplifyRepeat(newsub, re->min_, re->max_,
|
||||
re->parse_flags());
|
||||
newsub->Decref();
|
||||
nre->simple_ = true;
|
||||
return nre;
|
||||
}
|
||||
|
||||
case kRegexpCharClass: {
|
||||
Regexp* nre = SimplifyCharClass(re);
|
||||
nre->simple_ = true;
|
||||
return nre;
|
||||
}
|
||||
}
|
||||
|
||||
LOG(ERROR) << "Simplify case not handled: " << re->op();
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
// Creates a concatenation of two Regexp, consuming refs to re1 and re2.
|
||||
// Returns a new Regexp, handing the ref to the caller.
|
||||
Regexp* SimplifyWalker::Concat2(Regexp* re1, Regexp* re2,
|
||||
Regexp::ParseFlags parse_flags) {
|
||||
Regexp* re = new Regexp(kRegexpConcat, parse_flags);
|
||||
re->AllocSub(2);
|
||||
Regexp** subs = re->sub();
|
||||
subs[0] = re1;
|
||||
subs[1] = re2;
|
||||
return re;
|
||||
}
|
||||
|
||||
// Simplifies the expression re{min,max} in terms of *, +, and ?.
|
||||
// Returns a new regexp. Does not edit re. Does not consume reference to re.
|
||||
// Caller must Decref return value when done with it.
|
||||
// The result will *not* necessarily have the right capturing parens
|
||||
// if you call ToString() and re-parse it: (x){2} becomes (x)(x),
|
||||
// but in the Regexp* representation, both (x) are marked as $1.
|
||||
Regexp* SimplifyWalker::SimplifyRepeat(Regexp* re, int min, int max,
|
||||
Regexp::ParseFlags f) {
|
||||
// x{n,} means at least n matches of x.
|
||||
if (max == -1) {
|
||||
// Special case: x{0,} is x*
|
||||
if (min == 0)
|
||||
return Regexp::Star(re->Incref(), f);
|
||||
|
||||
// Special case: x{1,} is x+
|
||||
if (min == 1)
|
||||
return Regexp::Plus(re->Incref(), f);
|
||||
|
||||
// General case: x{4,} is xxxx+
|
||||
PODArray<Regexp*> nre_subs(min);
|
||||
for (int i = 0; i < min-1; i++)
|
||||
nre_subs[i] = re->Incref();
|
||||
nre_subs[min-1] = Regexp::Plus(re->Incref(), f);
|
||||
return Regexp::Concat(nre_subs.data(), min, f);
|
||||
}
|
||||
|
||||
// Special case: (x){0} matches only empty string.
|
||||
if (min == 0 && max == 0)
|
||||
return new Regexp(kRegexpEmptyMatch, f);
|
||||
|
||||
// Special case: x{1} is just x.
|
||||
if (min == 1 && max == 1)
|
||||
return re->Incref();
|
||||
|
||||
// General case: x{n,m} means n copies of x and m copies of x?.
|
||||
// The machine will do less work if we nest the final m copies,
|
||||
// so that x{2,5} = xx(x(x(x)?)?)?
|
||||
|
||||
// Build leading prefix: xx. Capturing only on the last one.
|
||||
Regexp* nre = NULL;
|
||||
if (min > 0) {
|
||||
PODArray<Regexp*> nre_subs(min);
|
||||
for (int i = 0; i < min; i++)
|
||||
nre_subs[i] = re->Incref();
|
||||
nre = Regexp::Concat(nre_subs.data(), min, f);
|
||||
}
|
||||
|
||||
// Build and attach suffix: (x(x(x)?)?)?
|
||||
if (max > min) {
|
||||
Regexp* suf = Regexp::Quest(re->Incref(), f);
|
||||
for (int i = min+1; i < max; i++)
|
||||
suf = Regexp::Quest(Concat2(re->Incref(), suf, f), f);
|
||||
if (nre == NULL)
|
||||
nre = suf;
|
||||
else
|
||||
nre = Concat2(nre, suf, f);
|
||||
}
|
||||
|
||||
if (nre == NULL) {
|
||||
// Some degenerate case, like min > max, or min < max < 0.
|
||||
// This shouldn't happen, because the parser rejects such regexps.
|
||||
LOG(DFATAL) << "Malformed repeat " << re->ToString() << " " << min << " " << max;
|
||||
return new Regexp(kRegexpNoMatch, f);
|
||||
}
|
||||
|
||||
return nre;
|
||||
}
|
||||
|
||||
// Simplifies a character class.
|
||||
// Caller must Decref return value when done with it.
|
||||
Regexp* SimplifyWalker::SimplifyCharClass(Regexp* re) {
|
||||
CharClass* cc = re->cc();
|
||||
|
||||
// Special cases
|
||||
if (cc->empty())
|
||||
return new Regexp(kRegexpNoMatch, re->parse_flags());
|
||||
if (cc->full())
|
||||
return new Regexp(kRegexpAnyChar, re->parse_flags());
|
||||
|
||||
return re->Incref();
|
||||
}
|
||||
|
||||
} // namespace re2
|
65
extern/re2/re2/stringpiece.cc
vendored
Normal file
65
extern/re2/re2/stringpiece.cc
vendored
Normal file
@ -0,0 +1,65 @@
|
||||
// Copyright 2004 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include "util/util.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
const StringPiece::size_type StringPiece::npos; // initialized in stringpiece.h
|
||||
|
||||
StringPiece::size_type StringPiece::copy(char* buf, size_type n,
|
||||
size_type pos) const {
|
||||
size_type ret = std::min(size_ - pos, n);
|
||||
memcpy(buf, data_ + pos, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
StringPiece StringPiece::substr(size_type pos, size_type n) const {
|
||||
if (pos > size_) pos = size_;
|
||||
if (n > size_ - pos) n = size_ - pos;
|
||||
return StringPiece(data_ + pos, n);
|
||||
}
|
||||
|
||||
StringPiece::size_type StringPiece::find(const StringPiece& s,
|
||||
size_type pos) const {
|
||||
if (pos > size_) return npos;
|
||||
const_pointer result = std::search(data_ + pos, data_ + size_,
|
||||
s.data_, s.data_ + s.size_);
|
||||
size_type xpos = result - data_;
|
||||
return xpos + s.size_ <= size_ ? xpos : npos;
|
||||
}
|
||||
|
||||
StringPiece::size_type StringPiece::find(char c, size_type pos) const {
|
||||
if (size_ <= 0 || pos >= size_) return npos;
|
||||
const_pointer result = std::find(data_ + pos, data_ + size_, c);
|
||||
return result != data_ + size_ ? result - data_ : npos;
|
||||
}
|
||||
|
||||
StringPiece::size_type StringPiece::rfind(const StringPiece& s,
|
||||
size_type pos) const {
|
||||
if (size_ < s.size_) return npos;
|
||||
if (s.size_ == 0) return std::min(size_, pos);
|
||||
const_pointer last = data_ + std::min(size_ - s.size_, pos) + s.size_;
|
||||
const_pointer result = std::find_end(data_, last, s.data_, s.data_ + s.size_);
|
||||
return result != last ? result - data_ : npos;
|
||||
}
|
||||
|
||||
StringPiece::size_type StringPiece::rfind(char c, size_type pos) const {
|
||||
if (size_ <= 0) return npos;
|
||||
for (size_t i = std::min(pos + 1, size_); i != 0;) {
|
||||
if (data_[--i] == c) return i;
|
||||
}
|
||||
return npos;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& o, const StringPiece& p) {
|
||||
o.write(p.data(), p.size());
|
||||
return o;
|
||||
}
|
||||
|
||||
} // namespace re2
|
210
extern/re2/re2/stringpiece.h
vendored
Normal file
210
extern/re2/re2/stringpiece.h
vendored
Normal file
@ -0,0 +1,210 @@
|
||||
// Copyright 2001-2010 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_STRINGPIECE_H_
|
||||
#define RE2_STRINGPIECE_H_
|
||||
|
||||
// A string-like object that points to a sized piece of memory.
|
||||
//
|
||||
// Functions or methods may use const StringPiece& parameters to accept either
|
||||
// a "const char*" or a "string" value that will be implicitly converted to
|
||||
// a StringPiece. The implicit conversion means that it is often appropriate
|
||||
// to include this .h file in other files rather than forward-declaring
|
||||
// StringPiece as would be appropriate for most other Google classes.
|
||||
//
|
||||
// Systematic usage of StringPiece is encouraged as it will reduce unnecessary
|
||||
// conversions from "const char*" to "string" and back again.
|
||||
//
|
||||
//
|
||||
// Arghh! I wish C++ literals were "string".
|
||||
|
||||
// Doing this simplifies the logic below.
|
||||
#ifndef __has_include
|
||||
#define __has_include(x) 0
|
||||
#endif
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#if __has_include(<string_view>) && __cplusplus >= 201703L
|
||||
#include <string_view>
|
||||
#endif
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class StringPiece {
|
||||
public:
|
||||
typedef std::char_traits<char> traits_type;
|
||||
typedef char value_type;
|
||||
typedef char* pointer;
|
||||
typedef const char* const_pointer;
|
||||
typedef char& reference;
|
||||
typedef const char& const_reference;
|
||||
typedef const char* const_iterator;
|
||||
typedef const_iterator iterator;
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef const_reverse_iterator reverse_iterator;
|
||||
typedef size_t size_type;
|
||||
typedef ptrdiff_t difference_type;
|
||||
static const size_type npos = static_cast<size_type>(-1);
|
||||
|
||||
// We provide non-explicit singleton constructors so users can pass
|
||||
// in a "const char*" or a "string" wherever a "StringPiece" is
|
||||
// expected.
|
||||
StringPiece()
|
||||
: data_(NULL), size_(0) {}
|
||||
#if __has_include(<string_view>) && __cplusplus >= 201703L
|
||||
StringPiece(const std::string_view& str)
|
||||
: data_(str.data()), size_(str.size()) {}
|
||||
#endif
|
||||
StringPiece(const std::string& str)
|
||||
: data_(str.data()), size_(str.size()) {}
|
||||
StringPiece(const char* str)
|
||||
: data_(str), size_(str == NULL ? 0 : strlen(str)) {}
|
||||
StringPiece(const char* str, size_type len)
|
||||
: data_(str), size_(len) {}
|
||||
|
||||
const_iterator begin() const { return data_; }
|
||||
const_iterator end() const { return data_ + size_; }
|
||||
const_reverse_iterator rbegin() const {
|
||||
return const_reverse_iterator(data_ + size_);
|
||||
}
|
||||
const_reverse_iterator rend() const {
|
||||
return const_reverse_iterator(data_);
|
||||
}
|
||||
|
||||
size_type size() const { return size_; }
|
||||
size_type length() const { return size_; }
|
||||
bool empty() const { return size_ == 0; }
|
||||
|
||||
const_reference operator[](size_type i) const { return data_[i]; }
|
||||
const_pointer data() const { return data_; }
|
||||
|
||||
void remove_prefix(size_type n) {
|
||||
data_ += n;
|
||||
size_ -= n;
|
||||
}
|
||||
|
||||
void remove_suffix(size_type n) {
|
||||
size_ -= n;
|
||||
}
|
||||
|
||||
void set(const char* str) {
|
||||
data_ = str;
|
||||
size_ = str == NULL ? 0 : strlen(str);
|
||||
}
|
||||
|
||||
void set(const char* str, size_type len) {
|
||||
data_ = str;
|
||||
size_ = len;
|
||||
}
|
||||
|
||||
// Converts to `std::basic_string`.
|
||||
template <typename A>
|
||||
explicit operator std::basic_string<char, traits_type, A>() const {
|
||||
if (!data_) return {};
|
||||
return std::basic_string<char, traits_type, A>(data_, size_);
|
||||
}
|
||||
|
||||
std::string as_string() const {
|
||||
return std::string(data_, size_);
|
||||
}
|
||||
|
||||
// We also define ToString() here, since many other string-like
|
||||
// interfaces name the routine that converts to a C++ string
|
||||
// "ToString", and it's confusing to have the method that does that
|
||||
// for a StringPiece be called "as_string()". We also leave the
|
||||
// "as_string()" method defined here for existing code.
|
||||
std::string ToString() const {
|
||||
return std::string(data_, size_);
|
||||
}
|
||||
|
||||
void CopyToString(std::string* target) const {
|
||||
target->assign(data_, size_);
|
||||
}
|
||||
|
||||
void AppendToString(std::string* target) const {
|
||||
target->append(data_, size_);
|
||||
}
|
||||
|
||||
size_type copy(char* buf, size_type n, size_type pos = 0) const;
|
||||
StringPiece substr(size_type pos = 0, size_type n = npos) const;
|
||||
|
||||
int compare(const StringPiece& x) const {
|
||||
size_type min_size = std::min(size(), x.size());
|
||||
if (min_size > 0) {
|
||||
int r = memcmp(data(), x.data(), min_size);
|
||||
if (r < 0) return -1;
|
||||
if (r > 0) return 1;
|
||||
}
|
||||
if (size() < x.size()) return -1;
|
||||
if (size() > x.size()) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Does "this" start with "x"?
|
||||
bool starts_with(const StringPiece& x) const {
|
||||
return x.empty() ||
|
||||
(size() >= x.size() && memcmp(data(), x.data(), x.size()) == 0);
|
||||
}
|
||||
|
||||
// Does "this" end with "x"?
|
||||
bool ends_with(const StringPiece& x) const {
|
||||
return x.empty() ||
|
||||
(size() >= x.size() &&
|
||||
memcmp(data() + (size() - x.size()), x.data(), x.size()) == 0);
|
||||
}
|
||||
|
||||
bool contains(const StringPiece& s) const {
|
||||
return find(s) != npos;
|
||||
}
|
||||
|
||||
size_type find(const StringPiece& s, size_type pos = 0) const;
|
||||
size_type find(char c, size_type pos = 0) const;
|
||||
size_type rfind(const StringPiece& s, size_type pos = npos) const;
|
||||
size_type rfind(char c, size_type pos = npos) const;
|
||||
|
||||
private:
|
||||
const_pointer data_;
|
||||
size_type size_;
|
||||
};
|
||||
|
||||
inline bool operator==(const StringPiece& x, const StringPiece& y) {
|
||||
StringPiece::size_type len = x.size();
|
||||
if (len != y.size()) return false;
|
||||
return x.data() == y.data() || len == 0 ||
|
||||
memcmp(x.data(), y.data(), len) == 0;
|
||||
}
|
||||
|
||||
inline bool operator!=(const StringPiece& x, const StringPiece& y) {
|
||||
return !(x == y);
|
||||
}
|
||||
|
||||
inline bool operator<(const StringPiece& x, const StringPiece& y) {
|
||||
StringPiece::size_type min_size = std::min(x.size(), y.size());
|
||||
int r = min_size == 0 ? 0 : memcmp(x.data(), y.data(), min_size);
|
||||
return (r < 0) || (r == 0 && x.size() < y.size());
|
||||
}
|
||||
|
||||
inline bool operator>(const StringPiece& x, const StringPiece& y) {
|
||||
return y < x;
|
||||
}
|
||||
|
||||
inline bool operator<=(const StringPiece& x, const StringPiece& y) {
|
||||
return !(x > y);
|
||||
}
|
||||
|
||||
inline bool operator>=(const StringPiece& x, const StringPiece& y) {
|
||||
return !(x < y);
|
||||
}
|
||||
|
||||
// Allow StringPiece to be logged.
|
||||
std::ostream& operator<<(std::ostream& o, const StringPiece& p);
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_STRINGPIECE_H_
|
273
extern/re2/re2/testing/backtrack.cc
vendored
Normal file
273
extern/re2/re2/testing/backtrack.cc
vendored
Normal file
@ -0,0 +1,273 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Tested by search_test.cc, exhaustive_test.cc, tester.cc
|
||||
//
|
||||
// Prog::UnsafeSearchBacktrack is a backtracking regular expression search,
|
||||
// except that it remembers where it has been, trading a lot of
|
||||
// memory for a lot of time. It exists only for testing purposes.
|
||||
//
|
||||
// Let me repeat that.
|
||||
//
|
||||
// THIS CODE SHOULD NEVER BE USED IN PRODUCTION:
|
||||
// - It uses a ton of memory.
|
||||
// - It uses a ton of stack.
|
||||
// - It uses CHECK and LOG(FATAL).
|
||||
// - It implements unanchored search by repeated anchored search.
|
||||
//
|
||||
// On the other hand, it is very simple and a good reference
|
||||
// implementation for the more complicated regexp packages.
|
||||
//
|
||||
// In BUILD, this file is linked into the ":testing" library,
|
||||
// not the main library, in order to make it harder to pick up
|
||||
// accidentally.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Backtracker holds the state for a backtracking search.
|
||||
//
|
||||
// Excluding the search parameters, the main search state
|
||||
// is just the "capture registers", which record, for the
|
||||
// current execution, the string position at which each
|
||||
// parenthesis was passed. cap_[0] and cap_[1] are the
|
||||
// left and right parenthesis in $0, cap_[2] and cap_[3] in $1, etc.
|
||||
//
|
||||
// To avoid infinite loops during backtracking on expressions
|
||||
// like (a*)*, the visited_[] bitmap marks the (state, string-position)
|
||||
// pairs that have already been explored and are thus not worth
|
||||
// re-exploring if we get there via another path. Modern backtracking
|
||||
// libraries engineer their program representation differently, to make
|
||||
// such infinite loops possible to avoid without keeping a giant visited_
|
||||
// bitmap, but visited_ works fine for a reference implementation
|
||||
// and it has the nice benefit of making the search run in linear time.
|
||||
class Backtracker {
|
||||
public:
|
||||
explicit Backtracker(Prog* prog);
|
||||
~Backtracker();
|
||||
|
||||
bool Search(const StringPiece& text, const StringPiece& context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch);
|
||||
|
||||
private:
|
||||
// Explores from instruction id at string position p looking for a match.
|
||||
// Returns true if found (so that caller can stop trying other possibilities).
|
||||
bool Visit(int id, const char* p);
|
||||
|
||||
// Tries instruction id at string position p.
|
||||
// Returns true if a match is found.
|
||||
bool Try(int id, const char* p);
|
||||
|
||||
// Search parameters
|
||||
Prog* prog_; // program being run
|
||||
StringPiece text_; // text being searched
|
||||
StringPiece context_; // greater context of text being searched
|
||||
bool anchored_; // whether search is anchored at text.begin()
|
||||
bool longest_; // whether search wants leftmost-longest match
|
||||
bool endmatch_; // whether search must end at text.end()
|
||||
StringPiece *submatch_; // submatches to fill in
|
||||
int nsubmatch_; // # of submatches to fill in
|
||||
|
||||
// Search state
|
||||
const char* cap_[64]; // capture registers
|
||||
uint32_t *visited_; // bitmap: (Inst*, char*) pairs already backtracked
|
||||
size_t nvisited_; // # of words in bitmap
|
||||
};
|
||||
|
||||
Backtracker::Backtracker(Prog* prog)
|
||||
: prog_(prog),
|
||||
anchored_(false),
|
||||
longest_(false),
|
||||
endmatch_(false),
|
||||
submatch_(NULL),
|
||||
nsubmatch_(0),
|
||||
visited_(NULL),
|
||||
nvisited_(0) {
|
||||
}
|
||||
|
||||
Backtracker::~Backtracker() {
|
||||
delete[] visited_;
|
||||
}
|
||||
|
||||
// Runs a backtracking search.
|
||||
bool Backtracker::Search(const StringPiece& text, const StringPiece& context,
|
||||
bool anchored, bool longest,
|
||||
StringPiece* submatch, int nsubmatch) {
|
||||
text_ = text;
|
||||
context_ = context;
|
||||
if (context_.begin() == NULL)
|
||||
context_ = text;
|
||||
if (prog_->anchor_start() && text.begin() > context_.begin())
|
||||
return false;
|
||||
if (prog_->anchor_end() && text.end() < context_.end())
|
||||
return false;
|
||||
anchored_ = anchored | prog_->anchor_start();
|
||||
longest_ = longest | prog_->anchor_end();
|
||||
endmatch_ = prog_->anchor_end();
|
||||
submatch_ = submatch;
|
||||
nsubmatch_ = nsubmatch;
|
||||
CHECK_LT(2*nsubmatch_, static_cast<int>(arraysize(cap_)));
|
||||
memset(cap_, 0, sizeof cap_);
|
||||
|
||||
// We use submatch_[0] for our own bookkeeping,
|
||||
// so it had better exist.
|
||||
StringPiece sp0;
|
||||
if (nsubmatch < 1) {
|
||||
submatch_ = &sp0;
|
||||
nsubmatch_ = 1;
|
||||
}
|
||||
submatch_[0] = StringPiece();
|
||||
|
||||
// Allocate new visited_ bitmap -- size is proportional
|
||||
// to text, so have to reallocate on each call to Search.
|
||||
delete[] visited_;
|
||||
nvisited_ = (prog_->size()*(text.size()+1) + 31)/32;
|
||||
visited_ = new uint32_t[nvisited_];
|
||||
memset(visited_, 0, nvisited_*sizeof visited_[0]);
|
||||
|
||||
// Anchored search must start at text.begin().
|
||||
if (anchored_) {
|
||||
cap_[0] = text.begin();
|
||||
return Visit(prog_->start(), text.begin());
|
||||
}
|
||||
|
||||
// Unanchored search, starting from each possible text position.
|
||||
// Notice that we have to try the empty string at the end of
|
||||
// the text, so the loop condition is p <= text.end(), not p < text.end().
|
||||
for (const char* p = text.begin(); p <= text.end(); p++) {
|
||||
cap_[0] = p;
|
||||
if (Visit(prog_->start(), p)) // Match must be leftmost; done.
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Explores from instruction id at string position p looking for a match.
|
||||
// Return true if found (so that caller can stop trying other possibilities).
|
||||
bool Backtracker::Visit(int id, const char* p) {
|
||||
// Check bitmap. If we've already explored from here,
|
||||
// either it didn't match or it did but we're hoping for a better match.
|
||||
// Either way, don't go down that road again.
|
||||
CHECK(p <= text_.end());
|
||||
size_t n = id*(text_.size()+1) + (p - text_.begin());
|
||||
CHECK_LT(n/32, nvisited_);
|
||||
if (visited_[n/32] & (1 << (n&31)))
|
||||
return false;
|
||||
visited_[n/32] |= 1 << (n&31);
|
||||
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
if (Try(id, p)) {
|
||||
if (longest_ && !ip->last())
|
||||
Visit(id+1, p);
|
||||
return true;
|
||||
}
|
||||
if (!ip->last())
|
||||
return Visit(id+1, p);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Tries instruction id at string position p.
|
||||
// Returns true if a match is found.
|
||||
bool Backtracker::Try(int id, const char* p) {
|
||||
// Pick out byte at current position. If at end of string,
|
||||
// have to explore in hope of finishing a match. Use impossible byte -1.
|
||||
int c = -1;
|
||||
if (p < text_.end())
|
||||
c = *p & 0xFF;
|
||||
|
||||
Prog::Inst* ip = prog_->inst(id);
|
||||
switch (ip->opcode()) {
|
||||
default:
|
||||
LOG(FATAL) << "Unexpected opcode: " << (int)ip->opcode();
|
||||
return false; // not reached
|
||||
|
||||
case kInstAltMatch:
|
||||
// Ignored.
|
||||
return false;
|
||||
|
||||
case kInstByteRange:
|
||||
if (ip->Matches(c))
|
||||
return Visit(ip->out(), p+1);
|
||||
return false;
|
||||
|
||||
case kInstCapture:
|
||||
if (0 <= ip->cap() &&
|
||||
ip->cap() < static_cast<int>(arraysize(cap_))) {
|
||||
// Capture p to register, but save old value.
|
||||
const char* q = cap_[ip->cap()];
|
||||
cap_[ip->cap()] = p;
|
||||
bool ret = Visit(ip->out(), p);
|
||||
// Restore old value as we backtrack.
|
||||
cap_[ip->cap()] = q;
|
||||
return ret;
|
||||
}
|
||||
return Visit(ip->out(), p);
|
||||
|
||||
case kInstEmptyWidth:
|
||||
if (ip->empty() & ~Prog::EmptyFlags(context_, p))
|
||||
return false;
|
||||
return Visit(ip->out(), p);
|
||||
|
||||
case kInstNop:
|
||||
return Visit(ip->out(), p);
|
||||
|
||||
case kInstMatch:
|
||||
// We found a match. If it's the best so far, record the
|
||||
// parameters in the caller's submatch_ array.
|
||||
if (endmatch_ && p != context_.end())
|
||||
return false;
|
||||
cap_[1] = p;
|
||||
if (submatch_[0].data() == NULL || // First match so far ...
|
||||
(longest_ && p > submatch_[0].end())) { // ... or better match
|
||||
for (int i = 0; i < nsubmatch_; i++)
|
||||
submatch_[i] = StringPiece(
|
||||
cap_[2 * i], static_cast<size_t>(cap_[2 * i + 1] - cap_[2 * i]));
|
||||
}
|
||||
return true;
|
||||
|
||||
case kInstFail:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Runs a backtracking search.
|
||||
bool Prog::UnsafeSearchBacktrack(const StringPiece& text,
|
||||
const StringPiece& context,
|
||||
Anchor anchor,
|
||||
MatchKind kind,
|
||||
StringPiece* match,
|
||||
int nmatch) {
|
||||
// If full match, we ask for an anchored longest match
|
||||
// and then check that match[0] == text.
|
||||
// So make sure match[0] exists.
|
||||
StringPiece sp0;
|
||||
if (kind == kFullMatch) {
|
||||
anchor = kAnchored;
|
||||
if (nmatch < 1) {
|
||||
match = &sp0;
|
||||
nmatch = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Run the search.
|
||||
Backtracker b(this);
|
||||
bool anchored = anchor == kAnchored;
|
||||
bool longest = kind != kFirstMatch;
|
||||
if (!b.Search(text, context, anchored, longest, match, nmatch))
|
||||
return false;
|
||||
if (kind == kFullMatch && match[0].end() != text.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace re2
|
226
extern/re2/re2/testing/charclass_test.cc
vendored
Normal file
226
extern/re2/re2/testing/charclass_test.cc
vendored
Normal file
@ -0,0 +1,226 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test character class manipulations.
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct CCTest {
|
||||
struct {
|
||||
Rune lo;
|
||||
Rune hi;
|
||||
} add[10];
|
||||
int remove;
|
||||
struct {
|
||||
Rune lo;
|
||||
Rune hi;
|
||||
} final[10];
|
||||
};
|
||||
|
||||
static CCTest tests[] = {
|
||||
{ { { 10, 20 }, {-1} }, -1,
|
||||
{ { 10, 20 }, {-1} } },
|
||||
|
||||
{ { { 10, 20 }, { 20, 30 }, {-1} }, -1,
|
||||
{ { 10, 30 }, {-1} } },
|
||||
|
||||
{ { { 10, 20 }, { 30, 40 }, { 20, 30 }, {-1} }, -1,
|
||||
{ { 10, 40 }, {-1} } },
|
||||
|
||||
{ { { 0, 50 }, { 20, 30 }, {-1} }, -1,
|
||||
{ { 0, 50 }, {-1} } },
|
||||
|
||||
{ { { 10, 11 }, { 13, 14 }, { 16, 17 }, { 19, 20 }, { 22, 23 }, {-1} }, -1,
|
||||
{ { 10, 11 }, { 13, 14 }, { 16, 17 }, { 19, 20 }, { 22, 23 }, {-1} } },
|
||||
|
||||
{ { { 13, 14 }, { 10, 11 }, { 22, 23 }, { 19, 20 }, { 16, 17 }, {-1} }, -1,
|
||||
{ { 10, 11 }, { 13, 14 }, { 16, 17 }, { 19, 20 }, { 22, 23 }, {-1} } },
|
||||
|
||||
{ { { 13, 14 }, { 10, 11 }, { 22, 23 }, { 19, 20 }, { 16, 17 }, {-1} }, -1,
|
||||
{ { 10, 11 }, { 13, 14 }, { 16, 17 }, { 19, 20 }, { 22, 23 }, {-1} } },
|
||||
|
||||
{ { { 13, 14 }, { 10, 11 }, { 22, 23 }, { 19, 20 }, { 16, 17 }, { 5, 25 }, {-1} }, -1,
|
||||
{ { 5, 25 }, {-1} } },
|
||||
|
||||
{ { { 13, 14 }, { 10, 11 }, { 22, 23 }, { 19, 20 }, { 16, 17 }, { 12, 21 }, {-1} }, -1,
|
||||
{ { 10, 23 }, {-1} } },
|
||||
|
||||
// These check boundary cases during negation.
|
||||
{ { { 0, Runemax }, {-1} }, -1,
|
||||
{ { 0, Runemax }, {-1} } },
|
||||
|
||||
{ { { 0, 50 }, {-1} }, -1,
|
||||
{ { 0, 50 }, {-1} } },
|
||||
|
||||
{ { { 50, Runemax }, {-1} }, -1,
|
||||
{ { 50, Runemax }, {-1} } },
|
||||
|
||||
// Check RemoveAbove.
|
||||
{ { { 50, Runemax }, {-1} }, 255,
|
||||
{ { 50, 255 }, {-1} } },
|
||||
|
||||
{ { { 50, Runemax }, {-1} }, 65535,
|
||||
{ { 50, 65535 }, {-1} } },
|
||||
|
||||
{ { { 50, Runemax }, {-1} }, Runemax,
|
||||
{ { 50, Runemax }, {-1} } },
|
||||
|
||||
{ { { 50, 60 }, { 250, 260 }, { 350, 360 }, {-1} }, 255,
|
||||
{ { 50, 60 }, { 250, 255 }, {-1} } },
|
||||
|
||||
{ { { 50, 60 }, {-1} }, 255,
|
||||
{ { 50, 60 }, {-1} } },
|
||||
|
||||
{ { { 350, 360 }, {-1} }, 255,
|
||||
{ {-1} } },
|
||||
|
||||
{ { {-1} }, 255,
|
||||
{ {-1} } },
|
||||
};
|
||||
|
||||
template<class CharClass>
|
||||
static void Broke(const char *desc, const CCTest* t, CharClass* cc) {
|
||||
if (t == NULL) {
|
||||
printf("\t%s:", desc);
|
||||
} else {
|
||||
printf("\n");
|
||||
printf("CharClass added: [%s]", desc);
|
||||
for (int k = 0; t->add[k].lo >= 0; k++)
|
||||
printf(" %d-%d", t->add[k].lo, t->add[k].hi);
|
||||
printf("\n");
|
||||
if (t->remove >= 0)
|
||||
printf("Removed > %d\n", t->remove);
|
||||
printf("\twant:");
|
||||
for (int k = 0; t->final[k].lo >= 0; k++)
|
||||
printf(" %d-%d", t->final[k].lo, t->final[k].hi);
|
||||
printf("\n");
|
||||
printf("\thave:");
|
||||
}
|
||||
|
||||
for (typename CharClass::iterator it = cc->begin(); it != cc->end(); ++it)
|
||||
printf(" %d-%d", it->lo, it->hi);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
bool ShouldContain(CCTest *t, int x) {
|
||||
for (int j = 0; t->final[j].lo >= 0; j++)
|
||||
if (t->final[j].lo <= x && x <= t->final[j].hi)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Helpers to make templated CorrectCC work with both CharClass and CharClassBuilder.
|
||||
|
||||
CharClass* Negate(CharClass *cc) {
|
||||
return cc->Negate();
|
||||
}
|
||||
|
||||
void Delete(CharClass* cc) {
|
||||
cc->Delete();
|
||||
}
|
||||
|
||||
CharClassBuilder* Negate(CharClassBuilder* cc) {
|
||||
CharClassBuilder* ncc = cc->Copy();
|
||||
ncc->Negate();
|
||||
return ncc;
|
||||
}
|
||||
|
||||
void Delete(CharClassBuilder* cc) {
|
||||
delete cc;
|
||||
}
|
||||
|
||||
template<class CharClass>
|
||||
bool CorrectCC(CharClass *cc, CCTest *t, const char *desc) {
|
||||
typename CharClass::iterator it = cc->begin();
|
||||
int size = 0;
|
||||
for (int j = 0; t->final[j].lo >= 0; j++, ++it) {
|
||||
if (it == cc->end() ||
|
||||
it->lo != t->final[j].lo ||
|
||||
it->hi != t->final[j].hi) {
|
||||
Broke(desc, t, cc);
|
||||
return false;
|
||||
}
|
||||
size += it->hi - it->lo + 1;
|
||||
}
|
||||
if (it != cc->end()) {
|
||||
Broke(desc, t, cc);
|
||||
return false;
|
||||
}
|
||||
if (cc->size() != size) {
|
||||
Broke(desc, t, cc);
|
||||
printf("wrong size: want %d have %d\n", size, cc->size());
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int j = 0; j < 101; j++) {
|
||||
if (j == 100)
|
||||
j = Runemax;
|
||||
if (ShouldContain(t, j) != cc->Contains(j)) {
|
||||
Broke(desc, t, cc);
|
||||
printf("want contains(%d)=%d, got %d\n",
|
||||
j, ShouldContain(t, j), cc->Contains(j));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
CharClass* ncc = Negate(cc);
|
||||
for (int j = 0; j < 101; j++) {
|
||||
if (j == 100)
|
||||
j = Runemax;
|
||||
if (ShouldContain(t, j) == ncc->Contains(j)) {
|
||||
Broke(desc, t, cc);
|
||||
Broke("ncc", NULL, ncc);
|
||||
printf("want ncc contains(%d)!=%d, got %d\n",
|
||||
j, ShouldContain(t, j), ncc->Contains(j));
|
||||
Delete(ncc);
|
||||
return false;
|
||||
}
|
||||
if (ncc->size() != Runemax+1 - cc->size()) {
|
||||
Broke(desc, t, cc);
|
||||
Broke("ncc", NULL, ncc);
|
||||
printf("ncc size should be %d is %d\n",
|
||||
Runemax+1 - cc->size(), ncc->size());
|
||||
Delete(ncc);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
Delete(ncc);
|
||||
return true;
|
||||
}
|
||||
|
||||
TEST(TestCharClassBuilder, Adds) {
|
||||
int nfail = 0;
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
CharClassBuilder ccb;
|
||||
CCTest* t = &tests[i];
|
||||
for (int j = 0; t->add[j].lo >= 0; j++)
|
||||
ccb.AddRange(t->add[j].lo, t->add[j].hi);
|
||||
if (t->remove >= 0)
|
||||
ccb.RemoveAbove(t->remove);
|
||||
if (!CorrectCC(&ccb, t, "before copy (CharClassBuilder)"))
|
||||
nfail++;
|
||||
CharClass* cc = ccb.GetCharClass();
|
||||
if (!CorrectCC(cc, t, "before copy (CharClass)"))
|
||||
nfail++;
|
||||
cc->Delete();
|
||||
|
||||
CharClassBuilder *ccb1 = ccb.Copy();
|
||||
if (!CorrectCC(ccb1, t, "after copy (CharClassBuilder)"))
|
||||
nfail++;
|
||||
cc = ccb.GetCharClass();
|
||||
if (!CorrectCC(cc, t, "after copy (CharClass)"))
|
||||
nfail++;
|
||||
cc->Delete();
|
||||
delete ccb1;
|
||||
}
|
||||
EXPECT_EQ(nfail, 0);
|
||||
}
|
||||
|
||||
} // namespace re2
|
397
extern/re2/re2/testing/compile_test.cc
vendored
Normal file
397
extern/re2/re2/testing/compile_test.cc
vendored
Normal file
@ -0,0 +1,397 @@
|
||||
// Copyright 2007 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test prog.cc, compile.cc
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/prog.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Simple input/output tests checking that
|
||||
// the regexp compiles to the expected code.
|
||||
// These are just to sanity check the basic implementation.
|
||||
// The real confidence tests happen by testing the NFA/DFA
|
||||
// that run the compiled code.
|
||||
|
||||
struct Test {
|
||||
const char* regexp;
|
||||
const char* code;
|
||||
};
|
||||
|
||||
static Test tests[] = {
|
||||
{ "a",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
{ "ab",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4. byte [62-62] 0 -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
{ "a|c",
|
||||
"3+ byte [61-61] 0 -> 5\n"
|
||||
"4. byte [63-63] 0 -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
{ "a|b",
|
||||
"3. byte [61-62] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
{ "[ab]",
|
||||
"3. byte [61-62] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
{ "a+",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4+ nop -> 3\n"
|
||||
"5. match! 0\n" },
|
||||
{ "a+?",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4+ match! 0\n"
|
||||
"5. nop -> 3\n" },
|
||||
{ "a*",
|
||||
"3+ byte [61-61] 1 -> 3\n"
|
||||
"4. match! 0\n" },
|
||||
{ "a*?",
|
||||
"3+ match! 0\n"
|
||||
"4. byte [61-61] 0 -> 3\n" },
|
||||
{ "a?",
|
||||
"3+ byte [61-61] 1 -> 5\n"
|
||||
"4. nop -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
{ "a??",
|
||||
"3+ nop -> 5\n"
|
||||
"4. byte [61-61] 0 -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
{ "a{4}",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4. byte [61-61] 0 -> 5\n"
|
||||
"5. byte [61-61] 0 -> 6\n"
|
||||
"6. byte [61-61] 0 -> 7\n"
|
||||
"7. match! 0\n" },
|
||||
{ "(a)",
|
||||
"3. capture 2 -> 4\n"
|
||||
"4. byte [61-61] 0 -> 5\n"
|
||||
"5. capture 3 -> 6\n"
|
||||
"6. match! 0\n" },
|
||||
{ "(?:a)",
|
||||
"3. byte [61-61] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
{ "",
|
||||
"3. match! 0\n" },
|
||||
{ ".",
|
||||
"3+ byte [00-09] 0 -> 5\n"
|
||||
"4. byte [0b-ff] 0 -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
{ "[^ab]",
|
||||
"3+ byte [00-09] 0 -> 6\n"
|
||||
"4+ byte [0b-60] 0 -> 6\n"
|
||||
"5. byte [63-ff] 0 -> 6\n"
|
||||
"6. match! 0\n" },
|
||||
{ "[Aa]",
|
||||
"3. byte/i [61-61] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
{ "\\C+",
|
||||
"3. byte [00-ff] 0 -> 4\n"
|
||||
"4+ altmatch -> 5 | 6\n"
|
||||
"5+ nop -> 3\n"
|
||||
"6. match! 0\n" },
|
||||
{ "\\C*",
|
||||
"3+ altmatch -> 4 | 5\n"
|
||||
"4+ byte [00-ff] 1 -> 3\n"
|
||||
"5. match! 0\n" },
|
||||
{ "\\C?",
|
||||
"3+ byte [00-ff] 1 -> 5\n"
|
||||
"4. nop -> 5\n"
|
||||
"5. match! 0\n" },
|
||||
// Issue 20992936
|
||||
{ "[[-`]",
|
||||
"3. byte [5b-60] 0 -> 4\n"
|
||||
"4. match! 0\n" },
|
||||
};
|
||||
|
||||
TEST(TestRegexpCompileToProg, Simple) {
|
||||
int failed = 0;
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
const re2::Test& t = tests[i];
|
||||
Regexp* re = Regexp::Parse(t.regexp, Regexp::PerlX|Regexp::Latin1, NULL);
|
||||
if (re == NULL) {
|
||||
LOG(ERROR) << "Cannot parse: " << t.regexp;
|
||||
failed++;
|
||||
continue;
|
||||
}
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
if (prog == NULL) {
|
||||
LOG(ERROR) << "Cannot compile: " << t.regexp;
|
||||
re->Decref();
|
||||
failed++;
|
||||
continue;
|
||||
}
|
||||
ASSERT_TRUE(re->CompileToProg(1) == NULL);
|
||||
std::string s = prog->Dump();
|
||||
if (s != t.code) {
|
||||
LOG(ERROR) << "Incorrect compiled code for: " << t.regexp;
|
||||
LOG(ERROR) << "Want:\n" << t.code;
|
||||
LOG(ERROR) << "Got:\n" << s;
|
||||
failed++;
|
||||
}
|
||||
delete prog;
|
||||
re->Decref();
|
||||
}
|
||||
EXPECT_EQ(failed, 0);
|
||||
}
|
||||
|
||||
static void DumpByteMap(StringPiece pattern, Regexp::ParseFlags flags,
|
||||
std::string* bytemap) {
|
||||
Regexp* re = Regexp::Parse(pattern, flags, NULL);
|
||||
EXPECT_TRUE(re != NULL);
|
||||
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
EXPECT_TRUE(prog != NULL);
|
||||
*bytemap = prog->DumpByteMap();
|
||||
delete prog;
|
||||
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
TEST(TestCompile, Latin1Ranges) {
|
||||
// The distinct byte ranges involved in the Latin-1 dot ([^\n]).
|
||||
|
||||
std::string bytemap;
|
||||
|
||||
DumpByteMap(".", Regexp::PerlX|Regexp::Latin1, &bytemap);
|
||||
EXPECT_EQ("[00-09] -> 0\n"
|
||||
"[0a-0a] -> 1\n"
|
||||
"[0b-ff] -> 0\n",
|
||||
bytemap);
|
||||
}
|
||||
|
||||
TEST(TestCompile, OtherByteMapTests) {
|
||||
std::string bytemap;
|
||||
|
||||
// Test that "absent" ranges are mapped to the same byte class.
|
||||
DumpByteMap("[0-9A-Fa-f]+", Regexp::PerlX|Regexp::Latin1, &bytemap);
|
||||
EXPECT_EQ("[00-2f] -> 0\n"
|
||||
"[30-39] -> 1\n"
|
||||
"[3a-40] -> 0\n"
|
||||
"[41-46] -> 1\n"
|
||||
"[47-60] -> 0\n"
|
||||
"[61-66] -> 1\n"
|
||||
"[67-ff] -> 0\n",
|
||||
bytemap);
|
||||
|
||||
// Test the byte classes for \b.
|
||||
DumpByteMap("\\b", Regexp::LikePerl|Regexp::Latin1, &bytemap);
|
||||
EXPECT_EQ("[00-2f] -> 0\n"
|
||||
"[30-39] -> 1\n"
|
||||
"[3a-40] -> 0\n"
|
||||
"[41-5a] -> 1\n"
|
||||
"[5b-5e] -> 0\n"
|
||||
"[5f-5f] -> 1\n"
|
||||
"[60-60] -> 0\n"
|
||||
"[61-7a] -> 1\n"
|
||||
"[7b-ff] -> 0\n",
|
||||
bytemap);
|
||||
|
||||
// Bug in the ASCII case-folding optimization created too many byte classes.
|
||||
DumpByteMap("[^_]", Regexp::LikePerl|Regexp::Latin1, &bytemap);
|
||||
EXPECT_EQ("[00-5e] -> 0\n"
|
||||
"[5f-5f] -> 1\n"
|
||||
"[60-ff] -> 0\n",
|
||||
bytemap);
|
||||
}
|
||||
|
||||
TEST(TestCompile, UTF8Ranges) {
|
||||
// The distinct byte ranges involved in the UTF-8 dot ([^\n]).
|
||||
// Once, erroneously split between 0x3f and 0x40 because it is
|
||||
// a 6-bit boundary.
|
||||
|
||||
std::string bytemap;
|
||||
|
||||
DumpByteMap(".", Regexp::PerlX, &bytemap);
|
||||
EXPECT_EQ("[00-09] -> 0\n"
|
||||
"[0a-0a] -> 1\n"
|
||||
"[0b-7f] -> 0\n"
|
||||
"[80-8f] -> 2\n"
|
||||
"[90-9f] -> 3\n"
|
||||
"[a0-bf] -> 4\n"
|
||||
"[c0-c1] -> 1\n"
|
||||
"[c2-df] -> 5\n"
|
||||
"[e0-e0] -> 6\n"
|
||||
"[e1-ef] -> 7\n"
|
||||
"[f0-f0] -> 8\n"
|
||||
"[f1-f3] -> 9\n"
|
||||
"[f4-f4] -> 10\n"
|
||||
"[f5-ff] -> 1\n",
|
||||
bytemap);
|
||||
}
|
||||
|
||||
TEST(TestCompile, InsufficientMemory) {
|
||||
Regexp* re = Regexp::Parse(
|
||||
"^(?P<name1>[^\\s]+)\\s+(?P<name2>[^\\s]+)\\s+(?P<name3>.+)$",
|
||||
Regexp::LikePerl, NULL);
|
||||
EXPECT_TRUE(re != NULL);
|
||||
Prog* prog = re->CompileToProg(920);
|
||||
// If the memory budget has been exhausted, compilation should fail
|
||||
// and return NULL instead of trying to do anything with NoMatch().
|
||||
EXPECT_TRUE(prog == NULL);
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
static void Dump(StringPiece pattern, Regexp::ParseFlags flags,
|
||||
std::string* forward, std::string* reverse) {
|
||||
Regexp* re = Regexp::Parse(pattern, flags, NULL);
|
||||
EXPECT_TRUE(re != NULL);
|
||||
|
||||
if (forward != NULL) {
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
EXPECT_TRUE(prog != NULL);
|
||||
*forward = prog->Dump();
|
||||
delete prog;
|
||||
}
|
||||
|
||||
if (reverse != NULL) {
|
||||
Prog* prog = re->CompileToReverseProg(0);
|
||||
EXPECT_TRUE(prog != NULL);
|
||||
*reverse = prog->Dump();
|
||||
delete prog;
|
||||
}
|
||||
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
TEST(TestCompile, Bug26705922) {
|
||||
// Bug in the compiler caused inefficient bytecode to be generated for Unicode
|
||||
// groups: common suffixes were cached, but common prefixes were not factored.
|
||||
|
||||
std::string forward, reverse;
|
||||
|
||||
Dump("[\\x{10000}\\x{10010}]", Regexp::LikePerl, &forward, &reverse);
|
||||
EXPECT_EQ("3. byte [f0-f0] 0 -> 4\n"
|
||||
"4. byte [90-90] 0 -> 5\n"
|
||||
"5. byte [80-80] 0 -> 6\n"
|
||||
"6+ byte [80-80] 0 -> 8\n"
|
||||
"7. byte [90-90] 0 -> 8\n"
|
||||
"8. match! 0\n",
|
||||
forward);
|
||||
EXPECT_EQ("3+ byte [80-80] 0 -> 5\n"
|
||||
"4. byte [90-90] 0 -> 5\n"
|
||||
"5. byte [80-80] 0 -> 6\n"
|
||||
"6. byte [90-90] 0 -> 7\n"
|
||||
"7. byte [f0-f0] 0 -> 8\n"
|
||||
"8. match! 0\n",
|
||||
reverse);
|
||||
|
||||
Dump("[\\x{8000}-\\x{10FFF}]", Regexp::LikePerl, &forward, &reverse);
|
||||
EXPECT_EQ("3+ byte [e8-ef] 0 -> 5\n"
|
||||
"4. byte [f0-f0] 0 -> 8\n"
|
||||
"5. byte [80-bf] 0 -> 6\n"
|
||||
"6. byte [80-bf] 0 -> 7\n"
|
||||
"7. match! 0\n"
|
||||
"8. byte [90-90] 0 -> 5\n",
|
||||
forward);
|
||||
EXPECT_EQ("3. byte [80-bf] 0 -> 4\n"
|
||||
"4. byte [80-bf] 0 -> 5\n"
|
||||
"5+ byte [e8-ef] 0 -> 7\n"
|
||||
"6. byte [90-90] 0 -> 8\n"
|
||||
"7. match! 0\n"
|
||||
"8. byte [f0-f0] 0 -> 7\n",
|
||||
reverse);
|
||||
|
||||
Dump("[\\x{80}-\\x{10FFFF}]", Regexp::LikePerl, NULL, &reverse);
|
||||
EXPECT_EQ("3. byte [80-bf] 0 -> 4\n"
|
||||
"4+ byte [c2-df] 0 -> 7\n"
|
||||
"5+ byte [a0-bf] 1 -> 8\n"
|
||||
"6. byte [80-bf] 0 -> 9\n"
|
||||
"7. match! 0\n"
|
||||
"8. byte [e0-e0] 0 -> 7\n"
|
||||
"9+ byte [e1-ef] 0 -> 7\n"
|
||||
"10+ byte [90-bf] 1 -> 13\n"
|
||||
"11+ byte [80-bf] 1 -> 14\n"
|
||||
"12. byte [80-8f] 0 -> 15\n"
|
||||
"13. byte [f0-f0] 0 -> 7\n"
|
||||
"14. byte [f1-f3] 0 -> 7\n"
|
||||
"15. byte [f4-f4] 0 -> 7\n",
|
||||
reverse);
|
||||
}
|
||||
|
||||
TEST(TestCompile, Bug35237384) {
|
||||
// Bug in the compiler caused inefficient bytecode to be generated for
|
||||
// nested nullable subexpressions.
|
||||
|
||||
std::string forward;
|
||||
|
||||
Dump("a**{3,}", Regexp::Latin1|Regexp::NeverCapture, &forward, NULL);
|
||||
EXPECT_EQ("3+ byte [61-61] 1 -> 3\n"
|
||||
"4. nop -> 5\n"
|
||||
"5+ byte [61-61] 1 -> 5\n"
|
||||
"6. nop -> 7\n"
|
||||
"7+ byte [61-61] 1 -> 7\n"
|
||||
"8. match! 0\n",
|
||||
forward);
|
||||
|
||||
Dump("(a*|b*)*{3,}", Regexp::Latin1|Regexp::NeverCapture, &forward, NULL);
|
||||
EXPECT_EQ("3+ nop -> 6\n"
|
||||
"4+ nop -> 8\n"
|
||||
"5. nop -> 21\n"
|
||||
"6+ byte [61-61] 1 -> 6\n"
|
||||
"7. nop -> 3\n"
|
||||
"8+ byte [62-62] 1 -> 8\n"
|
||||
"9. nop -> 3\n"
|
||||
"10+ byte [61-61] 1 -> 10\n"
|
||||
"11. nop -> 21\n"
|
||||
"12+ byte [62-62] 1 -> 12\n"
|
||||
"13. nop -> 21\n"
|
||||
"14+ byte [61-61] 1 -> 14\n"
|
||||
"15. nop -> 18\n"
|
||||
"16+ byte [62-62] 1 -> 16\n"
|
||||
"17. nop -> 18\n"
|
||||
"18+ nop -> 14\n"
|
||||
"19+ nop -> 16\n"
|
||||
"20. match! 0\n"
|
||||
"21+ nop -> 10\n"
|
||||
"22+ nop -> 12\n"
|
||||
"23. nop -> 18\n",
|
||||
forward);
|
||||
|
||||
Dump("((|S.+)+|(|S.+)+|){2}", Regexp::Latin1|Regexp::NeverCapture, &forward, NULL);
|
||||
EXPECT_EQ("3+ nop -> 36\n"
|
||||
"4+ nop -> 31\n"
|
||||
"5. nop -> 33\n"
|
||||
"6+ byte [00-09] 0 -> 8\n"
|
||||
"7. byte [0b-ff] 0 -> 8\n"
|
||||
"8+ nop -> 6\n"
|
||||
"9+ nop -> 29\n"
|
||||
"10. nop -> 28\n"
|
||||
"11+ byte [00-09] 0 -> 13\n"
|
||||
"12. byte [0b-ff] 0 -> 13\n"
|
||||
"13+ nop -> 11\n"
|
||||
"14+ nop -> 26\n"
|
||||
"15. nop -> 28\n"
|
||||
"16+ byte [00-09] 0 -> 18\n"
|
||||
"17. byte [0b-ff] 0 -> 18\n"
|
||||
"18+ nop -> 16\n"
|
||||
"19+ nop -> 36\n"
|
||||
"20. nop -> 33\n"
|
||||
"21+ byte [00-09] 0 -> 23\n"
|
||||
"22. byte [0b-ff] 0 -> 23\n"
|
||||
"23+ nop -> 21\n"
|
||||
"24+ nop -> 31\n"
|
||||
"25. nop -> 33\n"
|
||||
"26+ nop -> 28\n"
|
||||
"27. byte [53-53] 0 -> 11\n"
|
||||
"28. match! 0\n"
|
||||
"29+ nop -> 28\n"
|
||||
"30. byte [53-53] 0 -> 6\n"
|
||||
"31+ nop -> 33\n"
|
||||
"32. byte [53-53] 0 -> 21\n"
|
||||
"33+ nop -> 29\n"
|
||||
"34+ nop -> 26\n"
|
||||
"35. nop -> 28\n"
|
||||
"36+ nop -> 33\n"
|
||||
"37. byte [53-53] 0 -> 16\n",
|
||||
forward);
|
||||
}
|
||||
|
||||
} // namespace re2
|
381
extern/re2/re2/testing/dfa_test.cc
vendored
Normal file
381
extern/re2/re2/testing/dfa_test.cc
vendored
Normal file
@ -0,0 +1,381 @@
|
||||
// Copyright 2006-2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/testing/regexp_generator.h"
|
||||
#include "re2/testing/string_generator.h"
|
||||
|
||||
static const bool UsingMallocCounter = false;
|
||||
|
||||
DEFINE_int32(size, 8, "log2(number of DFA nodes)");
|
||||
DEFINE_int32(repeat, 2, "Repetition count.");
|
||||
DEFINE_int32(threads, 4, "number of threads");
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Check that multithreaded access to DFA class works.
|
||||
|
||||
// Helper function: builds entire DFA for prog.
|
||||
static void DoBuild(Prog* prog) {
|
||||
ASSERT_TRUE(prog->BuildEntireDFA(Prog::kFirstMatch, nullptr));
|
||||
}
|
||||
|
||||
TEST(Multithreaded, BuildEntireDFA) {
|
||||
// Create regexp with 2^FLAGS_size states in DFA.
|
||||
std::string s = "a";
|
||||
for (int i = 0; i < FLAGS_size; i++)
|
||||
s += "[ab]";
|
||||
s += "b";
|
||||
Regexp* re = Regexp::Parse(s, Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
|
||||
// Check that single-threaded code works.
|
||||
{
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
|
||||
std::thread t(DoBuild, prog);
|
||||
t.join();
|
||||
|
||||
delete prog;
|
||||
}
|
||||
|
||||
// Build the DFA simultaneously in a bunch of threads.
|
||||
for (int i = 0; i < FLAGS_repeat; i++) {
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int j = 0; j < FLAGS_threads; j++)
|
||||
threads.emplace_back(DoBuild, prog);
|
||||
for (int j = 0; j < FLAGS_threads; j++)
|
||||
threads[j].join();
|
||||
|
||||
// One more compile, to make sure everything is okay.
|
||||
prog->BuildEntireDFA(Prog::kFirstMatch, nullptr);
|
||||
delete prog;
|
||||
}
|
||||
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
// Check that DFA size requirements are followed.
|
||||
// BuildEntireDFA will, like SearchDFA, stop building out
|
||||
// the DFA once the memory limits are reached.
|
||||
TEST(SingleThreaded, BuildEntireDFA) {
|
||||
// Create regexp with 2^30 states in DFA.
|
||||
Regexp* re = Regexp::Parse("a[ab]{30}b", Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
|
||||
for (int i = 17; i < 24; i++) {
|
||||
int64_t limit = int64_t{1}<<i;
|
||||
int64_t usage;
|
||||
//int64_t progusage, dfamem;
|
||||
{
|
||||
testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY);
|
||||
Prog* prog = re->CompileToProg(limit);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
//progusage = m.HeapGrowth();
|
||||
//dfamem = prog->dfa_mem();
|
||||
prog->BuildEntireDFA(Prog::kFirstMatch, nullptr);
|
||||
prog->BuildEntireDFA(Prog::kLongestMatch, nullptr);
|
||||
usage = m.HeapGrowth();
|
||||
delete prog;
|
||||
}
|
||||
if (UsingMallocCounter) {
|
||||
//LOG(INFO) << "limit " << limit << ", "
|
||||
// << "prog usage " << progusage << ", "
|
||||
// << "DFA budget " << dfamem << ", "
|
||||
// << "total " << usage;
|
||||
// Tolerate +/- 10%.
|
||||
ASSERT_GT(usage, limit*9/10);
|
||||
ASSERT_LT(usage, limit*11/10);
|
||||
}
|
||||
}
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
// Generates and returns a string over binary alphabet {0,1} that contains
|
||||
// all possible binary sequences of length n as subsequences. The obvious
|
||||
// brute force method would generate a string of length n * 2^n, but this
|
||||
// generates a string of length n + 2^n - 1 called a De Bruijn cycle.
|
||||
// See Knuth, The Art of Computer Programming, Vol 2, Exercise 3.2.2 #17.
|
||||
// Such a string is useful for testing a DFA. If you have a DFA
|
||||
// where distinct last n bytes implies distinct states, then running on a
|
||||
// DeBruijn string causes the DFA to need to create a new state at every
|
||||
// position in the input, never reusing any states until it gets to the
|
||||
// end of the string. This is the worst possible case for DFA execution.
|
||||
static std::string DeBruijnString(int n) {
|
||||
CHECK_LT(n, static_cast<int>(8*sizeof(int)));
|
||||
CHECK_GT(n, 0);
|
||||
|
||||
std::vector<bool> did(size_t{1}<<n);
|
||||
for (int i = 0; i < 1<<n; i++)
|
||||
did[i] = false;
|
||||
|
||||
std::string s;
|
||||
for (int i = 0; i < n-1; i++)
|
||||
s.append("0");
|
||||
int bits = 0;
|
||||
int mask = (1<<n) - 1;
|
||||
for (int i = 0; i < (1<<n); i++) {
|
||||
bits <<= 1;
|
||||
bits &= mask;
|
||||
if (!did[bits|1]) {
|
||||
bits |= 1;
|
||||
s.append("1");
|
||||
} else {
|
||||
s.append("0");
|
||||
}
|
||||
CHECK(!did[bits]);
|
||||
did[bits] = true;
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
// Test that the DFA gets the right result even if it runs
|
||||
// out of memory during a search. The regular expression
|
||||
// 0[01]{n}$ matches a binary string of 0s and 1s only if
|
||||
// the (n+1)th-to-last character is a 0. Matching this in
|
||||
// a single forward pass (as done by the DFA) requires
|
||||
// keeping one bit for each of the last n+1 characters
|
||||
// (whether each was a 0), or 2^(n+1) possible states.
|
||||
// If we run this regexp to search in a string that contains
|
||||
// every possible n-character binary string as a substring,
|
||||
// then it will have to run through at least 2^n states.
|
||||
// States are big data structures -- certainly more than 1 byte --
|
||||
// so if the DFA can search correctly while staying within a
|
||||
// 2^n byte limit, it must be handling out-of-memory conditions
|
||||
// gracefully.
|
||||
TEST(SingleThreaded, SearchDFA) {
|
||||
// The De Bruijn string is the worst case input for this regexp.
|
||||
// By default, the DFA will notice that it is flushing its cache
|
||||
// too frequently and will bail out early, so that RE2 can use the
|
||||
// NFA implementation instead. (The DFA loses its speed advantage
|
||||
// if it can't get a good cache hit rate.)
|
||||
// Tell the DFA to trudge along instead.
|
||||
Prog::TEST_dfa_should_bail_when_slow(false);
|
||||
|
||||
// Choice of n is mostly arbitrary, except that:
|
||||
// * making n too big makes the test run for too long.
|
||||
// * making n too small makes the DFA refuse to run,
|
||||
// because it has so little memory compared to the program size.
|
||||
// Empirically, n = 18 is a good compromise between the two.
|
||||
const int n = 18;
|
||||
|
||||
Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n),
|
||||
Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
|
||||
// The De Bruijn string for n ends with a 1 followed by n 0s in a row,
|
||||
// which is not a match for 0[01]{n}$. Adding one more 0 is a match.
|
||||
std::string no_match = DeBruijnString(n);
|
||||
std::string match = no_match + "0";
|
||||
|
||||
int64_t usage;
|
||||
int64_t peak_usage;
|
||||
{
|
||||
testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY);
|
||||
Prog* prog = re->CompileToProg(1<<n);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
bool matched = false;
|
||||
bool failed = false;
|
||||
matched = prog->SearchDFA(match, StringPiece(), Prog::kUnanchored,
|
||||
Prog::kFirstMatch, NULL, &failed, NULL);
|
||||
ASSERT_FALSE(failed);
|
||||
ASSERT_TRUE(matched);
|
||||
matched = prog->SearchDFA(no_match, StringPiece(), Prog::kUnanchored,
|
||||
Prog::kFirstMatch, NULL, &failed, NULL);
|
||||
ASSERT_FALSE(failed);
|
||||
ASSERT_FALSE(matched);
|
||||
}
|
||||
usage = m.HeapGrowth();
|
||||
peak_usage = m.PeakHeapGrowth();
|
||||
delete prog;
|
||||
}
|
||||
if (UsingMallocCounter) {
|
||||
//LOG(INFO) << "usage " << usage << ", "
|
||||
// << "peak usage " << peak_usage;
|
||||
ASSERT_LT(usage, 1<<n);
|
||||
ASSERT_LT(peak_usage, 1<<n);
|
||||
}
|
||||
re->Decref();
|
||||
|
||||
// Reset to original behaviour.
|
||||
Prog::TEST_dfa_should_bail_when_slow(true);
|
||||
}
|
||||
|
||||
// Helper function: searches for match, which should match,
|
||||
// and no_match, which should not.
|
||||
static void DoSearch(Prog* prog, const StringPiece& match,
|
||||
const StringPiece& no_match) {
|
||||
for (int i = 0; i < 2; i++) {
|
||||
bool matched = false;
|
||||
bool failed = false;
|
||||
matched = prog->SearchDFA(match, StringPiece(), Prog::kUnanchored,
|
||||
Prog::kFirstMatch, NULL, &failed, NULL);
|
||||
ASSERT_FALSE(failed);
|
||||
ASSERT_TRUE(matched);
|
||||
matched = prog->SearchDFA(no_match, StringPiece(), Prog::kUnanchored,
|
||||
Prog::kFirstMatch, NULL, &failed, NULL);
|
||||
ASSERT_FALSE(failed);
|
||||
ASSERT_FALSE(matched);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Multithreaded, SearchDFA) {
|
||||
Prog::TEST_dfa_should_bail_when_slow(false);
|
||||
|
||||
// Same as single-threaded test above.
|
||||
const int n = 18;
|
||||
Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n),
|
||||
Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
std::string no_match = DeBruijnString(n);
|
||||
std::string match = no_match + "0";
|
||||
|
||||
// Check that single-threaded code works.
|
||||
{
|
||||
Prog* prog = re->CompileToProg(1<<n);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
|
||||
std::thread t(DoSearch, prog, match, no_match);
|
||||
t.join();
|
||||
|
||||
delete prog;
|
||||
}
|
||||
|
||||
// Run the search simultaneously in a bunch of threads.
|
||||
// Reuse same flags for Multithreaded.BuildDFA above.
|
||||
for (int i = 0; i < FLAGS_repeat; i++) {
|
||||
Prog* prog = re->CompileToProg(1<<n);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
for (int j = 0; j < FLAGS_threads; j++)
|
||||
threads.emplace_back(DoSearch, prog, match, no_match);
|
||||
for (int j = 0; j < FLAGS_threads; j++)
|
||||
threads[j].join();
|
||||
|
||||
delete prog;
|
||||
}
|
||||
|
||||
re->Decref();
|
||||
|
||||
// Reset to original behaviour.
|
||||
Prog::TEST_dfa_should_bail_when_slow(true);
|
||||
}
|
||||
|
||||
struct ReverseTest {
|
||||
const char* regexp;
|
||||
const char* text;
|
||||
bool match;
|
||||
};
|
||||
|
||||
// Test that reverse DFA handles anchored/unanchored correctly.
|
||||
// It's in the DFA interface but not used by RE2.
|
||||
ReverseTest reverse_tests[] = {
|
||||
{ "\\A(a|b)", "abc", true },
|
||||
{ "(a|b)\\z", "cba", true },
|
||||
{ "\\A(a|b)", "cba", false },
|
||||
{ "(a|b)\\z", "abc", false },
|
||||
};
|
||||
|
||||
TEST(DFA, ReverseMatch) {
|
||||
int nfail = 0;
|
||||
for (size_t i = 0; i < arraysize(reverse_tests); i++) {
|
||||
const ReverseTest& t = reverse_tests[i];
|
||||
Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
Prog* prog = re->CompileToReverseProg(0);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
bool failed = false;
|
||||
bool matched = prog->SearchDFA(t.text, StringPiece(), Prog::kUnanchored,
|
||||
Prog::kFirstMatch, NULL, &failed, NULL);
|
||||
if (matched != t.match) {
|
||||
LOG(ERROR) << t.regexp << " on " << t.text << ": want " << t.match;
|
||||
nfail++;
|
||||
}
|
||||
delete prog;
|
||||
re->Decref();
|
||||
}
|
||||
EXPECT_EQ(nfail, 0);
|
||||
}
|
||||
|
||||
struct CallbackTest {
|
||||
const char* regexp;
|
||||
const char* dump;
|
||||
};
|
||||
|
||||
// Test that DFA::BuildAllStates() builds the expected DFA states
|
||||
// and issues the expected callbacks. These test cases reflect the
|
||||
// very compact encoding of the callbacks, but that also makes them
|
||||
// very difficult to understand, so let's work through "\\Aa\\z".
|
||||
// There are three slots per DFA state because the bytemap has two
|
||||
// equivalence classes and there is a third slot for kByteEndText:
|
||||
// 0: all bytes that are not 'a'
|
||||
// 1: the byte 'a'
|
||||
// 2: kByteEndText
|
||||
// -1 means that there is no transition from that DFA state to any
|
||||
// other DFA state for that slot. The valid transitions are thus:
|
||||
// state 0 --slot 1--> state 1
|
||||
// state 1 --slot 2--> state 2
|
||||
// The double brackets indicate that state 2 is a matching state.
|
||||
// Putting it together, this means that the DFA must consume the
|
||||
// byte 'a' and then hit end of text. Q.E.D.
|
||||
CallbackTest callback_tests[] = {
|
||||
{ "\\Aa\\z", "[-1,1,-1] [-1,-1,2] [[-1,-1,-1]]" },
|
||||
{ "\\Aab\\z", "[-1,1,-1,-1] [-1,-1,2,-1] [-1,-1,-1,3] [[-1,-1,-1,-1]]" },
|
||||
{ "\\Aa*b\\z", "[-1,0,1,-1] [-1,-1,-1,2] [[-1,-1,-1,-1]]" },
|
||||
{ "\\Aa+b\\z", "[-1,1,-1,-1] [-1,1,2,-1] [-1,-1,-1,3] [[-1,-1,-1,-1]]" },
|
||||
{ "\\Aa?b\\z", "[-1,1,2,-1] [-1,-1,2,-1] [-1,-1,-1,3] [[-1,-1,-1,-1]]" },
|
||||
{ "\\Aa\\C*\\z", "[-1,1,-1] [1,1,2] [[-1,-1,-1]]" },
|
||||
{ "\\Aa\\C*", "[-1,1,-1] [2,2,3] [[2,2,2]] [[-1,-1,-1]]" },
|
||||
{ "a\\C*", "[0,1,-1] [2,2,3] [[2,2,2]] [[-1,-1,-1]]" },
|
||||
{ "\\C*", "[1,2] [[1,1]] [[-1,-1]]" },
|
||||
{ "a", "[0,1,-1] [2,2,2] [[-1,-1,-1]]"} ,
|
||||
};
|
||||
|
||||
TEST(DFA, Callback) {
|
||||
int nfail = 0;
|
||||
for (size_t i = 0; i < arraysize(callback_tests); i++) {
|
||||
const CallbackTest& t = callback_tests[i];
|
||||
Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
std::string dump;
|
||||
prog->BuildEntireDFA(Prog::kLongestMatch, [&](const int* next, bool match) {
|
||||
ASSERT_TRUE(next != NULL);
|
||||
if (!dump.empty())
|
||||
dump += " ";
|
||||
dump += match ? "[[" : "[";
|
||||
for (int b = 0; b < prog->bytemap_range() + 1; b++)
|
||||
dump += StringPrintf("%d,", next[b]);
|
||||
dump.pop_back();
|
||||
dump += match ? "]]" : "]";
|
||||
});
|
||||
if (dump != t.dump) {
|
||||
LOG(ERROR) << t.regexp << " bytemap:\n" << prog->DumpByteMap();
|
||||
LOG(ERROR) << t.regexp << " dump:\ngot " << dump << "\nwant " << t.dump;
|
||||
nfail++;
|
||||
}
|
||||
delete prog;
|
||||
re->Decref();
|
||||
}
|
||||
EXPECT_EQ(nfail, 0);
|
||||
}
|
||||
|
||||
} // namespace re2
|
169
extern/re2/re2/testing/dump.cc
vendored
Normal file
169
extern/re2/re2/testing/dump.cc
vendored
Normal file
@ -0,0 +1,169 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Dump the regexp into a string showing structure.
|
||||
// Tested by parse_unittest.cc
|
||||
|
||||
// This function traverses the regexp recursively,
|
||||
// meaning that on inputs like Regexp::Simplify of
|
||||
// a{100}{100}{100}{100}{100}{100}{100}{100}{100}{100},
|
||||
// it takes time and space exponential in the size of the
|
||||
// original regular expression. It can also use stack space
|
||||
// linear in the size of the regular expression for inputs
|
||||
// like ((((((((((((((((a*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*)*.
|
||||
// IT IS NOT SAFE TO CALL FROM PRODUCTION CODE.
|
||||
// As a result, Dump is provided only in the testing
|
||||
// library (see BUILD).
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/stringpiece.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
// Cause a link error if this file is used outside of testing.
|
||||
DECLARE_string(test_tmpdir);
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static const char* kOpcodeNames[] = {
|
||||
"bad",
|
||||
"no",
|
||||
"emp",
|
||||
"lit",
|
||||
"str",
|
||||
"cat",
|
||||
"alt",
|
||||
"star",
|
||||
"plus",
|
||||
"que",
|
||||
"rep",
|
||||
"cap",
|
||||
"dot",
|
||||
"byte",
|
||||
"bol",
|
||||
"eol",
|
||||
"wb", // kRegexpWordBoundary
|
||||
"nwb", // kRegexpNoWordBoundary
|
||||
"bot",
|
||||
"eot",
|
||||
"cc",
|
||||
"match",
|
||||
};
|
||||
|
||||
// Create string representation of regexp with explicit structure.
|
||||
// Nothing pretty, just for testing.
|
||||
static void DumpRegexpAppending(Regexp* re, std::string* s) {
|
||||
if (re->op() < 0 || re->op() >= arraysize(kOpcodeNames)) {
|
||||
*s += StringPrintf("op%d", re->op());
|
||||
} else {
|
||||
switch (re->op()) {
|
||||
default:
|
||||
break;
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
case kRegexpRepeat:
|
||||
if (re->parse_flags() & Regexp::NonGreedy)
|
||||
s->append("n");
|
||||
break;
|
||||
}
|
||||
s->append(kOpcodeNames[re->op()]);
|
||||
if (re->op() == kRegexpLiteral && (re->parse_flags() & Regexp::FoldCase)) {
|
||||
Rune r = re->rune();
|
||||
if ('a' <= r && r <= 'z')
|
||||
s->append("fold");
|
||||
}
|
||||
if (re->op() == kRegexpLiteralString && (re->parse_flags() & Regexp::FoldCase)) {
|
||||
for (int i = 0; i < re->nrunes(); i++) {
|
||||
Rune r = re->runes()[i];
|
||||
if ('a' <= r && r <= 'z') {
|
||||
s->append("fold");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
s->append("{");
|
||||
switch (re->op()) {
|
||||
default:
|
||||
break;
|
||||
case kRegexpEndText:
|
||||
if (!(re->parse_flags() & Regexp::WasDollar)) {
|
||||
s->append("\\z");
|
||||
}
|
||||
break;
|
||||
case kRegexpLiteral: {
|
||||
Rune r = re->rune();
|
||||
char buf[UTFmax+1];
|
||||
buf[runetochar(buf, &r)] = 0;
|
||||
s->append(buf);
|
||||
break;
|
||||
}
|
||||
case kRegexpLiteralString:
|
||||
for (int i = 0; i < re->nrunes(); i++) {
|
||||
Rune r = re->runes()[i];
|
||||
char buf[UTFmax+1];
|
||||
buf[runetochar(buf, &r)] = 0;
|
||||
s->append(buf);
|
||||
}
|
||||
break;
|
||||
case kRegexpConcat:
|
||||
case kRegexpAlternate:
|
||||
for (int i = 0; i < re->nsub(); i++)
|
||||
DumpRegexpAppending(re->sub()[i], s);
|
||||
break;
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
DumpRegexpAppending(re->sub()[0], s);
|
||||
break;
|
||||
case kRegexpCapture:
|
||||
if (re->cap() == 0)
|
||||
LOG(DFATAL) << "kRegexpCapture cap() == 0";
|
||||
if (re->name()) {
|
||||
s->append(*re->name());
|
||||
s->append(":");
|
||||
}
|
||||
DumpRegexpAppending(re->sub()[0], s);
|
||||
break;
|
||||
case kRegexpRepeat:
|
||||
s->append(StringPrintf("%d,%d ", re->min(), re->max()));
|
||||
DumpRegexpAppending(re->sub()[0], s);
|
||||
break;
|
||||
case kRegexpCharClass: {
|
||||
std::string sep;
|
||||
for (CharClass::iterator it = re->cc()->begin();
|
||||
it != re->cc()->end(); ++it) {
|
||||
RuneRange rr = *it;
|
||||
s->append(sep);
|
||||
if (rr.lo == rr.hi)
|
||||
s->append(StringPrintf("%#x", rr.lo));
|
||||
else
|
||||
s->append(StringPrintf("%#x-%#x", rr.lo, rr.hi));
|
||||
sep = " ";
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
s->append("}");
|
||||
}
|
||||
|
||||
std::string Regexp::Dump() {
|
||||
std::string s;
|
||||
|
||||
// Make sure being called from a unit test.
|
||||
if (FLAGS_test_tmpdir.empty()) {
|
||||
LOG(ERROR) << "Cannot use except for testing.";
|
||||
return s;
|
||||
}
|
||||
|
||||
DumpRegexpAppending(this, &s);
|
||||
return s;
|
||||
}
|
||||
|
||||
} // namespace re2
|
44
extern/re2/re2/testing/exhaustive1_test.cc
vendored
Normal file
44
extern/re2/re2/testing/exhaustive1_test.cc
vendored
Normal file
@ -0,0 +1,44 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Exhaustive testing of regular expression matching.
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
DECLARE_string(regexp_engines);
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test simple repetition operators
|
||||
TEST(Repetition, Simple) {
|
||||
std::vector<std::string> ops = Split(" ",
|
||||
"%s{0} %s{0,} %s{1} %s{1,} %s{0,1} %s{0,2} "
|
||||
"%s{1,2} %s{2} %s{2,} %s{3,4} %s{4,5} "
|
||||
"%s* %s+ %s? %s*? %s+? %s??");
|
||||
ExhaustiveTest(3, 2, Explode("abc."), ops,
|
||||
6, Explode("ab"), "(?:%s)", "");
|
||||
ExhaustiveTest(3, 2, Explode("abc."), ops,
|
||||
40, Explode("a"), "(?:%s)", "");
|
||||
}
|
||||
|
||||
// Test capturing parens -- (a) -- inside repetition operators
|
||||
TEST(Repetition, Capturing) {
|
||||
std::vector<std::string> ops = Split(" ",
|
||||
"%s{0} %s{0,} %s{1} %s{1,} %s{0,1} %s{0,2} "
|
||||
"%s{1,2} %s{2} %s{2,} %s{3,4} %s{4,5} "
|
||||
"%s* %s+ %s? %s*? %s+? %s??");
|
||||
ExhaustiveTest(3, 2, Split(" ", "a (a) b"), ops,
|
||||
7, Explode("ab"), "(?:%s)", "");
|
||||
|
||||
// This would be a great test, but it runs forever when PCRE is enabled.
|
||||
if (FLAGS_regexp_engines.find("PCRE") == std::string::npos)
|
||||
ExhaustiveTest(3, 2, Split(" ", "a (a)"), ops,
|
||||
50, Explode("a"), "(?:%s)", "");
|
||||
}
|
||||
|
||||
} // namespace re2
|
73
extern/re2/re2/testing/exhaustive2_test.cc
vendored
Normal file
73
extern/re2/re2/testing/exhaustive2_test.cc
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Exhaustive testing of regular expression matching.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test empty string matches (aka "(?:)")
|
||||
TEST(EmptyString, Exhaustive) {
|
||||
ExhaustiveTest(2, 2, Split(" ", "(?:) a"),
|
||||
RegexpGenerator::EgrepOps(),
|
||||
5, Split("", "ab"), "", "");
|
||||
}
|
||||
|
||||
// Test escaped versions of regexp syntax.
|
||||
TEST(Punctuation, Literals) {
|
||||
std::vector<std::string> alphabet = Explode("()*+?{}[]\\^$.");
|
||||
std::vector<std::string> escaped = alphabet;
|
||||
for (size_t i = 0; i < escaped.size(); i++)
|
||||
escaped[i] = "\\" + escaped[i];
|
||||
ExhaustiveTest(1, 1, escaped, RegexpGenerator::EgrepOps(),
|
||||
2, alphabet, "", "");
|
||||
}
|
||||
|
||||
// Test ^ $ . \A \z in presence of line endings.
|
||||
// Have to wrap the empty-width ones in (?:) so that
|
||||
// they can be repeated -- PCRE rejects ^* but allows (?:^)*
|
||||
TEST(LineEnds, Exhaustive) {
|
||||
ExhaustiveTest(2, 2, Split(" ", "(?:^) (?:$) . a \\n (?:\\A) (?:\\z)"),
|
||||
RegexpGenerator::EgrepOps(),
|
||||
4, Explode("ab\n"), "", "");
|
||||
}
|
||||
|
||||
// Test what does and does not match \n.
|
||||
// This would be a good test, except that PCRE seems to have a bug:
|
||||
// in single-byte character set mode (the default),
|
||||
// [^a] matches \n, but in UTF-8 mode it does not.
|
||||
// So when we run the test, the tester complains that
|
||||
// we don't agree with PCRE, but it's PCRE that is at fault.
|
||||
// For what it's worth, Perl gets this right (matches
|
||||
// regardless of whether UTF-8 input is selected):
|
||||
//
|
||||
// #!/usr/bin/perl
|
||||
// use POSIX qw(locale_h);
|
||||
// print "matches in latin1\n" if "\n" =~ /[^a]/;
|
||||
// setlocale("en_US.utf8");
|
||||
// print "matches in utf8\n" if "\n" =~ /[^a]/;
|
||||
//
|
||||
// The rule chosen for RE2 is that by default, like Perl,
|
||||
// dot does not match \n but negated character classes [^a] do.
|
||||
// (?s) will allow dot to match \n; there is no way in RE2
|
||||
// to stop [^a] from matching \n, though the underlying library
|
||||
// provides a mechanism, and RE2 could add new syntax if needed.
|
||||
//
|
||||
// TEST(Newlines, Exhaustive) {
|
||||
// std::vector<std::string> empty_vector;
|
||||
// ExhaustiveTest(1, 1, Split(" ", "\\n . a [^a]"),
|
||||
// RegexpGenerator::EgrepOps(),
|
||||
// 4, Explode("a\n"), "");
|
||||
// }
|
||||
|
||||
} // namespace re2
|
||||
|
100
extern/re2/re2/testing/exhaustive3_test.cc
vendored
Normal file
100
extern/re2/re2/testing/exhaustive3_test.cc
vendored
Normal file
@ -0,0 +1,100 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Exhaustive testing of regular expression matching.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test simple character classes by themselves.
|
||||
TEST(CharacterClasses, Exhaustive) {
|
||||
std::vector<std::string> atoms = Split(" ",
|
||||
"[a] [b] [ab] [^bc] [b-d] [^b-d] []a] [-a] [a-] [^-a] [a-b-c] a b .");
|
||||
ExhaustiveTest(2, 1, atoms, RegexpGenerator::EgrepOps(),
|
||||
5, Explode("ab"), "", "");
|
||||
}
|
||||
|
||||
// Test simple character classes inside a___b (for example, a[a]b).
|
||||
TEST(CharacterClasses, ExhaustiveAB) {
|
||||
std::vector<std::string> atoms = Split(" ",
|
||||
"[a] [b] [ab] [^bc] [b-d] [^b-d] []a] [-a] [a-] [^-a] [a-b-c] a b .");
|
||||
ExhaustiveTest(2, 1, atoms, RegexpGenerator::EgrepOps(),
|
||||
5, Explode("ab"), "a%sb", "");
|
||||
}
|
||||
|
||||
// Returns UTF8 for Rune r
|
||||
static std::string UTF8(Rune r) {
|
||||
char buf[UTFmax+1];
|
||||
buf[runetochar(buf, &r)] = 0;
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// Returns a vector of "interesting" UTF8 characters.
|
||||
// Unicode is now too big to just return all of them,
|
||||
// so UTF8Characters return a set likely to be good test cases.
|
||||
static const std::vector<std::string>& InterestingUTF8() {
|
||||
static bool init;
|
||||
static std::vector<std::string> v;
|
||||
|
||||
if (init)
|
||||
return v;
|
||||
|
||||
init = true;
|
||||
// All the Latin1 equivalents are interesting.
|
||||
for (int i = 1; i < 256; i++)
|
||||
v.push_back(UTF8(i));
|
||||
|
||||
// After that, the codes near bit boundaries are
|
||||
// interesting, because they span byte sequence lengths.
|
||||
for (int j = 0; j < 8; j++)
|
||||
v.push_back(UTF8(256 + j));
|
||||
for (int i = 512; i < Runemax; i <<= 1)
|
||||
for (int j = -8; j < 8; j++)
|
||||
v.push_back(UTF8(i + j));
|
||||
|
||||
// The codes near Runemax, including Runemax itself, are interesting.
|
||||
for (int j = -8; j <= 0; j++)
|
||||
v.push_back(UTF8(Runemax + j));
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
// Test interesting UTF-8 characters against character classes.
|
||||
TEST(InterestingUTF8, SingleOps) {
|
||||
std::vector<std::string> atoms = Split(" ",
|
||||
". ^ $ \\a \\f \\n \\r \\t \\v \\d \\D \\s \\S \\w \\W \\b \\B "
|
||||
"[[:alnum:]] [[:alpha:]] [[:blank:]] [[:cntrl:]] [[:digit:]] "
|
||||
"[[:graph:]] [[:lower:]] [[:print:]] [[:punct:]] [[:space:]] "
|
||||
"[[:upper:]] [[:xdigit:]] [\\s\\S] [\\d\\D] [^\\w\\W] [^\\d\\D]");
|
||||
std::vector<std::string> ops; // no ops
|
||||
ExhaustiveTest(1, 0, atoms, ops,
|
||||
1, InterestingUTF8(), "", "");
|
||||
}
|
||||
|
||||
// Test interesting UTF-8 characters against character classes,
|
||||
// but wrap everything inside AB.
|
||||
TEST(InterestingUTF8, AB) {
|
||||
std::vector<std::string> atoms = Split(" ",
|
||||
". ^ $ \\a \\f \\n \\r \\t \\v \\d \\D \\s \\S \\w \\W \\b \\B "
|
||||
"[[:alnum:]] [[:alpha:]] [[:blank:]] [[:cntrl:]] [[:digit:]] "
|
||||
"[[:graph:]] [[:lower:]] [[:print:]] [[:punct:]] [[:space:]] "
|
||||
"[[:upper:]] [[:xdigit:]] [\\s\\S] [\\d\\D] [^\\w\\W] [^\\d\\D]");
|
||||
std::vector<std::string> ops; // no ops
|
||||
std::vector<std::string> alpha = InterestingUTF8();
|
||||
for (size_t i = 0; i < alpha.size(); i++)
|
||||
alpha[i] = "a" + alpha[i] + "b";
|
||||
ExhaustiveTest(1, 0, atoms, ops,
|
||||
1, alpha, "a%sb", "");
|
||||
}
|
||||
|
||||
} // namespace re2
|
||||
|
36
extern/re2/re2/testing/exhaustive_test.cc
vendored
Normal file
36
extern/re2/re2/testing/exhaustive_test.cc
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Exhaustive testing of regular expression matching.
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test very simple expressions.
|
||||
TEST(EgrepLiterals, Lowercase) {
|
||||
EgrepTest(3, 2, "abc.", 3, "abc", "");
|
||||
}
|
||||
|
||||
// Test mixed-case expressions.
|
||||
TEST(EgrepLiterals, MixedCase) {
|
||||
EgrepTest(3, 2, "AaBb.", 2, "AaBb", "");
|
||||
}
|
||||
|
||||
// Test mixed-case in case-insensitive mode.
|
||||
TEST(EgrepLiterals, FoldCase) {
|
||||
// The punctuation characters surround A-Z and a-z
|
||||
// in the ASCII table. This looks for bugs in the
|
||||
// bytemap range code in the DFA.
|
||||
EgrepTest(3, 2, "abAB.", 2, "aBc@_~", "(?i:%s)");
|
||||
}
|
||||
|
||||
// Test very simple expressions.
|
||||
TEST(EgrepLiterals, UTF8) {
|
||||
EgrepTest(3, 2, "ab.", 4, "a\xE2\x98\xBA", "");
|
||||
}
|
||||
|
||||
} // namespace re2
|
||||
|
188
extern/re2/re2/testing/exhaustive_tester.cc
vendored
Normal file
188
extern/re2/re2/testing/exhaustive_tester.cc
vendored
Normal file
@ -0,0 +1,188 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Exhaustive testing of regular expression matching.
|
||||
|
||||
// Each test picks an alphabet (e.g., "abc"), a maximum string length,
|
||||
// a maximum regular expression length, and a maximum number of letters
|
||||
// that can appear in the regular expression. Given these parameters,
|
||||
// it tries every possible regular expression and string, verifying that
|
||||
// the NFA, DFA, and a trivial backtracking implementation agree about
|
||||
// the location of the match.
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
#include "re2/testing/tester.h"
|
||||
|
||||
// For target `log' in the Makefile.
|
||||
#ifndef LOGGING
|
||||
#define LOGGING 0
|
||||
#endif
|
||||
|
||||
DEFINE_bool(show_regexps, false, "show regexps during testing");
|
||||
|
||||
DEFINE_int32(max_bad_regexp_inputs, 1,
|
||||
"Stop testing a regular expression after finding this many "
|
||||
"strings that break it.");
|
||||
|
||||
namespace re2 {
|
||||
|
||||
static char* escape(const StringPiece& sp) {
|
||||
static char buf[512];
|
||||
char* p = buf;
|
||||
*p++ = '\"';
|
||||
for (size_t i = 0; i < sp.size(); i++) {
|
||||
if(p+5 >= buf+sizeof buf)
|
||||
LOG(FATAL) << "ExhaustiveTester escape: too long";
|
||||
if(sp[i] == '\\' || sp[i] == '\"') {
|
||||
*p++ = '\\';
|
||||
*p++ = sp[i];
|
||||
} else if(sp[i] == '\n') {
|
||||
*p++ = '\\';
|
||||
*p++ = 'n';
|
||||
} else {
|
||||
*p++ = sp[i];
|
||||
}
|
||||
}
|
||||
*p++ = '\"';
|
||||
*p = '\0';
|
||||
return buf;
|
||||
}
|
||||
|
||||
static void PrintResult(const RE2& re, const StringPiece& input, RE2::Anchor anchor, StringPiece *m, int n) {
|
||||
if (!re.Match(input, 0, input.size(), anchor, m, n)) {
|
||||
printf("-");
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (i > 0)
|
||||
printf(" ");
|
||||
if (m[i].begin() == NULL)
|
||||
printf("-");
|
||||
else
|
||||
printf("%td-%td",
|
||||
m[i].begin() - input.begin(), m[i].end() - input.begin());
|
||||
}
|
||||
}
|
||||
|
||||
// Processes a single generated regexp.
|
||||
// Compiles it using Regexp interface and PCRE, and then
|
||||
// checks that NFA, DFA, and PCRE all return the same results.
|
||||
void ExhaustiveTester::HandleRegexp(const std::string& const_regexp) {
|
||||
regexps_++;
|
||||
std::string regexp = const_regexp;
|
||||
if (!topwrapper_.empty())
|
||||
regexp = StringPrintf(topwrapper_.c_str(), regexp.c_str());
|
||||
|
||||
if (FLAGS_show_regexps) {
|
||||
printf("\r%s", regexp.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
if (LOGGING) {
|
||||
// Write out test cases and answers for use in testing
|
||||
// other implementations, such as Go's regexp package.
|
||||
if (randomstrings_)
|
||||
LOG(ERROR) << "Cannot log with random strings.";
|
||||
if (regexps_ == 1) { // first
|
||||
printf("strings\n");
|
||||
strgen_.Reset();
|
||||
while (strgen_.HasNext())
|
||||
printf("%s\n", escape(strgen_.Next()));
|
||||
printf("regexps\n");
|
||||
}
|
||||
printf("%s\n", escape(regexp));
|
||||
|
||||
RE2 re(regexp);
|
||||
RE2::Options longest;
|
||||
longest.set_longest_match(true);
|
||||
RE2 relongest(regexp, longest);
|
||||
int ngroup = re.NumberOfCapturingGroups()+1;
|
||||
StringPiece* group = new StringPiece[ngroup];
|
||||
|
||||
strgen_.Reset();
|
||||
while (strgen_.HasNext()) {
|
||||
StringPiece input = strgen_.Next();
|
||||
PrintResult(re, input, RE2::ANCHOR_BOTH, group, ngroup);
|
||||
printf(";");
|
||||
PrintResult(re, input, RE2::UNANCHORED, group, ngroup);
|
||||
printf(";");
|
||||
PrintResult(relongest, input, RE2::ANCHOR_BOTH, group, ngroup);
|
||||
printf(";");
|
||||
PrintResult(relongest, input, RE2::UNANCHORED, group, ngroup);
|
||||
printf("\n");
|
||||
}
|
||||
delete[] group;
|
||||
return;
|
||||
}
|
||||
|
||||
Tester tester(regexp);
|
||||
if (tester.error())
|
||||
return;
|
||||
|
||||
strgen_.Reset();
|
||||
strgen_.GenerateNULL();
|
||||
if (randomstrings_)
|
||||
strgen_.Random(stringseed_, stringcount_);
|
||||
int bad_inputs = 0;
|
||||
while (strgen_.HasNext()) {
|
||||
tests_++;
|
||||
if (!tester.TestInput(strgen_.Next())) {
|
||||
failures_++;
|
||||
if (++bad_inputs >= FLAGS_max_bad_regexp_inputs)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Runs an exhaustive test on the given parameters.
|
||||
void ExhaustiveTest(int maxatoms, int maxops,
|
||||
const std::vector<std::string>& alphabet,
|
||||
const std::vector<std::string>& ops,
|
||||
int maxstrlen,
|
||||
const std::vector<std::string>& stralphabet,
|
||||
const std::string& wrapper,
|
||||
const std::string& topwrapper) {
|
||||
if (RE2_DEBUG_MODE) {
|
||||
if (maxatoms > 1)
|
||||
maxatoms--;
|
||||
if (maxops > 1)
|
||||
maxops--;
|
||||
if (maxstrlen > 1)
|
||||
maxstrlen--;
|
||||
}
|
||||
ExhaustiveTester t(maxatoms, maxops, alphabet, ops,
|
||||
maxstrlen, stralphabet, wrapper,
|
||||
topwrapper);
|
||||
t.Generate();
|
||||
if (!LOGGING) {
|
||||
printf("%d regexps, %d tests, %d failures [%d/%d str]\n",
|
||||
t.regexps(), t.tests(), t.failures(), maxstrlen, (int)stralphabet.size());
|
||||
}
|
||||
EXPECT_EQ(0, t.failures());
|
||||
}
|
||||
|
||||
// Runs an exhaustive test using the given parameters and
|
||||
// the basic egrep operators.
|
||||
void EgrepTest(int maxatoms, int maxops, const std::string& alphabet,
|
||||
int maxstrlen, const std::string& stralphabet,
|
||||
const std::string& wrapper) {
|
||||
const char* tops[] = { "", "^(?:%s)", "(?:%s)$", "^(?:%s)$" };
|
||||
|
||||
for (size_t i = 0; i < arraysize(tops); i++) {
|
||||
ExhaustiveTest(maxatoms, maxops,
|
||||
Split("", alphabet),
|
||||
RegexpGenerator::EgrepOps(),
|
||||
maxstrlen,
|
||||
Split("", stralphabet),
|
||||
wrapper,
|
||||
tops[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
105
extern/re2/re2/testing/exhaustive_tester.h
vendored
Normal file
105
extern/re2/re2/testing/exhaustive_tester.h
vendored
Normal file
@ -0,0 +1,105 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_TESTING_EXHAUSTIVE_TESTER_H_
|
||||
#define RE2_TESTING_EXHAUSTIVE_TESTER_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "re2/testing/regexp_generator.h"
|
||||
#include "re2/testing/string_generator.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Doing this simplifies the logic below.
|
||||
#ifndef __has_feature
|
||||
#define __has_feature(x) 0
|
||||
#endif
|
||||
|
||||
#if !defined(NDEBUG)
|
||||
// We are in a debug build.
|
||||
const bool RE2_DEBUG_MODE = true;
|
||||
#elif __has_feature(address_sanitizer) || __has_feature(memory_sanitizer) || __has_feature(thread_sanitizer)
|
||||
// Not a debug build, but still under sanitizers.
|
||||
const bool RE2_DEBUG_MODE = true;
|
||||
#else
|
||||
const bool RE2_DEBUG_MODE = false;
|
||||
#endif
|
||||
|
||||
// Exhaustive regular expression test: generate all regexps within parameters,
|
||||
// then generate all strings of a given length over a given alphabet,
|
||||
// then check that NFA, DFA, and PCRE agree about whether each regexp matches
|
||||
// each possible string, and if so, where the match is.
|
||||
//
|
||||
// Can also be used in a "random" mode that generates a given number
|
||||
// of random regexp and strings, allowing testing of larger expressions
|
||||
// and inputs.
|
||||
class ExhaustiveTester : public RegexpGenerator {
|
||||
public:
|
||||
ExhaustiveTester(int maxatoms,
|
||||
int maxops,
|
||||
const std::vector<std::string>& alphabet,
|
||||
const std::vector<std::string>& ops,
|
||||
int maxstrlen,
|
||||
const std::vector<std::string>& stralphabet,
|
||||
const std::string& wrapper,
|
||||
const std::string& topwrapper)
|
||||
: RegexpGenerator(maxatoms, maxops, alphabet, ops),
|
||||
strgen_(maxstrlen, stralphabet),
|
||||
wrapper_(wrapper),
|
||||
topwrapper_(topwrapper),
|
||||
regexps_(0), tests_(0), failures_(0),
|
||||
randomstrings_(0), stringseed_(0), stringcount_(0) { }
|
||||
|
||||
int regexps() { return regexps_; }
|
||||
int tests() { return tests_; }
|
||||
int failures() { return failures_; }
|
||||
|
||||
// Needed for RegexpGenerator interface.
|
||||
void HandleRegexp(const std::string& regexp);
|
||||
|
||||
// Causes testing to generate random input strings.
|
||||
void RandomStrings(int32_t seed, int32_t count) {
|
||||
randomstrings_ = true;
|
||||
stringseed_ = seed;
|
||||
stringcount_ = count;
|
||||
}
|
||||
|
||||
private:
|
||||
StringGenerator strgen_;
|
||||
std::string wrapper_; // Regexp wrapper - either empty or has one %s.
|
||||
std::string topwrapper_; // Regexp top-level wrapper.
|
||||
int regexps_; // Number of HandleRegexp calls
|
||||
int tests_; // Number of regexp tests.
|
||||
int failures_; // Number of tests failed.
|
||||
|
||||
bool randomstrings_; // Whether to use random strings
|
||||
int32_t stringseed_; // If so, the seed.
|
||||
int stringcount_; // If so, how many to generate.
|
||||
|
||||
ExhaustiveTester(const ExhaustiveTester&) = delete;
|
||||
ExhaustiveTester& operator=(const ExhaustiveTester&) = delete;
|
||||
};
|
||||
|
||||
// Runs an exhaustive test on the given parameters.
|
||||
void ExhaustiveTest(int maxatoms, int maxops,
|
||||
const std::vector<std::string>& alphabet,
|
||||
const std::vector<std::string>& ops,
|
||||
int maxstrlen,
|
||||
const std::vector<std::string>& stralphabet,
|
||||
const std::string& wrapper,
|
||||
const std::string& topwrapper);
|
||||
|
||||
// Runs an exhaustive test using the given parameters and
|
||||
// the basic egrep operators.
|
||||
void EgrepTest(int maxatoms, int maxops, const std::string& alphabet,
|
||||
int maxstrlen, const std::string& stralphabet,
|
||||
const std::string& wrapper);
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_TESTING_EXHAUSTIVE_TESTER_H_
|
294
extern/re2/re2/testing/filtered_re2_test.cc
vendored
Normal file
294
extern/re2/re2/testing/filtered_re2_test.cc
vendored
Normal file
@ -0,0 +1,294 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/filtered_re2.h"
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct FilterTestVars {
|
||||
FilterTestVars() {}
|
||||
explicit FilterTestVars(int min_atom_len) : f(min_atom_len) {}
|
||||
|
||||
std::vector<std::string> atoms;
|
||||
std::vector<int> atom_indices;
|
||||
std::vector<int> matches;
|
||||
RE2::Options opts;
|
||||
FilteredRE2 f;
|
||||
};
|
||||
|
||||
TEST(FilteredRE2Test, EmptyTest) {
|
||||
FilterTestVars v;
|
||||
|
||||
v.f.Compile(&v.atoms);
|
||||
EXPECT_EQ(0, v.atoms.size());
|
||||
|
||||
// Compile has no effect at all when called before Add: it will not
|
||||
// record that it has been called and it will not clear the vector.
|
||||
// The second point does not matter here, but the first point means
|
||||
// that an error will be logged during the call to AllMatches.
|
||||
v.f.AllMatches("foo", v.atom_indices, &v.matches);
|
||||
EXPECT_EQ(0, v.matches.size());
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, SmallOrTest) {
|
||||
FilterTestVars v(4); // override the minimum atom length
|
||||
int id;
|
||||
v.f.Add("(foo|bar)", v.opts, &id);
|
||||
|
||||
v.f.Compile(&v.atoms);
|
||||
EXPECT_EQ(0, v.atoms.size());
|
||||
|
||||
v.f.AllMatches("lemurs bar", v.atom_indices, &v.matches);
|
||||
EXPECT_EQ(1, v.matches.size());
|
||||
EXPECT_EQ(id, v.matches[0]);
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, SmallLatinTest) {
|
||||
FilterTestVars v;
|
||||
int id;
|
||||
|
||||
v.opts.set_encoding(RE2::Options::EncodingLatin1);
|
||||
v.f.Add("\xde\xadQ\xbe\xef", v.opts, &id);
|
||||
v.f.Compile(&v.atoms);
|
||||
EXPECT_EQ(1, v.atoms.size());
|
||||
EXPECT_EQ(v.atoms[0], "\xde\xadq\xbe\xef");
|
||||
|
||||
v.atom_indices.push_back(0);
|
||||
v.f.AllMatches("foo\xde\xadQ\xbe\xeflemur", v.atom_indices, &v.matches);
|
||||
EXPECT_EQ(1, v.matches.size());
|
||||
EXPECT_EQ(id, v.matches[0]);
|
||||
}
|
||||
|
||||
struct AtomTest {
|
||||
const char* testname;
|
||||
// If any test needs more than this many regexps or atoms, increase
|
||||
// the size of the corresponding array.
|
||||
const char* regexps[20];
|
||||
const char* atoms[20];
|
||||
};
|
||||
|
||||
AtomTest atom_tests[] = {
|
||||
{
|
||||
// This test checks to make sure empty patterns are allowed.
|
||||
"CheckEmptyPattern",
|
||||
{""},
|
||||
{}
|
||||
}, {
|
||||
// This test checks that all atoms of length greater than min length
|
||||
// are found, and no atoms that are of smaller length are found.
|
||||
"AllAtomsGtMinLengthFound", {
|
||||
"(abc123|def456|ghi789).*mnop[x-z]+",
|
||||
"abc..yyy..zz",
|
||||
"mnmnpp[a-z]+PPP"
|
||||
}, {
|
||||
"abc123",
|
||||
"def456",
|
||||
"ghi789",
|
||||
"mnop",
|
||||
"abc",
|
||||
"yyy",
|
||||
"mnmnpp",
|
||||
"ppp"
|
||||
}
|
||||
}, {
|
||||
// Test to make sure that any atoms that have another atom as a
|
||||
// substring in an OR are removed; that is, only the shortest
|
||||
// substring is kept.
|
||||
"SubstrAtomRemovesSuperStrInOr", {
|
||||
"(abc123|abc|ghi789|abc1234).*[x-z]+",
|
||||
"abcd..yyy..yyyzzz",
|
||||
"mnmnpp[a-z]+PPP"
|
||||
}, {
|
||||
"abc",
|
||||
"ghi789",
|
||||
"abcd",
|
||||
"yyy",
|
||||
"yyyzzz",
|
||||
"mnmnpp",
|
||||
"ppp"
|
||||
}
|
||||
}, {
|
||||
// Test character class expansion.
|
||||
"CharClassExpansion", {
|
||||
"m[a-c][d-f]n.*[x-z]+",
|
||||
"[x-y]bcde[ab]"
|
||||
}, {
|
||||
"madn", "maen", "mafn",
|
||||
"mbdn", "mben", "mbfn",
|
||||
"mcdn", "mcen", "mcfn",
|
||||
"xbcdea", "xbcdeb",
|
||||
"ybcdea", "ybcdeb"
|
||||
}
|
||||
}, {
|
||||
// Test upper/lower of non-ASCII.
|
||||
"UnicodeLower", {
|
||||
"(?i)ΔδΠϖπΣςσ",
|
||||
"ΛΜΝΟΠ",
|
||||
"ψρστυ",
|
||||
}, {
|
||||
"δδπππσσσ",
|
||||
"λμνοπ",
|
||||
"ψρστυ",
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
void AddRegexpsAndCompile(const char* regexps[],
|
||||
size_t n,
|
||||
struct FilterTestVars* v) {
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
int id;
|
||||
v->f.Add(regexps[i], v->opts, &id);
|
||||
}
|
||||
v->f.Compile(&v->atoms);
|
||||
}
|
||||
|
||||
bool CheckExpectedAtoms(const char* atoms[],
|
||||
size_t n,
|
||||
const char* testname,
|
||||
struct FilterTestVars* v) {
|
||||
std::vector<std::string> expected;
|
||||
for (size_t i = 0; i < n; i++)
|
||||
expected.push_back(atoms[i]);
|
||||
|
||||
bool pass = expected.size() == v->atoms.size();
|
||||
|
||||
std::sort(v->atoms.begin(), v->atoms.end());
|
||||
std::sort(expected.begin(), expected.end());
|
||||
for (size_t i = 0; pass && i < n; i++)
|
||||
pass = pass && expected[i] == v->atoms[i];
|
||||
|
||||
if (!pass) {
|
||||
LOG(ERROR) << "Failed " << testname;
|
||||
LOG(ERROR) << "Expected #atoms = " << expected.size();
|
||||
for (size_t i = 0; i < expected.size(); i++)
|
||||
LOG(ERROR) << expected[i];
|
||||
LOG(ERROR) << "Found #atoms = " << v->atoms.size();
|
||||
for (size_t i = 0; i < v->atoms.size(); i++)
|
||||
LOG(ERROR) << v->atoms[i];
|
||||
}
|
||||
|
||||
return pass;
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, AtomTests) {
|
||||
int nfail = 0;
|
||||
for (size_t i = 0; i < arraysize(atom_tests); i++) {
|
||||
FilterTestVars v;
|
||||
AtomTest* t = &atom_tests[i];
|
||||
size_t nregexp, natom;
|
||||
for (nregexp = 0; nregexp < arraysize(t->regexps); nregexp++)
|
||||
if (t->regexps[nregexp] == NULL)
|
||||
break;
|
||||
for (natom = 0; natom < arraysize(t->atoms); natom++)
|
||||
if (t->atoms[natom] == NULL)
|
||||
break;
|
||||
AddRegexpsAndCompile(t->regexps, nregexp, &v);
|
||||
if (!CheckExpectedAtoms(t->atoms, natom, t->testname, &v))
|
||||
nfail++;
|
||||
}
|
||||
EXPECT_EQ(0, nfail);
|
||||
}
|
||||
|
||||
void FindAtomIndices(const std::vector<std::string>& atoms,
|
||||
const std::vector<std::string>& matched_atoms,
|
||||
std::vector<int>* atom_indices) {
|
||||
atom_indices->clear();
|
||||
for (size_t i = 0; i < matched_atoms.size(); i++) {
|
||||
for (size_t j = 0; j < atoms.size(); j++) {
|
||||
if (matched_atoms[i] == atoms[j]) {
|
||||
atom_indices->push_back(static_cast<int>(j));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, MatchEmptyPattern) {
|
||||
FilterTestVars v;
|
||||
AtomTest* t = &atom_tests[0];
|
||||
// We are using the regexps used in one of the atom tests
|
||||
// for this test. Adding the EXPECT here to make sure
|
||||
// the index we use for the test is for the correct test.
|
||||
EXPECT_EQ("CheckEmptyPattern", std::string(t->testname));
|
||||
size_t nregexp;
|
||||
for (nregexp = 0; nregexp < arraysize(t->regexps); nregexp++)
|
||||
if (t->regexps[nregexp] == NULL)
|
||||
break;
|
||||
AddRegexpsAndCompile(t->regexps, nregexp, &v);
|
||||
std::string text = "0123";
|
||||
std::vector<int> atom_ids;
|
||||
std::vector<int> matching_regexps;
|
||||
EXPECT_EQ(0, v.f.FirstMatch(text, atom_ids));
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, MatchTests) {
|
||||
FilterTestVars v;
|
||||
AtomTest* t = &atom_tests[2];
|
||||
// We are using the regexps used in one of the atom tests
|
||||
// for this test.
|
||||
EXPECT_EQ("SubstrAtomRemovesSuperStrInOr", std::string(t->testname));
|
||||
size_t nregexp;
|
||||
for (nregexp = 0; nregexp < arraysize(t->regexps); nregexp++)
|
||||
if (t->regexps[nregexp] == NULL)
|
||||
break;
|
||||
AddRegexpsAndCompile(t->regexps, nregexp, &v);
|
||||
|
||||
std::string text = "abc121212xyz";
|
||||
// atoms = abc
|
||||
std::vector<int> atom_ids;
|
||||
std::vector<std::string> atoms;
|
||||
atoms.push_back("abc");
|
||||
FindAtomIndices(v.atoms, atoms, &atom_ids);
|
||||
std::vector<int> matching_regexps;
|
||||
v.f.AllMatches(text, atom_ids, &matching_regexps);
|
||||
EXPECT_EQ(1, matching_regexps.size());
|
||||
|
||||
text = "abc12312yyyzzz";
|
||||
atoms.clear();
|
||||
atoms.push_back("abc");
|
||||
atoms.push_back("yyy");
|
||||
atoms.push_back("yyyzzz");
|
||||
FindAtomIndices(v.atoms, atoms, &atom_ids);
|
||||
v.f.AllMatches(text, atom_ids, &matching_regexps);
|
||||
EXPECT_EQ(1, matching_regexps.size());
|
||||
|
||||
text = "abcd12yyy32yyyzzz";
|
||||
atoms.clear();
|
||||
atoms.push_back("abc");
|
||||
atoms.push_back("abcd");
|
||||
atoms.push_back("yyy");
|
||||
atoms.push_back("yyyzzz");
|
||||
FindAtomIndices(v.atoms, atoms, &atom_ids);
|
||||
LOG(INFO) << "S: " << atom_ids.size();
|
||||
for (size_t i = 0; i < atom_ids.size(); i++)
|
||||
LOG(INFO) << "i: " << i << " : " << atom_ids[i];
|
||||
v.f.AllMatches(text, atom_ids, &matching_regexps);
|
||||
EXPECT_EQ(2, matching_regexps.size());
|
||||
}
|
||||
|
||||
TEST(FilteredRE2Test, EmptyStringInStringSetBug) {
|
||||
// Bug due to find() finding "" at the start of everything in a string
|
||||
// set and thus SimplifyStringSet() would end up erasing everything.
|
||||
// In order to test this, we have to keep PrefilterTree from discarding
|
||||
// the OR entirely, so we have to make the minimum atom length zero.
|
||||
|
||||
FilterTestVars v(0); // override the minimum atom length
|
||||
const char* regexps[] = {"-R.+(|ADD=;AA){12}}"};
|
||||
const char* atoms[] = {"", "-r", "add=;aa", "}"};
|
||||
AddRegexpsAndCompile(regexps, arraysize(regexps), &v);
|
||||
EXPECT_TRUE(CheckExpectedAtoms(atoms, arraysize(atoms),
|
||||
"EmptyStringInStringSetBug", &v));
|
||||
}
|
||||
|
||||
} // namespace re2
|
77
extern/re2/re2/testing/mimics_pcre_test.cc
vendored
Normal file
77
extern/re2/re2/testing/mimics_pcre_test.cc
vendored
Normal file
@ -0,0 +1,77 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct PCRETest {
|
||||
const char* regexp;
|
||||
bool should_match;
|
||||
};
|
||||
|
||||
static PCRETest tests[] = {
|
||||
// Most things should behave exactly.
|
||||
{ "abc", true },
|
||||
{ "(a|b)c", true },
|
||||
{ "(a*|b)c", true },
|
||||
{ "(a|b*)c", true },
|
||||
{ "a(b|c)d", true },
|
||||
{ "a(()|())c", true },
|
||||
{ "ab*c", true },
|
||||
{ "ab+c", true },
|
||||
{ "a(b*|c*)d", true },
|
||||
{ "\\W", true },
|
||||
{ "\\W{1,2}", true },
|
||||
{ "\\d", true },
|
||||
|
||||
// Check that repeated empty strings do not.
|
||||
{ "(a*)*", false },
|
||||
{ "x(a*)*y", false },
|
||||
{ "(a*)+", false },
|
||||
{ "(a+)*", true },
|
||||
{ "(a+)+", true },
|
||||
{ "(a+)+", true },
|
||||
|
||||
// \v is the only character class that shouldn't.
|
||||
{ "\\b", true },
|
||||
{ "\\v", false },
|
||||
{ "\\d", true },
|
||||
|
||||
// The handling of ^ in multi-line mode is different, as is
|
||||
// the handling of $ in single-line mode. (Both involve
|
||||
// boundary cases if the string ends with \n.)
|
||||
{ "\\A", true },
|
||||
{ "\\z", true },
|
||||
{ "(?m)^", false },
|
||||
{ "(?m)$", true },
|
||||
{ "(?-m)^", true },
|
||||
{ "(?-m)$", false }, // In PCRE, == \Z
|
||||
{ "(?m)\\A", true },
|
||||
{ "(?m)\\z", true },
|
||||
{ "(?-m)\\A", true },
|
||||
{ "(?-m)\\z", true },
|
||||
};
|
||||
|
||||
TEST(MimicsPCRE, SimpleTests) {
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
const PCRETest& t = tests[i];
|
||||
for (size_t j = 0; j < 2; j++) {
|
||||
Regexp::ParseFlags flags = Regexp::LikePerl;
|
||||
if (j == 0)
|
||||
flags = flags | Regexp::Latin1;
|
||||
Regexp* re = Regexp::Parse(t.regexp, flags, NULL);
|
||||
ASSERT_TRUE(re != NULL) << " " << t.regexp;
|
||||
ASSERT_EQ(t.should_match, re->MimicsPCRE())
|
||||
<< " " << t.regexp << " "
|
||||
<< (j == 0 ? "latin1" : "utf");
|
||||
re->Decref();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
46
extern/re2/re2/testing/null_walker.cc
vendored
Normal file
46
extern/re2/re2/testing/null_walker.cc
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Null walker. For benchmarking the walker itself.
|
||||
|
||||
class NullWalker : public Regexp::Walker<bool> {
|
||||
public:
|
||||
NullWalker() { }
|
||||
bool PostVisit(Regexp* re, bool parent_arg, bool pre_arg,
|
||||
bool* child_args, int nchild_args);
|
||||
|
||||
bool ShortVisit(Regexp* re, bool a) {
|
||||
// Should never be called: we use Walk not WalkExponential.
|
||||
LOG(DFATAL) << "NullWalker::ShortVisit called";
|
||||
return a;
|
||||
}
|
||||
|
||||
private:
|
||||
NullWalker(const NullWalker&) = delete;
|
||||
NullWalker& operator=(const NullWalker&) = delete;
|
||||
};
|
||||
|
||||
// Called after visiting re's children. child_args contains the return
|
||||
// value from each of the children's PostVisits (i.e., whether each child
|
||||
// can match an empty string). Returns whether this clause can match an
|
||||
// empty string.
|
||||
bool NullWalker::PostVisit(Regexp* re, bool parent_arg, bool pre_arg,
|
||||
bool* child_args, int nchild_args) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns whether re can match an empty string.
|
||||
void Regexp::NullWalk() {
|
||||
NullWalker w;
|
||||
w.Walk(this, false);
|
||||
}
|
||||
|
||||
} // namespace re2
|
508
extern/re2/re2/testing/parse_test.cc
vendored
Normal file
508
extern/re2/re2/testing/parse_test.cc
vendored
Normal file
@ -0,0 +1,508 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test parse.cc, dump.cc, and tostring.cc.
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// In the past, we used 1<<30 here and zeroed the bit later, but that
|
||||
// has undefined behaviour, so now we use an internal-only flag because
|
||||
// otherwise we would have to introduce a new flag value just for this.
|
||||
static const Regexp::ParseFlags TestZeroFlags = Regexp::WasDollar;
|
||||
|
||||
struct Test {
|
||||
const char* regexp;
|
||||
const char* parse;
|
||||
Regexp::ParseFlags flags;
|
||||
};
|
||||
|
||||
static Regexp::ParseFlags kTestFlags = Regexp::MatchNL |
|
||||
Regexp::PerlX |
|
||||
Regexp::PerlClasses |
|
||||
Regexp::UnicodeGroups;
|
||||
|
||||
static Test tests[] = {
|
||||
// Base cases
|
||||
{ "a", "lit{a}" },
|
||||
{ "a.", "cat{lit{a}dot{}}" },
|
||||
{ "a.b", "cat{lit{a}dot{}lit{b}}" },
|
||||
{ "ab", "str{ab}" },
|
||||
{ "a.b.c", "cat{lit{a}dot{}lit{b}dot{}lit{c}}" },
|
||||
{ "abc", "str{abc}" },
|
||||
{ "a|^", "alt{lit{a}bol{}}" },
|
||||
{ "a|b", "cc{0x61-0x62}" },
|
||||
{ "(a)", "cap{lit{a}}" },
|
||||
{ "(a)|b", "alt{cap{lit{a}}lit{b}}" },
|
||||
{ "a*", "star{lit{a}}" },
|
||||
{ "a+", "plus{lit{a}}" },
|
||||
{ "a?", "que{lit{a}}" },
|
||||
{ "a{2}", "rep{2,2 lit{a}}" },
|
||||
{ "a{2,3}", "rep{2,3 lit{a}}" },
|
||||
{ "a{2,}", "rep{2,-1 lit{a}}" },
|
||||
{ "a*?", "nstar{lit{a}}" },
|
||||
{ "a+?", "nplus{lit{a}}" },
|
||||
{ "a??", "nque{lit{a}}" },
|
||||
{ "a{2}?", "nrep{2,2 lit{a}}" },
|
||||
{ "a{2,3}?", "nrep{2,3 lit{a}}" },
|
||||
{ "a{2,}?", "nrep{2,-1 lit{a}}" },
|
||||
{ "", "emp{}" },
|
||||
{ "|", "alt{emp{}emp{}}" },
|
||||
{ "|x|", "alt{emp{}lit{x}emp{}}" },
|
||||
{ ".", "dot{}" },
|
||||
{ "^", "bol{}" },
|
||||
{ "$", "eol{}" },
|
||||
{ "\\|", "lit{|}" },
|
||||
{ "\\(", "lit{(}" },
|
||||
{ "\\)", "lit{)}" },
|
||||
{ "\\*", "lit{*}" },
|
||||
{ "\\+", "lit{+}" },
|
||||
{ "\\?", "lit{?}" },
|
||||
{ "{", "lit{{}" },
|
||||
{ "}", "lit{}}" },
|
||||
{ "\\.", "lit{.}" },
|
||||
{ "\\^", "lit{^}" },
|
||||
{ "\\$", "lit{$}" },
|
||||
{ "\\\\", "lit{\\}" },
|
||||
{ "[ace]", "cc{0x61 0x63 0x65}" },
|
||||
{ "[abc]", "cc{0x61-0x63}" },
|
||||
{ "[a-z]", "cc{0x61-0x7a}" },
|
||||
{ "[a]", "lit{a}" },
|
||||
{ "\\-", "lit{-}" },
|
||||
{ "-", "lit{-}" },
|
||||
{ "\\_", "lit{_}" },
|
||||
|
||||
// Posix and Perl extensions
|
||||
{ "[[:lower:]]", "cc{0x61-0x7a}" },
|
||||
{ "[a-z]", "cc{0x61-0x7a}" },
|
||||
{ "[^[:lower:]]", "cc{0-0x60 0x7b-0x10ffff}" },
|
||||
{ "[[:^lower:]]", "cc{0-0x60 0x7b-0x10ffff}" },
|
||||
{ "(?i)[[:lower:]]", "cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}" },
|
||||
{ "(?i)[a-z]", "cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}" },
|
||||
{ "(?i)[^[:lower:]]", "cc{0-0x40 0x5b-0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}" },
|
||||
{ "(?i)[[:^lower:]]", "cc{0-0x40 0x5b-0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}" },
|
||||
{ "\\d", "cc{0x30-0x39}" },
|
||||
{ "\\D", "cc{0-0x2f 0x3a-0x10ffff}" },
|
||||
{ "\\s", "cc{0x9-0xa 0xc-0xd 0x20}" },
|
||||
{ "\\S", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}" },
|
||||
{ "\\w", "cc{0x30-0x39 0x41-0x5a 0x5f 0x61-0x7a}" },
|
||||
{ "\\W", "cc{0-0x2f 0x3a-0x40 0x5b-0x5e 0x60 0x7b-0x10ffff}" },
|
||||
{ "(?i)\\w", "cc{0x30-0x39 0x41-0x5a 0x5f 0x61-0x7a 0x17f 0x212a}" },
|
||||
{ "(?i)\\W", "cc{0-0x2f 0x3a-0x40 0x5b-0x5e 0x60 0x7b-0x17e 0x180-0x2129 0x212b-0x10ffff}" },
|
||||
{ "[^\\\\]", "cc{0-0x5b 0x5d-0x10ffff}" },
|
||||
{ "\\C", "byte{}" },
|
||||
|
||||
// Unicode, negatives, and a double negative.
|
||||
{ "\\p{Braille}", "cc{0x2800-0x28ff}" },
|
||||
{ "\\P{Braille}", "cc{0-0x27ff 0x2900-0x10ffff}" },
|
||||
{ "\\p{^Braille}", "cc{0-0x27ff 0x2900-0x10ffff}" },
|
||||
{ "\\P{^Braille}", "cc{0x2800-0x28ff}" },
|
||||
|
||||
// More interesting regular expressions.
|
||||
{ "a{,2}", "str{a{,2}}" },
|
||||
{ "\\.\\^\\$\\\\", "str{.^$\\}" },
|
||||
{ "[a-zABC]", "cc{0x41-0x43 0x61-0x7a}" },
|
||||
{ "[^a]", "cc{0-0x60 0x62-0x10ffff}" },
|
||||
{ "[\xce\xb1-\xce\xb5\xe2\x98\xba]", "cc{0x3b1-0x3b5 0x263a}" }, // utf-8
|
||||
{ "a*{", "cat{star{lit{a}}lit{{}}" },
|
||||
|
||||
// Test precedences
|
||||
{ "(?:ab)*", "star{str{ab}}" },
|
||||
{ "(ab)*", "star{cap{str{ab}}}" },
|
||||
{ "ab|cd", "alt{str{ab}str{cd}}" },
|
||||
{ "a(b|c)d", "cat{lit{a}cap{cc{0x62-0x63}}lit{d}}" },
|
||||
|
||||
// Test squashing of **, ++, ?? et cetera.
|
||||
{ "(?:(?:a)*)*", "star{lit{a}}" },
|
||||
{ "(?:(?:a)+)+", "plus{lit{a}}" },
|
||||
{ "(?:(?:a)?)?", "que{lit{a}}" },
|
||||
{ "(?:(?:a)*)+", "star{lit{a}}" },
|
||||
{ "(?:(?:a)*)?", "star{lit{a}}" },
|
||||
{ "(?:(?:a)+)*", "star{lit{a}}" },
|
||||
{ "(?:(?:a)+)?", "star{lit{a}}" },
|
||||
{ "(?:(?:a)?)*", "star{lit{a}}" },
|
||||
{ "(?:(?:a)?)+", "star{lit{a}}" },
|
||||
|
||||
// Test flattening.
|
||||
{ "(?:a)", "lit{a}" },
|
||||
{ "(?:ab)(?:cd)", "str{abcd}" },
|
||||
{ "(?:a|b)|(?:c|d)", "cc{0x61-0x64}" },
|
||||
{ "a|c", "cc{0x61 0x63}" },
|
||||
{ "a|[cd]", "cc{0x61 0x63-0x64}" },
|
||||
{ "a|.", "dot{}" },
|
||||
{ "[ab]|c", "cc{0x61-0x63}" },
|
||||
{ "[ab]|[cd]", "cc{0x61-0x64}" },
|
||||
{ "[ab]|.", "dot{}" },
|
||||
{ ".|c", "dot{}" },
|
||||
{ ".|[cd]", "dot{}" },
|
||||
{ ".|.", "dot{}" },
|
||||
|
||||
// Test Perl quoted literals
|
||||
{ "\\Q+|*?{[\\E", "str{+|*?{[}" },
|
||||
{ "\\Q+\\E+", "plus{lit{+}}" },
|
||||
{ "\\Q\\\\E", "lit{\\}" },
|
||||
{ "\\Q\\\\\\E", "str{\\\\}" },
|
||||
{ "\\Qa\\E*", "star{lit{a}}" },
|
||||
{ "\\Qab\\E*", "cat{lit{a}star{lit{b}}}" },
|
||||
{ "\\Qabc\\E*", "cat{str{ab}star{lit{c}}}" },
|
||||
|
||||
// Test Perl \A and \z
|
||||
{ "(?m)^", "bol{}" },
|
||||
{ "(?m)$", "eol{}" },
|
||||
{ "(?-m)^", "bot{}" },
|
||||
{ "(?-m)$", "eot{}" },
|
||||
{ "(?m)\\A", "bot{}" },
|
||||
{ "(?m)\\z", "eot{\\z}" },
|
||||
{ "(?-m)\\A", "bot{}" },
|
||||
{ "(?-m)\\z", "eot{\\z}" },
|
||||
|
||||
// Test named captures
|
||||
{ "(?P<name>a)", "cap{name:lit{a}}" },
|
||||
|
||||
// Case-folded literals
|
||||
{ "[Aa]", "litfold{a}" },
|
||||
|
||||
// Strings
|
||||
{ "abcde", "str{abcde}" },
|
||||
{ "[Aa][Bb]cd", "cat{strfold{ab}str{cd}}" },
|
||||
|
||||
// Reported bug involving \n leaking in despite use of NeverNL.
|
||||
{ "[^ ]", "cc{0-0x9 0xb-0x1f 0x21-0x10ffff}", TestZeroFlags },
|
||||
{ "[^ ]", "cc{0-0x9 0xb-0x1f 0x21-0x10ffff}", Regexp::FoldCase },
|
||||
{ "[^ ]", "cc{0-0x9 0xb-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ ]", "cc{0-0x9 0xb-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \f]", "cc{0-0x9 0xb 0xd-0x1f 0x21-0x10ffff}", TestZeroFlags },
|
||||
{ "[^ \f]", "cc{0-0x9 0xb 0xd-0x1f 0x21-0x10ffff}", Regexp::FoldCase },
|
||||
{ "[^ \f]", "cc{0-0x9 0xb 0xd-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \f]", "cc{0-0x9 0xb 0xd-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \r]", "cc{0-0x9 0xb-0xc 0xe-0x1f 0x21-0x10ffff}", TestZeroFlags },
|
||||
{ "[^ \r]", "cc{0-0x9 0xb-0xc 0xe-0x1f 0x21-0x10ffff}", Regexp::FoldCase },
|
||||
{ "[^ \r]", "cc{0-0x9 0xb-0xc 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \r]", "cc{0-0x9 0xb-0xc 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \v]", "cc{0-0x9 0xc-0x1f 0x21-0x10ffff}", TestZeroFlags },
|
||||
{ "[^ \v]", "cc{0-0x9 0xc-0x1f 0x21-0x10ffff}", Regexp::FoldCase },
|
||||
{ "[^ \v]", "cc{0-0x9 0xc-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \v]", "cc{0-0x9 0xc-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \t]", "cc{0-0x8 0xb-0x1f 0x21-0x10ffff}", TestZeroFlags },
|
||||
{ "[^ \t]", "cc{0-0x8 0xb-0x1f 0x21-0x10ffff}", Regexp::FoldCase },
|
||||
{ "[^ \t]", "cc{0-0x8 0xb-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \t]", "cc{0-0x8 0xb-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \r\f\v]", "cc{0-0x9 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \r\f\v]", "cc{0-0x9 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \r\f\t\v]", "cc{0-0x8 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \r\f\t\v]", "cc{0-0x8 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \r\n\f\t\v]", "cc{0-0x8 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \r\n\f\t\v]", "cc{0-0x8 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^ \r\n\f\t]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL },
|
||||
{ "[^ \r\n\f\t]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}", Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "[^\t-\n\f-\r ]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses },
|
||||
{ "[^\t-\n\f-\r ]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::FoldCase },
|
||||
{ "[^\t-\n\f-\r ]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::NeverNL },
|
||||
{ "[^\t-\n\f-\r ]", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::NeverNL | Regexp::FoldCase },
|
||||
{ "\\S", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses },
|
||||
{ "\\S", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::FoldCase },
|
||||
{ "\\S", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::NeverNL },
|
||||
{ "\\S", "cc{0-0x8 0xb 0xe-0x1f 0x21-0x10ffff}",
|
||||
Regexp::PerlClasses | Regexp::NeverNL | Regexp::FoldCase },
|
||||
|
||||
// Bug in Regexp::ToString() that emitted [^], which
|
||||
// would (obviously) fail to parse when fed back in.
|
||||
{ "[\\s\\S]", "cc{0-0x10ffff}" },
|
||||
};
|
||||
|
||||
bool RegexpEqualTestingOnly(Regexp* a, Regexp* b) {
|
||||
return Regexp::Equal(a, b);
|
||||
}
|
||||
|
||||
void TestParse(const Test* tests, int ntests, Regexp::ParseFlags flags,
|
||||
const std::string& title) {
|
||||
Regexp** re = new Regexp*[ntests];
|
||||
for (int i = 0; i < ntests; i++) {
|
||||
RegexpStatus status;
|
||||
Regexp::ParseFlags f = flags;
|
||||
if (tests[i].flags != 0) {
|
||||
f = tests[i].flags & ~TestZeroFlags;
|
||||
}
|
||||
re[i] = Regexp::Parse(tests[i].regexp, f, &status);
|
||||
ASSERT_TRUE(re[i] != NULL)
|
||||
<< " " << tests[i].regexp << " " << status.Text();
|
||||
std::string s = re[i]->Dump();
|
||||
EXPECT_EQ(std::string(tests[i].parse), s)
|
||||
<< "Regexp: " << tests[i].regexp
|
||||
<< "\nparse: " << std::string(tests[i].parse)
|
||||
<< " s: " << s << " flag=" << f;
|
||||
}
|
||||
|
||||
for (int i = 0; i < ntests; i++) {
|
||||
for (int j = 0; j < ntests; j++) {
|
||||
EXPECT_EQ(std::string(tests[i].parse) == std::string(tests[j].parse),
|
||||
RegexpEqualTestingOnly(re[i], re[j]))
|
||||
<< "Regexp: " << tests[i].regexp << " " << tests[j].regexp;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < ntests; i++)
|
||||
re[i]->Decref();
|
||||
delete[] re;
|
||||
}
|
||||
|
||||
// Test that regexps parse to expected structures.
|
||||
TEST(TestParse, SimpleRegexps) {
|
||||
TestParse(tests, arraysize(tests), kTestFlags, "simple");
|
||||
}
|
||||
|
||||
Test foldcase_tests[] = {
|
||||
{ "AbCdE", "strfold{abcde}" },
|
||||
{ "[Aa]", "litfold{a}" },
|
||||
{ "a", "litfold{a}" },
|
||||
|
||||
// 0x17F is an old English long s (looks like an f) and folds to s.
|
||||
// 0x212A is the Kelvin symbol and folds to k.
|
||||
{ "A[F-g]", "cat{litfold{a}cc{0x41-0x7a 0x17f 0x212a}}" }, // [Aa][A-z...]
|
||||
{ "[[:upper:]]", "cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}" },
|
||||
{ "[[:lower:]]", "cc{0x41-0x5a 0x61-0x7a 0x17f 0x212a}" },
|
||||
};
|
||||
|
||||
// Test that parsing with FoldCase works.
|
||||
TEST(TestParse, FoldCase) {
|
||||
TestParse(foldcase_tests, arraysize(foldcase_tests), Regexp::FoldCase, "foldcase");
|
||||
}
|
||||
|
||||
Test literal_tests[] = {
|
||||
{ "(|)^$.[*+?]{5,10},\\", "str{(|)^$.[*+?]{5,10},\\}" },
|
||||
};
|
||||
|
||||
// Test that parsing with Literal works.
|
||||
TEST(TestParse, Literal) {
|
||||
TestParse(literal_tests, arraysize(literal_tests), Regexp::Literal, "literal");
|
||||
}
|
||||
|
||||
Test matchnl_tests[] = {
|
||||
{ ".", "dot{}" },
|
||||
{ "\n", "lit{\n}" },
|
||||
{ "[^a]", "cc{0-0x60 0x62-0x10ffff}" },
|
||||
{ "[a\\n]", "cc{0xa 0x61}" },
|
||||
};
|
||||
|
||||
// Test that parsing with MatchNL works.
|
||||
// (Also tested above during simple cases.)
|
||||
TEST(TestParse, MatchNL) {
|
||||
TestParse(matchnl_tests, arraysize(matchnl_tests), Regexp::MatchNL, "with MatchNL");
|
||||
}
|
||||
|
||||
Test nomatchnl_tests[] = {
|
||||
{ ".", "cc{0-0x9 0xb-0x10ffff}" },
|
||||
{ "\n", "lit{\n}" },
|
||||
{ "[^a]", "cc{0-0x9 0xb-0x60 0x62-0x10ffff}" },
|
||||
{ "[a\\n]", "cc{0xa 0x61}" },
|
||||
};
|
||||
|
||||
// Test that parsing without MatchNL works.
|
||||
TEST(TestParse, NoMatchNL) {
|
||||
TestParse(nomatchnl_tests, arraysize(nomatchnl_tests), Regexp::NoParseFlags, "without MatchNL");
|
||||
}
|
||||
|
||||
Test prefix_tests[] = {
|
||||
{ "abc|abd", "cat{str{ab}cc{0x63-0x64}}" },
|
||||
{ "a(?:b)c|abd", "cat{str{ab}cc{0x63-0x64}}" },
|
||||
{ "abc|abd|aef|bcx|bcy",
|
||||
"alt{cat{lit{a}alt{cat{lit{b}cc{0x63-0x64}}str{ef}}}"
|
||||
"cat{str{bc}cc{0x78-0x79}}}" },
|
||||
{ "abc|x|abd", "alt{str{abc}lit{x}str{abd}}" },
|
||||
{ "(?i)abc|ABD", "cat{strfold{ab}cc{0x43-0x44 0x63-0x64}}" },
|
||||
{ "[ab]c|[ab]d", "cat{cc{0x61-0x62}cc{0x63-0x64}}" },
|
||||
{ ".c|.d", "cat{cc{0-0x9 0xb-0x10ffff}cc{0x63-0x64}}" },
|
||||
{ "\\Cc|\\Cd", "cat{byte{}cc{0x63-0x64}}" },
|
||||
{ "x{2}|x{2}[0-9]",
|
||||
"cat{rep{2,2 lit{x}}alt{emp{}cc{0x30-0x39}}}" },
|
||||
{ "x{2}y|x{2}[0-9]y",
|
||||
"cat{rep{2,2 lit{x}}alt{lit{y}cat{cc{0x30-0x39}lit{y}}}}" },
|
||||
{ "n|r|rs",
|
||||
"alt{lit{n}cat{lit{r}alt{emp{}lit{s}}}}" },
|
||||
{ "n|rs|r",
|
||||
"alt{lit{n}cat{lit{r}alt{lit{s}emp{}}}}" },
|
||||
{ "r|rs|n",
|
||||
"alt{cat{lit{r}alt{emp{}lit{s}}}lit{n}}" },
|
||||
{ "rs|r|n",
|
||||
"alt{cat{lit{r}alt{lit{s}emp{}}}lit{n}}" },
|
||||
{ "a\\C*?c|a\\C*?b",
|
||||
"cat{lit{a}alt{cat{nstar{byte{}}lit{c}}cat{nstar{byte{}}lit{b}}}}" },
|
||||
{ "^/a/bc|^/a/de",
|
||||
"cat{bol{}cat{str{/a/}alt{str{bc}str{de}}}}" },
|
||||
// In the past, factoring was limited to kFactorAlternationMaxDepth (8).
|
||||
{ "a|aa|aaa|aaaa|aaaaa|aaaaaa|aaaaaaa|aaaaaaaa|aaaaaaaaa|aaaaaaaaaa",
|
||||
"cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}"
|
||||
"cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}"
|
||||
"cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}" "cat{lit{a}alt{emp{}"
|
||||
"lit{a}}}}}}}}}}}}}}}}}}}" },
|
||||
{ "a|aardvark|aardvarks|abaci|aback|abacus|abacuses|abaft|abalone|abalones",
|
||||
"cat{lit{a}alt{emp{}cat{str{ardvark}alt{emp{}lit{s}}}"
|
||||
"cat{str{ba}alt{cat{lit{c}alt{cc{0x69 0x6b}cat{str{us}alt{emp{}str{es}}}}}"
|
||||
"str{ft}cat{str{lone}alt{emp{}lit{s}}}}}}}" },
|
||||
};
|
||||
|
||||
// Test that prefix factoring works.
|
||||
TEST(TestParse, Prefix) {
|
||||
TestParse(prefix_tests, arraysize(prefix_tests), Regexp::PerlX, "prefix");
|
||||
}
|
||||
|
||||
Test nested_tests[] = {
|
||||
{ "((((((((((x{2}){2}){2}){2}){2}){2}){2}){2}){2}))",
|
||||
"cap{cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 lit{x}}}}}}}}}}}}}}}}}}}}" },
|
||||
{ "((((((((((x{1}){2}){2}){2}){2}){2}){2}){2}){2}){2})",
|
||||
"cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{1,1 lit{x}}}}}}}}}}}}}}}}}}}}}" },
|
||||
{ "((((((((((x{0}){2}){2}){2}){2}){2}){2}){2}){2}){2})",
|
||||
"cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 cap{rep{0,0 lit{x}}}}}}}}}}}}}}}}}}}}}" },
|
||||
{ "((((((x{2}){2}){2}){5}){5}){5})",
|
||||
"cap{rep{5,5 cap{rep{5,5 cap{rep{5,5 cap{rep{2,2 cap{rep{2,2 cap{rep{2,2 lit{x}}}}}}}}}}}}}" },
|
||||
};
|
||||
|
||||
// Test that nested repetition works.
|
||||
TEST(TestParse, Nested) {
|
||||
TestParse(nested_tests, arraysize(nested_tests), Regexp::PerlX, "nested");
|
||||
}
|
||||
|
||||
// Invalid regular expressions
|
||||
const char* badtests[] = {
|
||||
"(",
|
||||
")",
|
||||
"(a",
|
||||
"(a|b|",
|
||||
"(a|b",
|
||||
"[a-z",
|
||||
"([a-z)",
|
||||
"x{1001}",
|
||||
"\xff", // Invalid UTF-8
|
||||
"[\xff]",
|
||||
"[\\\xff]",
|
||||
"\\\xff",
|
||||
"(?P<name>a",
|
||||
"(?P<name>",
|
||||
"(?P<name",
|
||||
"(?P<x y>a)",
|
||||
"(?P<>a)",
|
||||
"[a-Z]",
|
||||
"(?i)[a-Z]",
|
||||
"a{100000}",
|
||||
"a{100000,}",
|
||||
"((((((((((x{2}){2}){2}){2}){2}){2}){2}){2}){2}){2})",
|
||||
"(((x{7}){11}){13})",
|
||||
"\\Q\\E*",
|
||||
};
|
||||
|
||||
// Valid in Perl, bad in POSIX
|
||||
const char* only_perl[] = {
|
||||
"[a-b-c]",
|
||||
"\\Qabc\\E",
|
||||
"\\Q*+?{[\\E",
|
||||
"\\Q\\\\E",
|
||||
"\\Q\\\\\\E",
|
||||
"\\Q\\\\\\\\E",
|
||||
"\\Q\\\\\\\\\\E",
|
||||
"(?:a)",
|
||||
"(?P<name>a)",
|
||||
};
|
||||
|
||||
// Valid in POSIX, bad in Perl.
|
||||
const char* only_posix[] = {
|
||||
"a++",
|
||||
"a**",
|
||||
"a?*",
|
||||
"a+*",
|
||||
"a{1}*",
|
||||
};
|
||||
|
||||
// Test that parser rejects bad regexps.
|
||||
TEST(TestParse, InvalidRegexps) {
|
||||
for (size_t i = 0; i < arraysize(badtests); i++) {
|
||||
ASSERT_TRUE(Regexp::Parse(badtests[i], Regexp::PerlX, NULL) == NULL)
|
||||
<< " " << badtests[i];
|
||||
ASSERT_TRUE(Regexp::Parse(badtests[i], Regexp::NoParseFlags, NULL) == NULL)
|
||||
<< " " << badtests[i];
|
||||
}
|
||||
for (size_t i = 0; i < arraysize(only_posix); i++) {
|
||||
ASSERT_TRUE(Regexp::Parse(only_posix[i], Regexp::PerlX, NULL) == NULL)
|
||||
<< " " << only_posix[i];
|
||||
Regexp* re = Regexp::Parse(only_posix[i], Regexp::NoParseFlags, NULL);
|
||||
ASSERT_TRUE(re != NULL) << " " << only_posix[i];
|
||||
re->Decref();
|
||||
}
|
||||
for (size_t i = 0; i < arraysize(only_perl); i++) {
|
||||
ASSERT_TRUE(Regexp::Parse(only_perl[i], Regexp::NoParseFlags, NULL) == NULL)
|
||||
<< " " << only_perl[i];
|
||||
Regexp* re = Regexp::Parse(only_perl[i], Regexp::PerlX, NULL);
|
||||
ASSERT_TRUE(re != NULL) << " " << only_perl[i];
|
||||
re->Decref();
|
||||
}
|
||||
}
|
||||
|
||||
// Test that ToString produces original regexp or equivalent one.
|
||||
TEST(TestToString, EquivalentParse) {
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
RegexpStatus status;
|
||||
Regexp::ParseFlags f = kTestFlags;
|
||||
if (tests[i].flags != 0) {
|
||||
f = tests[i].flags & ~TestZeroFlags;
|
||||
}
|
||||
Regexp* re = Regexp::Parse(tests[i].regexp, f, &status);
|
||||
ASSERT_TRUE(re != NULL) << " " << tests[i].regexp << " " << status.Text();
|
||||
std::string s = re->Dump();
|
||||
EXPECT_EQ(std::string(tests[i].parse), s)
|
||||
<< "Regexp: " << tests[i].regexp
|
||||
<< "\nparse: " << std::string(tests[i].parse)
|
||||
<< " s: " << s << " flag=" << f;
|
||||
std::string t = re->ToString();
|
||||
if (t != tests[i].regexp) {
|
||||
// If ToString didn't return the original regexp,
|
||||
// it must have found one with fewer parens.
|
||||
// Unfortunately we can't check the length here, because
|
||||
// ToString produces "\\{" for a literal brace,
|
||||
// but "{" is a shorter equivalent.
|
||||
// ASSERT_LT(t.size(), strlen(tests[i].regexp))
|
||||
// << " t=" << t << " regexp=" << tests[i].regexp;
|
||||
|
||||
// Test that if we parse the new regexp we get the same structure.
|
||||
Regexp* nre = Regexp::Parse(t, Regexp::MatchNL | Regexp::PerlX, &status);
|
||||
ASSERT_TRUE(nre != NULL) << " reparse " << t << " " << status.Text();
|
||||
std::string ss = nre->Dump();
|
||||
std::string tt = nre->ToString();
|
||||
if (s != ss || t != tt)
|
||||
LOG(INFO) << "ToString(" << tests[i].regexp << ") = " << t;
|
||||
EXPECT_EQ(s, ss);
|
||||
EXPECT_EQ(t, tt);
|
||||
nre->Decref();
|
||||
}
|
||||
re->Decref();
|
||||
}
|
||||
}
|
||||
|
||||
// Test that capture error args are correct.
|
||||
TEST(NamedCaptures, ErrorArgs) {
|
||||
RegexpStatus status;
|
||||
Regexp* re;
|
||||
|
||||
re = Regexp::Parse("test(?P<name", Regexp::LikePerl, &status);
|
||||
EXPECT_TRUE(re == NULL);
|
||||
EXPECT_EQ(status.code(), kRegexpBadNamedCapture);
|
||||
EXPECT_EQ(status.error_arg(), "(?P<name");
|
||||
|
||||
re = Regexp::Parse("test(?P<space bar>z)", Regexp::LikePerl, &status);
|
||||
EXPECT_TRUE(re == NULL);
|
||||
EXPECT_EQ(status.code(), kRegexpBadNamedCapture);
|
||||
EXPECT_EQ(status.error_arg(), "(?P<space bar>");
|
||||
}
|
||||
|
||||
} // namespace re2
|
247
extern/re2/re2/testing/possible_match_test.cc
vendored
Normal file
247
extern/re2/re2/testing/possible_match_test.cc
vendored
Normal file
@ -0,0 +1,247 @@
|
||||
// Copyright 2006-2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
#include "re2/testing/regexp_generator.h"
|
||||
#include "re2/testing/string_generator.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test that C++ strings are compared as uint8s, not int8s.
|
||||
// PossibleMatchRange doesn't depend on this, but callers probably will.
|
||||
TEST(CplusplusStrings, EightBit) {
|
||||
std::string s = "\x70";
|
||||
std::string t = "\xA0";
|
||||
EXPECT_LT(s, t);
|
||||
}
|
||||
|
||||
struct PrefixTest {
|
||||
const char* regexp;
|
||||
int maxlen;
|
||||
const char* min;
|
||||
const char* max;
|
||||
};
|
||||
|
||||
static PrefixTest tests[] = {
|
||||
{ "", 10, "", "", },
|
||||
{ "Abcdef", 10, "Abcdef", "Abcdef" },
|
||||
{ "abc(def|ghi)", 10, "abcdef", "abcghi" },
|
||||
{ "a+hello", 10, "aa", "ahello" },
|
||||
{ "a*hello", 10, "a", "hello" },
|
||||
{ "def|abc", 10, "abc", "def" },
|
||||
{ "a(b)(c)[d]", 10, "abcd", "abcd" },
|
||||
{ "ab(cab|cat)", 10, "abcab", "abcat" },
|
||||
{ "ab(cab|ca)x", 10, "abcabx", "abcax" },
|
||||
{ "(ab|x)(c|de)", 10, "abc", "xde" },
|
||||
{ "(ab|x)?(c|z)?", 10, "", "z" },
|
||||
{ "[^\\s\\S]", 10, "", "" },
|
||||
{ "(abc)+", 5, "abc", "abcac" },
|
||||
{ "(abc)+", 2, "ab", "ac" },
|
||||
{ "(abc)+", 1, "a", "b" },
|
||||
{ "[a\xC3\xA1]", 4, "a", "\xC3\xA1" },
|
||||
{ "a*", 10, "", "ab" },
|
||||
|
||||
{ "(?i)Abcdef", 10, "ABCDEF", "abcdef" },
|
||||
{ "(?i)abc(def|ghi)", 10, "ABCDEF", "abcghi" },
|
||||
{ "(?i)a+hello", 10, "AA", "ahello" },
|
||||
{ "(?i)a*hello", 10, "A", "hello" },
|
||||
{ "(?i)def|abc", 10, "ABC", "def" },
|
||||
{ "(?i)a(b)(c)[d]", 10, "ABCD", "abcd" },
|
||||
{ "(?i)ab(cab|cat)", 10, "ABCAB", "abcat" },
|
||||
{ "(?i)ab(cab|ca)x", 10, "ABCABX", "abcax" },
|
||||
{ "(?i)(ab|x)(c|de)", 10, "ABC", "xde" },
|
||||
{ "(?i)(ab|x)?(c|z)?", 10, "", "z" },
|
||||
{ "(?i)[^\\s\\S]", 10, "", "" },
|
||||
{ "(?i)(abc)+", 5, "ABC", "abcac" },
|
||||
{ "(?i)(abc)+", 2, "AB", "ac" },
|
||||
{ "(?i)(abc)+", 1, "A", "b" },
|
||||
{ "(?i)[a\xC3\xA1]", 4, "A", "\xC3\xA1" },
|
||||
{ "(?i)a*", 10, "", "ab" },
|
||||
{ "(?i)A*", 10, "", "ab" },
|
||||
|
||||
{ "\\AAbcdef", 10, "Abcdef", "Abcdef" },
|
||||
{ "\\Aabc(def|ghi)", 10, "abcdef", "abcghi" },
|
||||
{ "\\Aa+hello", 10, "aa", "ahello" },
|
||||
{ "\\Aa*hello", 10, "a", "hello" },
|
||||
{ "\\Adef|abc", 10, "abc", "def" },
|
||||
{ "\\Aa(b)(c)[d]", 10, "abcd", "abcd" },
|
||||
{ "\\Aab(cab|cat)", 10, "abcab", "abcat" },
|
||||
{ "\\Aab(cab|ca)x", 10, "abcabx", "abcax" },
|
||||
{ "\\A(ab|x)(c|de)", 10, "abc", "xde" },
|
||||
{ "\\A(ab|x)?(c|z)?", 10, "", "z" },
|
||||
{ "\\A[^\\s\\S]", 10, "", "" },
|
||||
{ "\\A(abc)+", 5, "abc", "abcac" },
|
||||
{ "\\A(abc)+", 2, "ab", "ac" },
|
||||
{ "\\A(abc)+", 1, "a", "b" },
|
||||
{ "\\A[a\xC3\xA1]", 4, "a", "\xC3\xA1" },
|
||||
{ "\\Aa*", 10, "", "ab" },
|
||||
|
||||
{ "(?i)\\AAbcdef", 10, "ABCDEF", "abcdef" },
|
||||
{ "(?i)\\Aabc(def|ghi)", 10, "ABCDEF", "abcghi" },
|
||||
{ "(?i)\\Aa+hello", 10, "AA", "ahello" },
|
||||
{ "(?i)\\Aa*hello", 10, "A", "hello" },
|
||||
{ "(?i)\\Adef|abc", 10, "ABC", "def" },
|
||||
{ "(?i)\\Aa(b)(c)[d]", 10, "ABCD", "abcd" },
|
||||
{ "(?i)\\Aab(cab|cat)", 10, "ABCAB", "abcat" },
|
||||
{ "(?i)\\Aab(cab|ca)x", 10, "ABCABX", "abcax" },
|
||||
{ "(?i)\\A(ab|x)(c|de)", 10, "ABC", "xde" },
|
||||
{ "(?i)\\A(ab|x)?(c|z)?", 10, "", "z" },
|
||||
{ "(?i)\\A[^\\s\\S]", 10, "", "" },
|
||||
{ "(?i)\\A(abc)+", 5, "ABC", "abcac" },
|
||||
{ "(?i)\\A(abc)+", 2, "AB", "ac" },
|
||||
{ "(?i)\\A(abc)+", 1, "A", "b" },
|
||||
{ "(?i)\\A[a\xC3\xA1]", 4, "A", "\xC3\xA1" },
|
||||
{ "(?i)\\Aa*", 10, "", "ab" },
|
||||
{ "(?i)\\AA*", 10, "", "ab" },
|
||||
};
|
||||
|
||||
TEST(PossibleMatchRange, HandWritten) {
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
for (size_t j = 0; j < 2; j++) {
|
||||
const PrefixTest& t = tests[i];
|
||||
std::string min, max;
|
||||
if (j == 0) {
|
||||
LOG(INFO) << "Checking regexp=" << CEscape(t.regexp);
|
||||
Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL);
|
||||
ASSERT_TRUE(re != NULL);
|
||||
Prog* prog = re->CompileToProg(0);
|
||||
ASSERT_TRUE(prog != NULL);
|
||||
ASSERT_TRUE(prog->PossibleMatchRange(&min, &max, t.maxlen))
|
||||
<< " " << t.regexp;
|
||||
delete prog;
|
||||
re->Decref();
|
||||
} else {
|
||||
ASSERT_TRUE(RE2(t.regexp).PossibleMatchRange(&min, &max, t.maxlen));
|
||||
}
|
||||
EXPECT_EQ(t.min, min) << t.regexp;
|
||||
EXPECT_EQ(t.max, max) << t.regexp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test cases where PossibleMatchRange should return false.
|
||||
TEST(PossibleMatchRange, Failures) {
|
||||
std::string min, max;
|
||||
|
||||
// Fails because no room to write max.
|
||||
EXPECT_FALSE(RE2("abc").PossibleMatchRange(&min, &max, 0));
|
||||
|
||||
// Fails because there is no max -- any non-empty string matches
|
||||
// or begins a match. Have to use Latin-1 input, because there
|
||||
// are no valid UTF-8 strings beginning with byte 0xFF.
|
||||
EXPECT_FALSE(RE2("[\\s\\S]+", RE2::Latin1).
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
EXPECT_FALSE(RE2("[\\0-\xFF]+", RE2::Latin1).
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
EXPECT_FALSE(RE2(".+hello", RE2::Latin1).
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
EXPECT_FALSE(RE2(".*hello", RE2::Latin1).
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
EXPECT_FALSE(RE2(".*", RE2::Latin1).
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
EXPECT_FALSE(RE2("\\C*").
|
||||
PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
|
||||
// Fails because it's a malformed regexp.
|
||||
EXPECT_FALSE(RE2("*hello").PossibleMatchRange(&min, &max, 10))
|
||||
<< "min=" << CEscape(min) << ", max=" << CEscape(max);
|
||||
}
|
||||
|
||||
// Exhaustive test: generate all regexps within parameters,
|
||||
// then generate all strings of a given length over a given alphabet,
|
||||
// then check that the prefix information agrees with whether
|
||||
// the regexp matches each of the strings.
|
||||
class PossibleMatchTester : public RegexpGenerator {
|
||||
public:
|
||||
PossibleMatchTester(int maxatoms,
|
||||
int maxops,
|
||||
const std::vector<std::string>& alphabet,
|
||||
const std::vector<std::string>& ops,
|
||||
int maxstrlen,
|
||||
const std::vector<std::string>& stralphabet)
|
||||
: RegexpGenerator(maxatoms, maxops, alphabet, ops),
|
||||
strgen_(maxstrlen, stralphabet),
|
||||
regexps_(0), tests_(0) { }
|
||||
|
||||
int regexps() { return regexps_; }
|
||||
int tests() { return tests_; }
|
||||
|
||||
// Needed for RegexpGenerator interface.
|
||||
void HandleRegexp(const std::string& regexp);
|
||||
|
||||
private:
|
||||
StringGenerator strgen_;
|
||||
|
||||
int regexps_; // Number of HandleRegexp calls
|
||||
int tests_; // Number of regexp tests.
|
||||
|
||||
PossibleMatchTester(const PossibleMatchTester&) = delete;
|
||||
PossibleMatchTester& operator=(const PossibleMatchTester&) = delete;
|
||||
};
|
||||
|
||||
// Processes a single generated regexp.
|
||||
// Checks that all accepted strings agree with the prefix range.
|
||||
void PossibleMatchTester::HandleRegexp(const std::string& regexp) {
|
||||
regexps_++;
|
||||
|
||||
VLOG(3) << CEscape(regexp);
|
||||
|
||||
RE2 re(regexp, RE2::Latin1);
|
||||
ASSERT_EQ(re.error(), "");
|
||||
|
||||
std::string min, max;
|
||||
if(!re.PossibleMatchRange(&min, &max, 10)) {
|
||||
// There's no good max for "\\C*". Can't use strcmp
|
||||
// because sometimes it gets embedded in more
|
||||
// complicated expressions.
|
||||
if(strstr(regexp.c_str(), "\\C*"))
|
||||
return;
|
||||
LOG(QFATAL) << "PossibleMatchRange failed on: " << CEscape(regexp);
|
||||
}
|
||||
|
||||
strgen_.Reset();
|
||||
while (strgen_.HasNext()) {
|
||||
const StringPiece& s = strgen_.Next();
|
||||
tests_++;
|
||||
if (!RE2::FullMatch(s, re))
|
||||
continue;
|
||||
ASSERT_GE(s, min) << " regexp: " << regexp << " max: " << max;
|
||||
ASSERT_LE(s, max) << " regexp: " << regexp << " min: " << min;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(PossibleMatchRange, Exhaustive) {
|
||||
int natom = 3;
|
||||
int noperator = 3;
|
||||
int stringlen = 5;
|
||||
if (RE2_DEBUG_MODE) {
|
||||
natom = 2;
|
||||
noperator = 3;
|
||||
stringlen = 3;
|
||||
}
|
||||
PossibleMatchTester t(natom, noperator, Split(" ", "a b [0-9]"),
|
||||
RegexpGenerator::EgrepOps(),
|
||||
stringlen, Explode("ab4"));
|
||||
t.Generate();
|
||||
LOG(INFO) << t.regexps() << " regexps, "
|
||||
<< t.tests() << " tests";
|
||||
}
|
||||
|
||||
} // namespace re2
|
99
extern/re2/re2/testing/random_test.cc
vendored
Normal file
99
extern/re2/re2/testing/random_test.cc
vendored
Normal file
@ -0,0 +1,99 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Random testing of regular expression matching.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
DEFINE_int32(regexpseed, 404, "Random regexp seed.");
|
||||
DEFINE_int32(regexpcount, 100, "How many random regexps to generate.");
|
||||
DEFINE_int32(stringseed, 200, "Random string seed.");
|
||||
DEFINE_int32(stringcount, 100, "How many random strings to generate.");
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Runs a random test on the given parameters.
|
||||
// (Always uses the same random seeds for reproducibility.
|
||||
// Can give different seeds on command line.)
|
||||
static void RandomTest(int maxatoms, int maxops,
|
||||
const std::vector<std::string>& alphabet,
|
||||
const std::vector<std::string>& ops,
|
||||
int maxstrlen,
|
||||
const std::vector<std::string>& stralphabet,
|
||||
const std::string& wrapper) {
|
||||
// Limit to smaller test cases in debug mode,
|
||||
// because everything is so much slower.
|
||||
if (RE2_DEBUG_MODE) {
|
||||
maxatoms--;
|
||||
maxops--;
|
||||
maxstrlen /= 2;
|
||||
}
|
||||
|
||||
ExhaustiveTester t(maxatoms, maxops, alphabet, ops,
|
||||
maxstrlen, stralphabet, wrapper, "");
|
||||
t.RandomStrings(FLAGS_stringseed, FLAGS_stringcount);
|
||||
t.GenerateRandom(FLAGS_regexpseed, FLAGS_regexpcount);
|
||||
printf("%d regexps, %d tests, %d failures [%d/%d str]\n",
|
||||
t.regexps(), t.tests(), t.failures(), maxstrlen, (int)stralphabet.size());
|
||||
EXPECT_EQ(0, t.failures());
|
||||
}
|
||||
|
||||
// Tests random small regexps involving literals and egrep operators.
|
||||
TEST(Random, SmallEgrepLiterals) {
|
||||
RandomTest(5, 5, Explode("abc."), RegexpGenerator::EgrepOps(),
|
||||
15, Explode("abc"),
|
||||
"");
|
||||
}
|
||||
|
||||
// Tests random bigger regexps involving literals and egrep operators.
|
||||
TEST(Random, BigEgrepLiterals) {
|
||||
RandomTest(10, 10, Explode("abc."), RegexpGenerator::EgrepOps(),
|
||||
15, Explode("abc"),
|
||||
"");
|
||||
}
|
||||
|
||||
// Tests random small regexps involving literals, capturing parens,
|
||||
// and egrep operators.
|
||||
TEST(Random, SmallEgrepCaptures) {
|
||||
RandomTest(5, 5, Split(" ", "a (b) ."), RegexpGenerator::EgrepOps(),
|
||||
15, Explode("abc"),
|
||||
"");
|
||||
}
|
||||
|
||||
// Tests random bigger regexps involving literals, capturing parens,
|
||||
// and egrep operators.
|
||||
TEST(Random, BigEgrepCaptures) {
|
||||
RandomTest(10, 10, Split(" ", "a (b) ."), RegexpGenerator::EgrepOps(),
|
||||
15, Explode("abc"),
|
||||
"");
|
||||
}
|
||||
|
||||
// Tests random large complicated expressions, using all the possible
|
||||
// operators, some literals, some parenthesized literals, and predefined
|
||||
// character classes like \d. (Adding larger character classes would
|
||||
// make for too many possibilities.)
|
||||
TEST(Random, Complicated) {
|
||||
std::vector<std::string> ops = Split(" ",
|
||||
"%s%s %s|%s %s* %s*? %s+ %s+? %s? %s?? "
|
||||
"%s{0} %s{0,} %s{1} %s{1,} %s{0,1} %s{0,2} %s{1,2} "
|
||||
"%s{2} %s{2,} %s{3,4} %s{4,5}");
|
||||
|
||||
// Use (?:\b) and (?:\B) instead of \b and \B,
|
||||
// because PCRE rejects \b* but accepts (?:\b)*.
|
||||
// Ditto ^ and $.
|
||||
std::vector<std::string> atoms = Split(" ",
|
||||
". (?:^) (?:$) \\a \\f \\n \\r \\t \\v "
|
||||
"\\d \\D \\s \\S \\w \\W (?:\\b) (?:\\B) "
|
||||
"a (a) b c - \\\\");
|
||||
std::vector<std::string> alphabet = Explode("abc123\001\002\003\t\r\n\v\f\a");
|
||||
RandomTest(10, 10, atoms, ops, 20, alphabet, "");
|
||||
}
|
||||
|
||||
} // namespace re2
|
||||
|
135
extern/re2/re2/testing/re2_arg_test.cc
vendored
Normal file
135
extern/re2/re2/testing/re2_arg_test.cc
vendored
Normal file
@ -0,0 +1,135 @@
|
||||
// Copyright 2005 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This tests to make sure numbers are parsed from strings
|
||||
// correctly.
|
||||
// Todo: Expand the test to validate strings parsed to the other types
|
||||
// supported by RE2::Arg class
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/re2.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct SuccessTable {
|
||||
const char * value_string;
|
||||
int64_t value;
|
||||
bool success[6];
|
||||
};
|
||||
|
||||
// Test boundary cases for different integral sizes.
|
||||
// Specifically I want to make sure that values outside the boundries
|
||||
// of an integral type will fail and that negative numbers will fail
|
||||
// for unsigned types. The following table contains the boundaries for
|
||||
// the various integral types and has entries for whether or not each
|
||||
// type can contain the given value.
|
||||
const SuccessTable kSuccessTable[] = {
|
||||
// string integer value i16 u16 i32 u32 i64 u64
|
||||
// 0 to 2^7-1
|
||||
{ "0", 0, { true, true, true, true, true, true }},
|
||||
{ "127", 127, { true, true, true, true, true, true }},
|
||||
|
||||
// -1 to -2^7
|
||||
{ "-1", -1, { true, false, true, false, true, false }},
|
||||
{ "-128", -128, { true, false, true, false, true, false }},
|
||||
|
||||
// 2^7 to 2^8-1
|
||||
{ "128", 128, { true, true, true, true, true, true }},
|
||||
{ "255", 255, { true, true, true, true, true, true }},
|
||||
|
||||
// 2^8 to 2^15-1
|
||||
{ "256", 256, { true, true, true, true, true, true }},
|
||||
{ "32767", 32767, { true, true, true, true, true, true }},
|
||||
|
||||
// -2^7-1 to -2^15
|
||||
{ "-129", -129, { true, false, true, false, true, false }},
|
||||
{ "-32768", -32768, { true, false, true, false, true, false }},
|
||||
|
||||
// 2^15 to 2^16-1
|
||||
{ "32768", 32768, { false, true, true, true, true, true }},
|
||||
{ "65535", 65535, { false, true, true, true, true, true }},
|
||||
|
||||
// 2^16 to 2^31-1
|
||||
{ "65536", 65536, { false, false, true, true, true, true }},
|
||||
{ "2147483647", 2147483647, { false, false, true, true, true, true }},
|
||||
|
||||
// -2^15-1 to -2^31
|
||||
{ "-32769", -32769, { false, false, true, false, true, false }},
|
||||
{ "-2147483648", static_cast<int64_t>(0xFFFFFFFF80000000LL),
|
||||
{ false, false, true, false, true, false }},
|
||||
|
||||
// 2^31 to 2^32-1
|
||||
{ "2147483648", 2147483648U, { false, false, false, true, true, true }},
|
||||
{ "4294967295", 4294967295U, { false, false, false, true, true, true }},
|
||||
|
||||
// 2^32 to 2^63-1
|
||||
{ "4294967296", 4294967296LL, { false, false, false, false, true, true }},
|
||||
{ "9223372036854775807",
|
||||
9223372036854775807LL, { false, false, false, false, true, true }},
|
||||
|
||||
// -2^31-1 to -2^63
|
||||
{ "-2147483649", -2147483649LL, { false, false, false, false, true, false }},
|
||||
{ "-9223372036854775808", static_cast<int64_t>(0x8000000000000000LL),
|
||||
{ false, false, false, false, true, false }},
|
||||
|
||||
// 2^63 to 2^64-1
|
||||
{ "9223372036854775808", static_cast<int64_t>(9223372036854775808ULL),
|
||||
{ false, false, false, false, false, true }},
|
||||
{ "18446744073709551615", static_cast<int64_t>(18446744073709551615ULL),
|
||||
{ false, false, false, false, false, true }},
|
||||
|
||||
// >= 2^64
|
||||
{ "18446744073709551616", 0, { false, false, false, false, false, false }},
|
||||
};
|
||||
|
||||
const int kNumStrings = arraysize(kSuccessTable);
|
||||
|
||||
// It's ugly to use a macro, but we apparently can't use the EXPECT_EQ
|
||||
// macro outside of a TEST block and this seems to be the only way to
|
||||
// avoid code duplication. I can also pull off a couple nice tricks
|
||||
// using concatenation for the type I'm checking against.
|
||||
#define PARSE_FOR_TYPE(type, column) { \
|
||||
type r; \
|
||||
for (int i = 0; i < kNumStrings; ++i) { \
|
||||
RE2::Arg arg(&r); \
|
||||
const char* const p = kSuccessTable[i].value_string; \
|
||||
bool retval = arg.Parse(p, strlen(p)); \
|
||||
bool success = kSuccessTable[i].success[column]; \
|
||||
EXPECT_EQ(retval, success) \
|
||||
<< "Parsing '" << p << "' for type " #type " should return " \
|
||||
<< success; \
|
||||
if (success) { \
|
||||
EXPECT_EQ(r, (type)kSuccessTable[i].value); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Int16Test) {
|
||||
PARSE_FOR_TYPE(int16_t, 0);
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Uint16Test) {
|
||||
PARSE_FOR_TYPE(uint16_t, 1);
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Int32Test) {
|
||||
PARSE_FOR_TYPE(int32_t, 2);
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Uint32Test) {
|
||||
PARSE_FOR_TYPE(uint32_t, 3);
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Int64Test) {
|
||||
PARSE_FOR_TYPE(int64_t, 4);
|
||||
}
|
||||
|
||||
TEST(RE2ArgTest, Uint64Test) {
|
||||
PARSE_FOR_TYPE(uint64_t, 5);
|
||||
}
|
||||
|
||||
} // namespace re2
|
1631
extern/re2/re2/testing/re2_test.cc
vendored
Normal file
1631
extern/re2/re2/testing/re2_test.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
1586
extern/re2/re2/testing/regexp_benchmark.cc
vendored
Normal file
1586
extern/re2/re2/testing/regexp_benchmark.cc
vendored
Normal file
File diff suppressed because it is too large
Load Diff
276
extern/re2/re2/testing/regexp_generator.cc
vendored
Normal file
276
extern/re2/re2/testing/regexp_generator.cc
vendored
Normal file
@ -0,0 +1,276 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Regular expression generator: generates all possible
|
||||
// regular expressions within parameters (see regexp_generator.h for details).
|
||||
|
||||
// The regexp generator first generates a sequence of commands in a simple
|
||||
// postfix language. Each command in the language is a string,
|
||||
// like "a" or "%s*" or "%s|%s".
|
||||
//
|
||||
// To evaluate a command, enough arguments are popped from the value stack to
|
||||
// plug into the %s slots. Then the result is pushed onto the stack.
|
||||
// For example, the command sequence
|
||||
// a b %s%s c
|
||||
// results in the stack
|
||||
// ab c
|
||||
//
|
||||
// GeneratePostfix generates all possible command sequences.
|
||||
// Then RunPostfix turns each sequence into a regular expression
|
||||
// and passes the regexp to HandleRegexp.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <memory>
|
||||
#include <stack>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/testing/regexp_generator.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Returns a vector of the egrep regexp operators.
|
||||
const std::vector<std::string>& RegexpGenerator::EgrepOps() {
|
||||
static const char *ops[] = {
|
||||
"%s%s",
|
||||
"%s|%s",
|
||||
"%s*",
|
||||
"%s+",
|
||||
"%s?",
|
||||
"%s\\C*",
|
||||
};
|
||||
static std::vector<std::string> v(ops, ops + arraysize(ops));
|
||||
return v;
|
||||
}
|
||||
|
||||
RegexpGenerator::RegexpGenerator(int maxatoms, int maxops,
|
||||
const std::vector<std::string>& atoms,
|
||||
const std::vector<std::string>& ops)
|
||||
: maxatoms_(maxatoms), maxops_(maxops), atoms_(atoms), ops_(ops) {
|
||||
// Degenerate case.
|
||||
if (atoms_.empty())
|
||||
maxatoms_ = 0;
|
||||
if (ops_.empty())
|
||||
maxops_ = 0;
|
||||
}
|
||||
|
||||
// Generates all possible regular expressions (within the parameters),
|
||||
// calling HandleRegexp for each one.
|
||||
void RegexpGenerator::Generate() {
|
||||
std::vector<std::string> postfix;
|
||||
GeneratePostfix(&postfix, 0, 0, 0);
|
||||
}
|
||||
|
||||
// Generates random regular expressions, calling HandleRegexp for each one.
|
||||
void RegexpGenerator::GenerateRandom(int32_t seed, int n) {
|
||||
rng_.seed(seed);
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<std::string> postfix;
|
||||
GenerateRandomPostfix(&postfix, 0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Counts and returns the number of occurrences of "%s" in s.
|
||||
static int CountArgs(const std::string& s) {
|
||||
const char *p = s.c_str();
|
||||
int n = 0;
|
||||
while ((p = strstr(p, "%s")) != NULL) {
|
||||
p += 2;
|
||||
n++;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
// Generates all possible postfix command sequences.
|
||||
// Each sequence is handed off to RunPostfix to generate a regular expression.
|
||||
// The arguments are:
|
||||
// post: the current postfix sequence
|
||||
// nstk: the number of elements that would be on the stack after executing
|
||||
// the sequence
|
||||
// ops: the number of operators used in the sequence
|
||||
// atoms: the number of atoms used in the sequence
|
||||
// For example, if post were ["a", "b", "%s%s", "c"],
|
||||
// then nstk = 2, ops = 1, atoms = 3.
|
||||
//
|
||||
// The initial call should be GeneratePostfix([empty vector], 0, 0, 0).
|
||||
//
|
||||
void RegexpGenerator::GeneratePostfix(std::vector<std::string>* post,
|
||||
int nstk, int ops, int atoms) {
|
||||
if (nstk == 1)
|
||||
RunPostfix(*post);
|
||||
|
||||
// Early out: if used too many operators or can't
|
||||
// get back down to a single expression on the stack
|
||||
// using binary operators, give up.
|
||||
if (ops + nstk - 1 > maxops_)
|
||||
return;
|
||||
|
||||
// Add atoms if there is room.
|
||||
if (atoms < maxatoms_) {
|
||||
for (size_t i = 0; i < atoms_.size(); i++) {
|
||||
post->push_back(atoms_[i]);
|
||||
GeneratePostfix(post, nstk + 1, ops, atoms + 1);
|
||||
post->pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
// Add operators if there are enough arguments.
|
||||
if (ops < maxops_) {
|
||||
for (size_t i = 0; i < ops_.size(); i++) {
|
||||
const std::string& fmt = ops_[i];
|
||||
int nargs = CountArgs(fmt);
|
||||
if (nargs <= nstk) {
|
||||
post->push_back(fmt);
|
||||
GeneratePostfix(post, nstk - nargs + 1, ops + 1, atoms);
|
||||
post->pop_back();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Generates a random postfix command sequence.
|
||||
// Stops and returns true once a single sequence has been generated.
|
||||
bool RegexpGenerator::GenerateRandomPostfix(std::vector<std::string>* post,
|
||||
int nstk, int ops, int atoms) {
|
||||
std::uniform_int_distribution<int> random_stop(0, maxatoms_ - atoms);
|
||||
std::uniform_int_distribution<int> random_bit(0, 1);
|
||||
std::uniform_int_distribution<int> random_ops_index(
|
||||
0, static_cast<int>(ops_.size()) - 1);
|
||||
std::uniform_int_distribution<int> random_atoms_index(
|
||||
0, static_cast<int>(atoms_.size()) - 1);
|
||||
|
||||
for (;;) {
|
||||
// Stop if we get to a single element, but only sometimes.
|
||||
if (nstk == 1 && random_stop(rng_) == 0) {
|
||||
RunPostfix(*post);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Early out: if used too many operators or can't
|
||||
// get back down to a single expression on the stack
|
||||
// using binary operators, give up.
|
||||
if (ops + nstk - 1 > maxops_)
|
||||
return false;
|
||||
|
||||
// Add operators if there are enough arguments.
|
||||
if (ops < maxops_ && random_bit(rng_) == 0) {
|
||||
const std::string& fmt = ops_[random_ops_index(rng_)];
|
||||
int nargs = CountArgs(fmt);
|
||||
if (nargs <= nstk) {
|
||||
post->push_back(fmt);
|
||||
bool ret = GenerateRandomPostfix(post, nstk - nargs + 1,
|
||||
ops + 1, atoms);
|
||||
post->pop_back();
|
||||
if (ret)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Add atoms if there is room.
|
||||
if (atoms < maxatoms_ && random_bit(rng_) == 0) {
|
||||
post->push_back(atoms_[random_atoms_index(rng_)]);
|
||||
bool ret = GenerateRandomPostfix(post, nstk + 1, ops, atoms + 1);
|
||||
post->pop_back();
|
||||
if (ret)
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Interprets the postfix command sequence to create a regular expression
|
||||
// passed to HandleRegexp. The results of operators like %s|%s are wrapped
|
||||
// in (?: ) to avoid needing to maintain a precedence table.
|
||||
void RegexpGenerator::RunPostfix(const std::vector<std::string>& post) {
|
||||
std::stack<std::string> regexps;
|
||||
for (size_t i = 0; i < post.size(); i++) {
|
||||
switch (CountArgs(post[i])) {
|
||||
default:
|
||||
LOG(FATAL) << "Bad operator: " << post[i];
|
||||
case 0:
|
||||
regexps.push(post[i]);
|
||||
break;
|
||||
case 1: {
|
||||
std::string a = regexps.top();
|
||||
regexps.pop();
|
||||
regexps.push("(?:" + StringPrintf(post[i].c_str(), a.c_str()) + ")");
|
||||
break;
|
||||
}
|
||||
case 2: {
|
||||
std::string b = regexps.top();
|
||||
regexps.pop();
|
||||
std::string a = regexps.top();
|
||||
regexps.pop();
|
||||
regexps.push("(?:" +
|
||||
StringPrintf(post[i].c_str(), a.c_str(), b.c_str()) +
|
||||
")");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (regexps.size() != 1) {
|
||||
// Internal error - should never happen.
|
||||
printf("Bad regexp program:\n");
|
||||
for (size_t i = 0; i < post.size(); i++) {
|
||||
printf(" %s\n", CEscape(post[i]).c_str());
|
||||
}
|
||||
printf("Stack after running program:\n");
|
||||
while (!regexps.empty()) {
|
||||
printf(" %s\n", CEscape(regexps.top()).c_str());
|
||||
regexps.pop();
|
||||
}
|
||||
LOG(FATAL) << "Bad regexp program.";
|
||||
}
|
||||
|
||||
HandleRegexp(regexps.top());
|
||||
HandleRegexp("^(?:" + regexps.top() + ")$");
|
||||
HandleRegexp("^(?:" + regexps.top() + ")");
|
||||
HandleRegexp("(?:" + regexps.top() + ")$");
|
||||
}
|
||||
|
||||
// Split s into an vector of strings, one for each UTF-8 character.
|
||||
std::vector<std::string> Explode(const StringPiece& s) {
|
||||
std::vector<std::string> v;
|
||||
|
||||
for (const char *q = s.begin(); q < s.end(); ) {
|
||||
const char* p = q;
|
||||
Rune r;
|
||||
q += chartorune(&r, q);
|
||||
v.push_back(std::string(p, q - p));
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
// Split string everywhere a substring is found, returning
|
||||
// vector of pieces.
|
||||
std::vector<std::string> Split(const StringPiece& sep, const StringPiece& s) {
|
||||
std::vector<std::string> v;
|
||||
|
||||
if (sep.size() == 0)
|
||||
return Explode(s);
|
||||
|
||||
const char *p = s.begin();
|
||||
for (const char *q = s.begin(); q + sep.size() <= s.end(); q++) {
|
||||
if (StringPiece(q, sep.size()) == sep) {
|
||||
v.push_back(std::string(p, q - p));
|
||||
p = q + sep.size();
|
||||
q = p - 1; // -1 for ++ in loop
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (p < s.end())
|
||||
v.push_back(std::string(p, s.end() - p));
|
||||
return v;
|
||||
}
|
||||
|
||||
} // namespace re2
|
77
extern/re2/re2/testing/regexp_generator.h
vendored
Normal file
77
extern/re2/re2/testing/regexp_generator.h
vendored
Normal file
@ -0,0 +1,77 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_TESTING_REGEXP_GENERATOR_H_
|
||||
#define RE2_TESTING_REGEXP_GENERATOR_H_
|
||||
|
||||
// Regular expression generator: generates all possible
|
||||
// regular expressions within given parameters (see below for details).
|
||||
|
||||
#include <stdint.h>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Regular expression generator.
|
||||
//
|
||||
// Given a set of atom expressions like "a", "b", or "."
|
||||
// and operators like "%s*", generates all possible regular expressions
|
||||
// using at most maxbases base expressions and maxops operators.
|
||||
// For each such expression re, calls HandleRegexp(re).
|
||||
//
|
||||
// Callers are expected to subclass RegexpGenerator and provide HandleRegexp.
|
||||
//
|
||||
class RegexpGenerator {
|
||||
public:
|
||||
RegexpGenerator(int maxatoms, int maxops,
|
||||
const std::vector<std::string>& atoms,
|
||||
const std::vector<std::string>& ops);
|
||||
virtual ~RegexpGenerator() {}
|
||||
|
||||
// Generates all the regular expressions, calling HandleRegexp(re) for each.
|
||||
void Generate();
|
||||
|
||||
// Generates n random regular expressions, calling HandleRegexp(re) for each.
|
||||
void GenerateRandom(int32_t seed, int n);
|
||||
|
||||
// Handles a regular expression. Must be provided by subclass.
|
||||
virtual void HandleRegexp(const std::string& regexp) = 0;
|
||||
|
||||
// The egrep regexp operators: * + ? | and concatenation.
|
||||
static const std::vector<std::string>& EgrepOps();
|
||||
|
||||
private:
|
||||
void RunPostfix(const std::vector<std::string>& post);
|
||||
void GeneratePostfix(std::vector<std::string>* post,
|
||||
int nstk, int ops, int lits);
|
||||
bool GenerateRandomPostfix(std::vector<std::string>* post,
|
||||
int nstk, int ops, int lits);
|
||||
|
||||
int maxatoms_; // Maximum number of atoms allowed in expr.
|
||||
int maxops_; // Maximum number of ops allowed in expr.
|
||||
std::vector<std::string> atoms_; // Possible atoms.
|
||||
std::vector<std::string> ops_; // Possible ops.
|
||||
std::minstd_rand0 rng_; // Random number generator.
|
||||
|
||||
RegexpGenerator(const RegexpGenerator&) = delete;
|
||||
RegexpGenerator& operator=(const RegexpGenerator&) = delete;
|
||||
};
|
||||
|
||||
// Helpers for preparing arguments to RegexpGenerator constructor.
|
||||
|
||||
// Returns one string for each character in s.
|
||||
std::vector<std::string> Explode(const StringPiece& s);
|
||||
|
||||
// Splits string everywhere sep is found, returning
|
||||
// vector of pieces.
|
||||
std::vector<std::string> Split(const StringPiece& sep, const StringPiece& s);
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_TESTING_REGEXP_GENERATOR_H_
|
86
extern/re2/re2/testing/regexp_test.cc
vendored
Normal file
86
extern/re2/re2/testing/regexp_test.cc
vendored
Normal file
@ -0,0 +1,86 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test parse.cc, dump.cc, and tostring.cc.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Test that overflowed ref counts work.
|
||||
TEST(Regexp, BigRef) {
|
||||
Regexp* re;
|
||||
re = Regexp::Parse("x", Regexp::NoParseFlags, NULL);
|
||||
for (int i = 0; i < 100000; i++)
|
||||
re->Incref();
|
||||
for (int i = 0; i < 100000; i++)
|
||||
re->Decref();
|
||||
ASSERT_EQ(re->Ref(), 1);
|
||||
re->Decref();
|
||||
}
|
||||
|
||||
// Test that very large Concats work.
|
||||
// Depends on overflowed ref counts working.
|
||||
TEST(Regexp, BigConcat) {
|
||||
Regexp* x;
|
||||
x = Regexp::Parse("x", Regexp::NoParseFlags, NULL);
|
||||
std::vector<Regexp*> v(90000, x); // ToString bails out at 100000
|
||||
for (size_t i = 0; i < v.size(); i++)
|
||||
x->Incref();
|
||||
ASSERT_EQ(x->Ref(), 1 + static_cast<int>(v.size())) << x->Ref();
|
||||
Regexp* re = Regexp::Concat(v.data(), static_cast<int>(v.size()),
|
||||
Regexp::NoParseFlags);
|
||||
ASSERT_EQ(re->ToString(), std::string(v.size(), 'x'));
|
||||
re->Decref();
|
||||
ASSERT_EQ(x->Ref(), 1) << x->Ref();
|
||||
x->Decref();
|
||||
}
|
||||
|
||||
TEST(Regexp, NamedCaptures) {
|
||||
Regexp* x;
|
||||
RegexpStatus status;
|
||||
x = Regexp::Parse(
|
||||
"(?P<g1>a+)|(e)(?P<g2>w*)+(?P<g1>b+)", Regexp::PerlX, &status);
|
||||
EXPECT_TRUE(status.ok());
|
||||
EXPECT_EQ(4, x->NumCaptures());
|
||||
const std::map<std::string, int>* have = x->NamedCaptures();
|
||||
EXPECT_TRUE(have != NULL);
|
||||
EXPECT_EQ(2, have->size()); // there are only two named groups in
|
||||
// the regexp: 'g1' and 'g2'.
|
||||
std::map<std::string, int> want;
|
||||
want["g1"] = 1;
|
||||
want["g2"] = 3;
|
||||
EXPECT_EQ(want, *have);
|
||||
x->Decref();
|
||||
delete have;
|
||||
}
|
||||
|
||||
TEST(Regexp, CaptureNames) {
|
||||
Regexp* x;
|
||||
RegexpStatus status;
|
||||
x = Regexp::Parse(
|
||||
"(?P<g1>a+)|(e)(?P<g2>w*)+(?P<g1>b+)", Regexp::PerlX, &status);
|
||||
EXPECT_TRUE(status.ok());
|
||||
EXPECT_EQ(4, x->NumCaptures());
|
||||
const std::map<int, std::string>* have = x->CaptureNames();
|
||||
EXPECT_TRUE(have != NULL);
|
||||
EXPECT_EQ(3, have->size());
|
||||
std::map<int, std::string> want;
|
||||
want[1] = "g1";
|
||||
want[3] = "g2";
|
||||
want[4] = "g1";
|
||||
|
||||
EXPECT_EQ(want, *have);
|
||||
x->Decref();
|
||||
delete have;
|
||||
}
|
||||
|
||||
} // namespace re2
|
72
extern/re2/re2/testing/required_prefix_test.cc
vendored
Normal file
72
extern/re2/re2/testing/required_prefix_test.cc
vendored
Normal file
@ -0,0 +1,72 @@
|
||||
// Copyright 2009 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct PrefixTest {
|
||||
const char* regexp;
|
||||
bool return_value;
|
||||
const char* prefix;
|
||||
bool foldcase;
|
||||
const char* suffix;
|
||||
};
|
||||
|
||||
static PrefixTest tests[] = {
|
||||
// If the regexp is missing a ^, there's no required prefix.
|
||||
{ "abc", false },
|
||||
{ "", false },
|
||||
{ "(?m)^", false },
|
||||
|
||||
// If the regexp immediately goes into
|
||||
// something not a literal match, there's no required prefix.
|
||||
{ "^(abc)", false },
|
||||
{ "^a*", false },
|
||||
|
||||
// Otherwise, it should work.
|
||||
{ "^abc$", true, "abc", false, "(?-m:$)" },
|
||||
{ "^abc", true, "abc", false, "" },
|
||||
{ "^(?i)abc", true, "abc", true, "" },
|
||||
{ "^abcd*", true, "abc", false, "d*" },
|
||||
{ "^[Aa][Bb]cd*", true, "ab", true, "cd*" },
|
||||
{ "^ab[Cc]d*", true, "ab", false, "[Cc]d*" },
|
||||
{ "^☺abc", true, "☺abc", false, "" },
|
||||
};
|
||||
|
||||
TEST(RequiredPrefix, SimpleTests) {
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
const PrefixTest& t = tests[i];
|
||||
for (size_t j = 0; j < 2; j++) {
|
||||
Regexp::ParseFlags flags = Regexp::LikePerl;
|
||||
if (j == 0)
|
||||
flags = flags | Regexp::Latin1;
|
||||
Regexp* re = Regexp::Parse(t.regexp, flags, NULL);
|
||||
ASSERT_TRUE(re != NULL) << " " << t.regexp;
|
||||
|
||||
std::string p;
|
||||
bool f;
|
||||
Regexp* s;
|
||||
ASSERT_EQ(t.return_value, re->RequiredPrefix(&p, &f, &s))
|
||||
<< " " << t.regexp << " " << (j == 0 ? "latin1" : "utf")
|
||||
<< " " << re->Dump();
|
||||
if (t.return_value) {
|
||||
ASSERT_EQ(p, std::string(t.prefix))
|
||||
<< " " << t.regexp << " " << (j == 0 ? "latin1" : "utf");
|
||||
ASSERT_EQ(f, t.foldcase)
|
||||
<< " " << t.regexp << " " << (j == 0 ? "latin1" : "utf");
|
||||
ASSERT_EQ(s->ToString(), std::string(t.suffix))
|
||||
<< " " << t.regexp << " " << (j == 0 ? "latin1" : "utf");
|
||||
s->Decref();
|
||||
}
|
||||
re->Decref();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
332
extern/re2/re2/testing/search_test.cc
vendored
Normal file
332
extern/re2/re2/testing/search_test.cc
vendored
Normal file
@ -0,0 +1,332 @@
|
||||
// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include "util/test.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/testing/tester.h"
|
||||
#include "re2/testing/exhaustive_tester.h"
|
||||
|
||||
// For target `log' in the Makefile.
|
||||
#ifndef LOGGING
|
||||
#define LOGGING 0
|
||||
#endif
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct RegexpTest {
|
||||
const char* regexp;
|
||||
const char* text;
|
||||
};
|
||||
|
||||
RegexpTest simple_tests[] = {
|
||||
{ "a", "a" },
|
||||
{ "a", "zyzzyva" },
|
||||
{ "a+", "aa" },
|
||||
{ "(a+|b)+", "ab" },
|
||||
{ "ab|cd", "xabcdx" },
|
||||
{ "h.*od?", "hello\ngoodbye\n" },
|
||||
{ "h.*o", "hello\ngoodbye\n" },
|
||||
{ "h.*o", "goodbye\nhello\n" },
|
||||
{ "h.*o", "hello world" },
|
||||
{ "h.*o", "othello, world" },
|
||||
{ "[^\\s\\S]", "aaaaaaa" },
|
||||
{ "a", "aaaaaaa" },
|
||||
{ "a*", "aaaaaaa" },
|
||||
{ "a*", "" },
|
||||
{ "ab|cd", "xabcdx" },
|
||||
{ "a", "cab" },
|
||||
{ "a*b", "cab" },
|
||||
{ "((((((((((((((((((((x))))))))))))))))))))", "x" },
|
||||
{ "[abcd]", "xxxabcdxxx" },
|
||||
{ "[^x]", "xxxabcdxxx" },
|
||||
{ "[abcd]+", "xxxabcdxxx" },
|
||||
{ "[^x]+", "xxxabcdxxx" },
|
||||
{ "(fo|foo)", "fo" },
|
||||
{ "(foo|fo)", "foo" },
|
||||
|
||||
{ "aa", "aA" },
|
||||
{ "a", "Aa" },
|
||||
{ "a", "A" },
|
||||
{ "ABC", "abc" },
|
||||
{ "abc", "XABCY" },
|
||||
{ "ABC", "xabcy" },
|
||||
|
||||
// Make sure ^ and $ work.
|
||||
// The pathological cases didn't work
|
||||
// in the original grep code.
|
||||
{ "foo|bar|[A-Z]", "foo" },
|
||||
{ "^(foo|bar|[A-Z])", "foo" },
|
||||
{ "(foo|bar|[A-Z])$", "foo\n" },
|
||||
{ "(foo|bar|[A-Z])$", "foo" },
|
||||
{ "^(foo|bar|[A-Z])$", "foo\n" },
|
||||
{ "^(foo|bar|[A-Z])$", "foo" },
|
||||
{ "^(foo|bar|[A-Z])$", "bar" },
|
||||
{ "^(foo|bar|[A-Z])$", "X" },
|
||||
{ "^(foo|bar|[A-Z])$", "XY" },
|
||||
{ "^(fo|foo)$", "fo" },
|
||||
{ "^(fo|foo)$", "foo" },
|
||||
{ "^^(fo|foo)$", "fo" },
|
||||
{ "^^(fo|foo)$", "foo" },
|
||||
{ "^$", "" },
|
||||
{ "^$", "x" },
|
||||
{ "^^$", "" },
|
||||
{ "^$$", "" },
|
||||
{ "^^$", "x" },
|
||||
{ "^$$", "x" },
|
||||
{ "^^$$", "" },
|
||||
{ "^^$$", "x" },
|
||||
{ "^^^^^^^^$$$$$$$$", "" },
|
||||
{ "^", "x" },
|
||||
{ "$", "x" },
|
||||
|
||||
// Word boundaries.
|
||||
{ "\\bfoo\\b", "nofoo foo that" },
|
||||
{ "a\\b", "faoa x" },
|
||||
{ "\\bbar", "bar x" },
|
||||
{ "\\bbar", "foo\nbar x" },
|
||||
{ "bar\\b", "foobar" },
|
||||
{ "bar\\b", "foobar\nxxx" },
|
||||
{ "(foo|bar|[A-Z])\\b", "foo" },
|
||||
{ "(foo|bar|[A-Z])\\b", "foo\n" },
|
||||
{ "\\b", "" },
|
||||
{ "\\b", "x" },
|
||||
{ "\\b(foo|bar|[A-Z])", "foo" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "X" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "XY" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "bar" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "foo" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "foo\n" },
|
||||
{ "\\b(foo|bar|[A-Z])\\b", "ffoo bbar N x" },
|
||||
{ "\\b(fo|foo)\\b", "fo" },
|
||||
{ "\\b(fo|foo)\\b", "foo" },
|
||||
{ "\\b\\b", "" },
|
||||
{ "\\b\\b", "x" },
|
||||
{ "\\b$", "" },
|
||||
{ "\\b$", "x" },
|
||||
{ "\\b$", "y x" },
|
||||
{ "\\b.$", "x" },
|
||||
{ "^\\b(fo|foo)\\b", "fo" },
|
||||
{ "^\\b(fo|foo)\\b", "foo" },
|
||||
{ "^\\b", "" },
|
||||
{ "^\\b", "x" },
|
||||
{ "^\\b\\b", "" },
|
||||
{ "^\\b\\b", "x" },
|
||||
{ "^\\b$", "" },
|
||||
{ "^\\b$", "x" },
|
||||
{ "^\\b.$", "x" },
|
||||
{ "^\\b.\\b$", "x" },
|
||||
{ "^^^^^^^^\\b$$$$$$$", "" },
|
||||
{ "^^^^^^^^\\b.$$$$$$", "x" },
|
||||
{ "^^^^^^^^\\b$$$$$$$", "x" },
|
||||
|
||||
// Non-word boundaries.
|
||||
{ "\\Bfoo\\B", "n foo xfoox that" },
|
||||
{ "a\\B", "faoa x" },
|
||||
{ "\\Bbar", "bar x" },
|
||||
{ "\\Bbar", "foo\nbar x" },
|
||||
{ "bar\\B", "foobar" },
|
||||
{ "bar\\B", "foobar\nxxx" },
|
||||
{ "(foo|bar|[A-Z])\\B", "foox" },
|
||||
{ "(foo|bar|[A-Z])\\B", "foo\n" },
|
||||
{ "\\B", "" },
|
||||
{ "\\B", "x" },
|
||||
{ "\\B(foo|bar|[A-Z])", "foo" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "xXy" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "XY" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "XYZ" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "abara" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "xfoo_" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "xfoo\n" },
|
||||
{ "\\B(foo|bar|[A-Z])\\B", "foo bar vNx" },
|
||||
{ "\\B(fo|foo)\\B", "xfoo" },
|
||||
{ "\\B(foo|fo)\\B", "xfooo" },
|
||||
{ "\\B\\B", "" },
|
||||
{ "\\B\\B", "x" },
|
||||
{ "\\B$", "" },
|
||||
{ "\\B$", "x" },
|
||||
{ "\\B$", "y x" },
|
||||
{ "\\B.$", "x" },
|
||||
{ "^\\B(fo|foo)\\B", "fo" },
|
||||
{ "^\\B(fo|foo)\\B", "foo" },
|
||||
{ "^\\B", "" },
|
||||
{ "^\\B", "x" },
|
||||
{ "^\\B\\B", "" },
|
||||
{ "^\\B\\B", "x" },
|
||||
{ "^\\B$", "" },
|
||||
{ "^\\B$", "x" },
|
||||
{ "^\\B.$", "x" },
|
||||
{ "^\\B.\\B$", "x" },
|
||||
{ "^^^^^^^^\\B$$$$$$$", "" },
|
||||
{ "^^^^^^^^\\B.$$$$$$", "x" },
|
||||
{ "^^^^^^^^\\B$$$$$$$", "x" },
|
||||
|
||||
// PCRE uses only ASCII for \b computation.
|
||||
// All non-ASCII are *not* word characters.
|
||||
{ "\\bx\\b", "x" },
|
||||
{ "\\bx\\b", "x>" },
|
||||
{ "\\bx\\b", "<x" },
|
||||
{ "\\bx\\b", "<x>" },
|
||||
{ "\\bx\\b", "ax" },
|
||||
{ "\\bx\\b", "xb" },
|
||||
{ "\\bx\\b", "axb" },
|
||||
{ "\\bx\\b", "«x" },
|
||||
{ "\\bx\\b", "x»" },
|
||||
{ "\\bx\\b", "«x»" },
|
||||
{ "\\bx\\b", "axb" },
|
||||
{ "\\bx\\b", "áxβ" },
|
||||
{ "\\Bx\\B", "axb" },
|
||||
{ "\\Bx\\B", "áxβ" },
|
||||
|
||||
// Weird boundary cases.
|
||||
{ "^$^$", "" },
|
||||
{ "^$^", "" },
|
||||
{ "$^$", "" },
|
||||
|
||||
{ "^$^$", "x" },
|
||||
{ "^$^", "x" },
|
||||
{ "$^$", "x" },
|
||||
|
||||
{ "^$^$", "x\ny" },
|
||||
{ "^$^", "x\ny" },
|
||||
{ "$^$", "x\ny" },
|
||||
|
||||
{ "^$^$", "x\n\ny" },
|
||||
{ "^$^", "x\n\ny" },
|
||||
{ "$^$", "x\n\ny" },
|
||||
|
||||
{ "^(foo\\$)$", "foo$bar" },
|
||||
{ "(foo\\$)", "foo$bar" },
|
||||
{ "^...$", "abc" },
|
||||
|
||||
// UTF-8
|
||||
{ "^\xe6\x9c\xac$", "\xe6\x9c\xac" },
|
||||
{ "^...$", "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" },
|
||||
{ "^...$", ".\xe6\x9c\xac." },
|
||||
|
||||
{ "^\\C\\C\\C$", "\xe6\x9c\xac" },
|
||||
{ "^\\C$", "\xe6\x9c\xac" },
|
||||
{ "^\\C\\C\\C$", "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" },
|
||||
|
||||
// Latin1
|
||||
{ "^...$", "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" },
|
||||
{ "^.........$", "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" },
|
||||
{ "^...$", ".\xe6\x9c\xac." },
|
||||
{ "^.....$", ".\xe6\x9c\xac." },
|
||||
|
||||
// Perl v Posix
|
||||
{ "\\B(fo|foo)\\B", "xfooo" },
|
||||
{ "(fo|foo)", "foo" },
|
||||
|
||||
// Octal escapes.
|
||||
{ "\\141", "a" },
|
||||
{ "\\060", "0" },
|
||||
{ "\\0600", "00" },
|
||||
{ "\\608", "08" },
|
||||
{ "\\01", "\01" },
|
||||
{ "\\018", "\01" "8" },
|
||||
|
||||
// Hexadecimal escapes
|
||||
{ "\\x{61}", "a" },
|
||||
{ "\\x61", "a" },
|
||||
{ "\\x{00000061}", "a" },
|
||||
|
||||
// Unicode scripts.
|
||||
{ "\\p{Greek}+", "aαβb" },
|
||||
{ "\\P{Greek}+", "aαβb" },
|
||||
{ "\\p{^Greek}+", "aαβb" },
|
||||
{ "\\P{^Greek}+", "aαβb" },
|
||||
|
||||
// Unicode properties. Nd is decimal number. N is any number.
|
||||
{ "[^0-9]+", "abc123" },
|
||||
{ "\\p{Nd}+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\p{^Nd}+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\P{Nd}+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\P{^Nd}+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\pN+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\p{N}+", "abc123²³¼½¾₀₉" },
|
||||
{ "\\p{^N}+", "abc123²³¼½¾₀₉" },
|
||||
|
||||
{ "\\p{Any}+", "abc123" },
|
||||
|
||||
// Character classes & case folding.
|
||||
{ "(?i)[@-A]+", "@AaB" }, // matches @Aa but not B
|
||||
{ "(?i)[A-Z]+", "aAzZ" },
|
||||
{ "(?i)[^\\\\]+", "Aa\\" }, // \\ is between A-Z and a-z -
|
||||
// splits the ranges in an interesting way.
|
||||
|
||||
// would like to use, but PCRE mishandles in full-match, non-greedy mode
|
||||
// { "(?i)[\\\\]+", "Aa" },
|
||||
|
||||
{ "(?i)[acegikmoqsuwy]+", "acegikmoqsuwyACEGIKMOQSUWY" },
|
||||
|
||||
// Character classes & case folding.
|
||||
{ "[@-A]+", "@AaB" },
|
||||
{ "[A-Z]+", "aAzZ" },
|
||||
{ "[^\\\\]+", "Aa\\" },
|
||||
{ "[acegikmoqsuwy]+", "acegikmoqsuwyACEGIKMOQSUWY" },
|
||||
|
||||
// Anchoring. (^abc in aabcdef was a former bug)
|
||||
// The tester checks for a match in the text and
|
||||
// subpieces of the text with a byte removed on either side.
|
||||
{ "^abc", "abcdef" },
|
||||
{ "^abc", "aabcdef" },
|
||||
{ "^[ay]*[bx]+c", "abcdef" },
|
||||
{ "^[ay]*[bx]+c", "aabcdef" },
|
||||
{ "def$", "abcdef" },
|
||||
{ "def$", "abcdeff" },
|
||||
{ "d[ex][fy]$", "abcdef" },
|
||||
{ "d[ex][fy]$", "abcdeff" },
|
||||
{ "[dz][ex][fy]$", "abcdef" },
|
||||
{ "[dz][ex][fy]$", "abcdeff" },
|
||||
{ "(?m)^abc", "abcdef" },
|
||||
{ "(?m)^abc", "aabcdef" },
|
||||
{ "(?m)^[ay]*[bx]+c", "abcdef" },
|
||||
{ "(?m)^[ay]*[bx]+c", "aabcdef" },
|
||||
{ "(?m)def$", "abcdef" },
|
||||
{ "(?m)def$", "abcdeff" },
|
||||
{ "(?m)d[ex][fy]$", "abcdef" },
|
||||
{ "(?m)d[ex][fy]$", "abcdeff" },
|
||||
{ "(?m)[dz][ex][fy]$", "abcdef" },
|
||||
{ "(?m)[dz][ex][fy]$", "abcdeff" },
|
||||
{ "^", "a" },
|
||||
{ "^^", "a" },
|
||||
|
||||
// Context.
|
||||
// The tester checks for a match in the text and
|
||||
// subpieces of the text with a byte removed on either side.
|
||||
{ "a", "a" },
|
||||
{ "ab*", "a" },
|
||||
{ "a\\C*", "a" },
|
||||
{ "a\\C+", "a" },
|
||||
{ "a\\C?", "a" },
|
||||
{ "a\\C*?", "a" },
|
||||
{ "a\\C+?", "a" },
|
||||
{ "a\\C??", "a" },
|
||||
|
||||
// Former bugs.
|
||||
{ "a\\C*|ba\\C", "baba" },
|
||||
{ "\\w*I\\w*", "Inc." },
|
||||
};
|
||||
|
||||
TEST(Regexp, SearchTests) {
|
||||
int failures = 0;
|
||||
for (size_t i = 0; i < arraysize(simple_tests); i++) {
|
||||
const RegexpTest& t = simple_tests[i];
|
||||
if (!TestRegexpOnText(t.regexp, t.text))
|
||||
failures++;
|
||||
|
||||
if (LOGGING) {
|
||||
// Build a dummy ExhaustiveTest call that will trigger just
|
||||
// this one test, so that we log the test case.
|
||||
std::vector<std::string> atom, alpha, ops;
|
||||
atom.push_back(t.regexp);
|
||||
alpha.push_back(t.text);
|
||||
ExhaustiveTest(1, 0, atom, ops, 1, alpha, "", "");
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(failures, 0);
|
||||
}
|
||||
|
||||
} // namespace re2
|
204
extern/re2/re2/testing/set_test.cc
vendored
Normal file
204
extern/re2/re2/testing/set_test.cc
vendored
Normal file
@ -0,0 +1,204 @@
|
||||
// Copyright 2010 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/set.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
TEST(Set, Unanchored) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::UNANCHORED);
|
||||
|
||||
ASSERT_EQ(s.Add("foo", NULL), 0);
|
||||
ASSERT_EQ(s.Add("(", NULL), -1);
|
||||
ASSERT_EQ(s.Add("bar", NULL), 1);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", NULL), true);
|
||||
ASSERT_EQ(s.Match("fooba", NULL), true);
|
||||
ASSERT_EQ(s.Match("oobar", NULL), true);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("foobar", &v), true);
|
||||
ASSERT_EQ(v.size(), 2);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
ASSERT_EQ(v[1], 1);
|
||||
|
||||
ASSERT_EQ(s.Match("fooba", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("oobar", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 1);
|
||||
}
|
||||
|
||||
TEST(Set, UnanchoredFactored) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::UNANCHORED);
|
||||
|
||||
ASSERT_EQ(s.Add("foo", NULL), 0);
|
||||
ASSERT_EQ(s.Add("(", NULL), -1);
|
||||
ASSERT_EQ(s.Add("foobar", NULL), 1);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", NULL), true);
|
||||
ASSERT_EQ(s.Match("obarfoobaroo", NULL), true);
|
||||
ASSERT_EQ(s.Match("fooba", NULL), true);
|
||||
ASSERT_EQ(s.Match("oobar", NULL), false);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("foobar", &v), true);
|
||||
ASSERT_EQ(v.size(), 2);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
ASSERT_EQ(v[1], 1);
|
||||
|
||||
ASSERT_EQ(s.Match("obarfoobaroo", &v), true);
|
||||
ASSERT_EQ(v.size(), 2);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
ASSERT_EQ(v[1], 1);
|
||||
|
||||
ASSERT_EQ(s.Match("fooba", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("oobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
}
|
||||
|
||||
TEST(Set, UnanchoredDollar) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::UNANCHORED);
|
||||
|
||||
ASSERT_EQ(s.Add("foo$", NULL), 0);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("foo", NULL), true);
|
||||
ASSERT_EQ(s.Match("foobar", NULL), false);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("foo", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
}
|
||||
|
||||
TEST(Set, UnanchoredWordBoundary) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::UNANCHORED);
|
||||
|
||||
ASSERT_EQ(s.Add("foo\\b", NULL), 0);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("foo", NULL), true);
|
||||
ASSERT_EQ(s.Match("foobar", NULL), false);
|
||||
ASSERT_EQ(s.Match("foo bar", NULL), true);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("foo", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foo bar", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
}
|
||||
|
||||
TEST(Set, Anchored) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::ANCHOR_BOTH);
|
||||
|
||||
ASSERT_EQ(s.Add("foo", NULL), 0);
|
||||
ASSERT_EQ(s.Add("(", NULL), -1);
|
||||
ASSERT_EQ(s.Add("bar", NULL), 1);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", NULL), false);
|
||||
ASSERT_EQ(s.Match("fooba", NULL), false);
|
||||
ASSERT_EQ(s.Match("oobar", NULL), false);
|
||||
ASSERT_EQ(s.Match("foo", NULL), true);
|
||||
ASSERT_EQ(s.Match("bar", NULL), true);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("foobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("fooba", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("oobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foo", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("bar", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 1);
|
||||
}
|
||||
|
||||
TEST(Set, EmptyUnanchored) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::UNANCHORED);
|
||||
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("", NULL), false);
|
||||
ASSERT_EQ(s.Match("foobar", NULL), false);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
}
|
||||
|
||||
TEST(Set, EmptyAnchored) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::ANCHOR_BOTH);
|
||||
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("", NULL), false);
|
||||
ASSERT_EQ(s.Match("foobar", NULL), false);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("foobar", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
}
|
||||
|
||||
TEST(Set, Prefix) {
|
||||
RE2::Set s(RE2::DefaultOptions, RE2::ANCHOR_BOTH);
|
||||
|
||||
ASSERT_EQ(s.Add("/prefix/\\d*", NULL), 0);
|
||||
ASSERT_EQ(s.Compile(), true);
|
||||
|
||||
ASSERT_EQ(s.Match("/prefix", NULL), false);
|
||||
ASSERT_EQ(s.Match("/prefix/", NULL), true);
|
||||
ASSERT_EQ(s.Match("/prefix/42", NULL), true);
|
||||
|
||||
std::vector<int> v;
|
||||
ASSERT_EQ(s.Match("/prefix", &v), false);
|
||||
ASSERT_EQ(v.size(), 0);
|
||||
|
||||
ASSERT_EQ(s.Match("/prefix/", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
|
||||
ASSERT_EQ(s.Match("/prefix/42", &v), true);
|
||||
ASSERT_EQ(v.size(), 1);
|
||||
ASSERT_EQ(v[0], 0);
|
||||
}
|
||||
|
||||
} // namespace re2
|
273
extern/re2/re2/testing/simplify_test.cc
vendored
Normal file
273
extern/re2/re2/testing/simplify_test.cc
vendored
Normal file
@ -0,0 +1,273 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test simplify.cc.
|
||||
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
struct Test {
|
||||
const char* regexp;
|
||||
const char* simplified;
|
||||
};
|
||||
|
||||
static Test tests[] = {
|
||||
// Already-simple constructs
|
||||
{ "a", "a" },
|
||||
{ "ab", "ab" },
|
||||
{ "a|b", "[a-b]" },
|
||||
{ "ab|cd", "ab|cd" },
|
||||
{ "(ab)*", "(ab)*" },
|
||||
{ "(ab)+", "(ab)+" },
|
||||
{ "(ab)?", "(ab)?" },
|
||||
{ ".", "." },
|
||||
{ "^", "^" },
|
||||
{ "$", "$" },
|
||||
{ "[ac]", "[ac]" },
|
||||
{ "[^ac]", "[^ac]" },
|
||||
|
||||
// Posix character classes
|
||||
{ "[[:alnum:]]", "[0-9A-Za-z]" },
|
||||
{ "[[:alpha:]]", "[A-Za-z]" },
|
||||
{ "[[:blank:]]", "[\\t ]" },
|
||||
{ "[[:cntrl:]]", "[\\x00-\\x1f\\x7f]" },
|
||||
{ "[[:digit:]]", "[0-9]" },
|
||||
{ "[[:graph:]]", "[!-~]" },
|
||||
{ "[[:lower:]]", "[a-z]" },
|
||||
{ "[[:print:]]", "[ -~]" },
|
||||
{ "[[:punct:]]", "[!-/:-@\\[-`{-~]" },
|
||||
{ "[[:space:]]" , "[\\t-\\r ]" },
|
||||
{ "[[:upper:]]", "[A-Z]" },
|
||||
{ "[[:xdigit:]]", "[0-9A-Fa-f]" },
|
||||
|
||||
// Perl character classes
|
||||
{ "\\d", "[0-9]" },
|
||||
{ "\\s", "[\\t-\\n\\f-\\r ]" },
|
||||
{ "\\w", "[0-9A-Z_a-z]" },
|
||||
{ "\\D", "[^0-9]" },
|
||||
{ "\\S", "[^\\t-\\n\\f-\\r ]" },
|
||||
{ "\\W", "[^0-9A-Z_a-z]" },
|
||||
{ "[\\d]", "[0-9]" },
|
||||
{ "[\\s]", "[\\t-\\n\\f-\\r ]" },
|
||||
{ "[\\w]", "[0-9A-Z_a-z]" },
|
||||
{ "[\\D]", "[^0-9]" },
|
||||
{ "[\\S]", "[^\\t-\\n\\f-\\r ]" },
|
||||
{ "[\\W]", "[^0-9A-Z_a-z]" },
|
||||
|
||||
// Posix repetitions
|
||||
{ "a{1}", "a" },
|
||||
{ "a{2}", "aa" },
|
||||
{ "a{5}", "aaaaa" },
|
||||
{ "a{0,1}", "a?" },
|
||||
// The next three are illegible because Simplify inserts (?:)
|
||||
// parens instead of () parens to avoid creating extra
|
||||
// captured subexpressions. The comments show a version fewer parens.
|
||||
{ "(a){0,2}", "(?:(a)(a)?)?" }, // (aa?)?
|
||||
{ "(a){0,4}", "(?:(a)(?:(a)(?:(a)(a)?)?)?)?" }, // (a(a(aa?)?)?)?
|
||||
{ "(a){2,6}", "(a)(a)(?:(a)(?:(a)(?:(a)(a)?)?)?)?" }, // aa(a(a(aa?)?)?)?
|
||||
{ "a{0,2}", "(?:aa?)?" }, // (aa?)?
|
||||
{ "a{0,4}", "(?:a(?:a(?:aa?)?)?)?" }, // (a(a(aa?)?)?)?
|
||||
{ "a{2,6}", "aa(?:a(?:a(?:aa?)?)?)?" }, // aa(a(a(aa?)?)?)?
|
||||
{ "a{0,}", "a*" },
|
||||
{ "a{1,}", "a+" },
|
||||
{ "a{2,}", "aa+" },
|
||||
{ "a{5,}", "aaaaa+" },
|
||||
|
||||
// Test that operators simplify their arguments.
|
||||
// (Simplify used to not simplify arguments to a {} repeat.)
|
||||
{ "(?:a{1,}){1,}", "a+" },
|
||||
{ "(a{1,}b{1,})", "(a+b+)" },
|
||||
{ "a{1,}|b{1,}", "a+|b+" },
|
||||
{ "(?:a{1,})*", "(?:a+)*" },
|
||||
{ "(?:a{1,})+", "a+" },
|
||||
{ "(?:a{1,})?", "(?:a+)?" },
|
||||
{ "a{0}", "" },
|
||||
|
||||
// Character class simplification
|
||||
{ "[ab]", "[a-b]" },
|
||||
{ "[a-za-za-z]", "[a-z]" },
|
||||
{ "[A-Za-zA-Za-z]", "[A-Za-z]" },
|
||||
{ "[ABCDEFGH]", "[A-H]" },
|
||||
{ "[AB-CD-EF-GH]", "[A-H]" },
|
||||
{ "[W-ZP-XE-R]", "[E-Z]" },
|
||||
{ "[a-ee-gg-m]", "[a-m]" },
|
||||
{ "[a-ea-ha-m]", "[a-m]" },
|
||||
{ "[a-ma-ha-e]", "[a-m]" },
|
||||
{ "[a-zA-Z0-9 -~]", "[ -~]" },
|
||||
|
||||
// Empty character classes
|
||||
{ "[^[:cntrl:][:^cntrl:]]", "[^\\x00-\\x{10ffff}]" },
|
||||
|
||||
// Full character classes
|
||||
{ "[[:cntrl:][:^cntrl:]]", "." },
|
||||
|
||||
// Unicode case folding.
|
||||
{ "(?i)A", "[Aa]" },
|
||||
{ "(?i)a", "[Aa]" },
|
||||
{ "(?i)K", "[Kk\\x{212a}]" },
|
||||
{ "(?i)k", "[Kk\\x{212a}]" },
|
||||
{ "(?i)\\x{212a}", "[Kk\\x{212a}]" },
|
||||
{ "(?i)[a-z]", "[A-Za-z\\x{17f}\\x{212a}]" },
|
||||
{ "(?i)[\\x00-\\x{FFFD}]", "[\\x00-\\x{fffd}]" },
|
||||
{ "(?i)[\\x00-\\x{10ffff}]", "." },
|
||||
|
||||
// Empty string as a regular expression.
|
||||
// Empty string must be preserved inside parens in order
|
||||
// to make submatches work right, so these are less
|
||||
// interesting than they used to be. ToString inserts
|
||||
// explicit (?:) in place of non-parenthesized empty strings,
|
||||
// to make them easier to spot for other parsers.
|
||||
{ "(a|b|)", "([a-b]|(?:))" },
|
||||
{ "(|)", "((?:)|(?:))" },
|
||||
{ "a()", "a()" },
|
||||
{ "(()|())", "(()|())" },
|
||||
{ "(a|)", "(a|(?:))" },
|
||||
{ "ab()cd()", "ab()cd()" },
|
||||
{ "()", "()" },
|
||||
{ "()*", "()*" },
|
||||
{ "()+", "()+" },
|
||||
{ "()?" , "()?" },
|
||||
{ "(){0}", "" },
|
||||
{ "(){1}", "()" },
|
||||
{ "(){1,}", "()+" },
|
||||
{ "(){0,2}", "(?:()()?)?" },
|
||||
|
||||
// Test that coalescing occurs and that the resulting repeats are simplified.
|
||||
// Two-op combinations of *, +, ?, {n}, {n,} and {n,m} with a literal:
|
||||
{ "a*a*", "a*" },
|
||||
{ "a*a+", "a+" },
|
||||
{ "a*a?", "a*" },
|
||||
{ "a*a{2}", "aa+" },
|
||||
{ "a*a{2,}", "aa+" },
|
||||
{ "a*a{2,3}", "aa+" },
|
||||
{ "a+a*", "a+" },
|
||||
{ "a+a+", "aa+" },
|
||||
{ "a+a?", "a+" },
|
||||
{ "a+a{2}", "aaa+" },
|
||||
{ "a+a{2,}", "aaa+" },
|
||||
{ "a+a{2,3}", "aaa+" },
|
||||
{ "a?a*", "a*" },
|
||||
{ "a?a+", "a+" },
|
||||
{ "a?a?", "(?:aa?)?" },
|
||||
{ "a?a{2}", "aaa?" },
|
||||
{ "a?a{2,}", "aa+" },
|
||||
{ "a?a{2,3}", "aa(?:aa?)?" },
|
||||
{ "a{2}a*", "aa+" },
|
||||
{ "a{2}a+", "aaa+" },
|
||||
{ "a{2}a?", "aaa?" },
|
||||
{ "a{2}a{2}", "aaaa" },
|
||||
{ "a{2}a{2,}", "aaaa+" },
|
||||
{ "a{2}a{2,3}", "aaaaa?" },
|
||||
{ "a{2,}a*", "aa+" },
|
||||
{ "a{2,}a+", "aaa+" },
|
||||
{ "a{2,}a?", "aa+" },
|
||||
{ "a{2,}a{2}", "aaaa+" },
|
||||
{ "a{2,}a{2,}", "aaaa+" },
|
||||
{ "a{2,}a{2,3}", "aaaa+" },
|
||||
{ "a{2,3}a*", "aa+" },
|
||||
{ "a{2,3}a+", "aaa+" },
|
||||
{ "a{2,3}a?", "aa(?:aa?)?" },
|
||||
{ "a{2,3}a{2}", "aaaaa?" },
|
||||
{ "a{2,3}a{2,}", "aaaa+" },
|
||||
{ "a{2,3}a{2,3}", "aaaa(?:aa?)?" },
|
||||
// With a char class, any char and any byte:
|
||||
{ "\\d*\\d*", "[0-9]*" },
|
||||
{ ".*.*", ".*" },
|
||||
{ "\\C*\\C*", "\\C*" },
|
||||
// FoldCase works, but must be consistent:
|
||||
{ "(?i)A*a*", "[Aa]*" },
|
||||
{ "(?i)a+A+", "[Aa][Aa]+" },
|
||||
{ "(?i)A*(?-i)a*", "[Aa]*a*" },
|
||||
{ "(?i)a+(?-i)A+", "[Aa]+A+" },
|
||||
// NonGreedy works, but must be consistent:
|
||||
{ "a*?a*?", "a*?" },
|
||||
{ "a+?a+?", "aa+?" },
|
||||
{ "a*?a*", "a*?a*" },
|
||||
{ "a+a+?", "a+a+?" },
|
||||
// The second element is the literal, char class, any char or any byte:
|
||||
{ "a*a", "a+" },
|
||||
{ "\\d*\\d", "[0-9]+" },
|
||||
{ ".*.", ".+" },
|
||||
{ "\\C*\\C", "\\C+" },
|
||||
// FoldCase works, but must be consistent:
|
||||
{ "(?i)A*a", "[Aa]+" },
|
||||
{ "(?i)a+A", "[Aa][Aa]+" },
|
||||
{ "(?i)A*(?-i)a", "[Aa]*a" },
|
||||
{ "(?i)a+(?-i)A", "[Aa]+A" },
|
||||
// The second element is a literal string that begins with the literal:
|
||||
{ "a*aa", "aa+" },
|
||||
{ "a*aab", "aa+b" },
|
||||
// FoldCase works, but must be consistent:
|
||||
{ "(?i)a*aa", "[Aa][Aa]+" },
|
||||
{ "(?i)a*aab", "[Aa][Aa]+[Bb]" },
|
||||
{ "(?i)a*(?-i)aa", "[Aa]*aa" },
|
||||
{ "(?i)a*(?-i)aab", "[Aa]*aab" },
|
||||
// Negative tests with mismatching ops:
|
||||
{ "a*b*", "a*b*" },
|
||||
{ "\\d*\\D*", "[0-9]*[^0-9]*" },
|
||||
{ "a+b", "a+b" },
|
||||
{ "\\d+\\D", "[0-9]+[^0-9]" },
|
||||
{ "a?bb", "a?bb" },
|
||||
// Negative tests with capturing groups:
|
||||
{ "(a*)a*", "(a*)a*" },
|
||||
{ "a+(a)", "a+(a)" },
|
||||
{ "(a?)(aa)", "(a?)(aa)" },
|
||||
// Just for fun:
|
||||
{ "aa*aa+aa?aa{2}aaa{2,}aaa{2,3}a", "aaaaaaaaaaaaaaaa+" },
|
||||
|
||||
// During coalescing, the child of the repeat changes, so we build a new
|
||||
// repeat. The new repeat must have the min and max of the old repeat.
|
||||
// Failure to copy them results in min=0 and max=0 -> empty match.
|
||||
{ "(?:a*aab){2}", "aa+baa+b" },
|
||||
|
||||
// During coalescing, the child of the capture changes, so we build a new
|
||||
// capture. The new capture must have the cap of the old capture.
|
||||
// Failure to copy it results in cap=0 -> ToString() logs a fatal error.
|
||||
{ "(a*aab)", "(aa+b)" },
|
||||
|
||||
// Test squashing of **, ++, ?? et cetera.
|
||||
{ "(?:(?:a){0,}){0,}", "a*" },
|
||||
{ "(?:(?:a){1,}){1,}", "a+" },
|
||||
{ "(?:(?:a){0,1}){0,1}", "a?" },
|
||||
{ "(?:(?:a){0,}){1,}", "a*" },
|
||||
{ "(?:(?:a){0,}){0,1}", "a*" },
|
||||
{ "(?:(?:a){1,}){0,}", "a*" },
|
||||
{ "(?:(?:a){1,}){0,1}", "a*" },
|
||||
{ "(?:(?:a){0,1}){0,}", "a*" },
|
||||
{ "(?:(?:a){0,1}){1,}", "a*" },
|
||||
};
|
||||
|
||||
TEST(TestSimplify, SimpleRegexps) {
|
||||
for (size_t i = 0; i < arraysize(tests); i++) {
|
||||
RegexpStatus status;
|
||||
VLOG(1) << "Testing " << tests[i].regexp;
|
||||
Regexp* re = Regexp::Parse(tests[i].regexp,
|
||||
Regexp::MatchNL | (Regexp::LikePerl &
|
||||
~Regexp::OneLine),
|
||||
&status);
|
||||
ASSERT_TRUE(re != NULL) << " " << tests[i].regexp << " " << status.Text();
|
||||
Regexp* sre = re->Simplify();
|
||||
ASSERT_TRUE(sre != NULL);
|
||||
|
||||
// Check that already-simple regexps don't allocate new ones.
|
||||
if (strcmp(tests[i].regexp, tests[i].simplified) == 0) {
|
||||
ASSERT_TRUE(re == sre) << " " << tests[i].regexp
|
||||
<< " " << re->ToString() << " " << sre->ToString();
|
||||
}
|
||||
|
||||
EXPECT_EQ(tests[i].simplified, sre->ToString())
|
||||
<< " " << tests[i].regexp << " " << sre->Dump();
|
||||
|
||||
re->Decref();
|
||||
sre->Decref();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
114
extern/re2/re2/testing/string_generator.cc
vendored
Normal file
114
extern/re2/re2/testing/string_generator.cc
vendored
Normal file
@ -0,0 +1,114 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// String generator: generates all possible strings of up to
|
||||
// maxlen letters using the set of letters in alpha.
|
||||
// Fetch strings using a Java-like Next()/HasNext() interface.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/logging.h"
|
||||
#include "re2/testing/string_generator.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
StringGenerator::StringGenerator(int maxlen,
|
||||
const std::vector<std::string>& alphabet)
|
||||
: maxlen_(maxlen), alphabet_(alphabet),
|
||||
generate_null_(false),
|
||||
random_(false), nrandom_(0) {
|
||||
|
||||
// Degenerate case: no letters, no non-empty strings.
|
||||
if (alphabet_.empty())
|
||||
maxlen_ = 0;
|
||||
|
||||
// Next() will return empty string (digits_ is empty).
|
||||
hasnext_ = true;
|
||||
}
|
||||
|
||||
// Resets the string generator state to the beginning.
|
||||
void StringGenerator::Reset() {
|
||||
digits_.clear();
|
||||
hasnext_ = true;
|
||||
random_ = false;
|
||||
nrandom_ = 0;
|
||||
generate_null_ = false;
|
||||
}
|
||||
|
||||
// Increments the big number in digits_, returning true if successful.
|
||||
// Returns false if all the numbers have been used.
|
||||
bool StringGenerator::IncrementDigits() {
|
||||
// First try to increment the current number.
|
||||
for (int i = static_cast<int>(digits_.size()) - 1; i >= 0; i--) {
|
||||
if (++digits_[i] < static_cast<int>(alphabet_.size()))
|
||||
return true;
|
||||
digits_[i] = 0;
|
||||
}
|
||||
|
||||
// If that failed, make a longer number.
|
||||
if (static_cast<int>(digits_.size()) < maxlen_) {
|
||||
digits_.push_back(0);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Generates random digits_, return true if successful.
|
||||
// Returns false if the random sequence is over.
|
||||
bool StringGenerator::RandomDigits() {
|
||||
if (--nrandom_ <= 0)
|
||||
return false;
|
||||
|
||||
std::uniform_int_distribution<int> random_len(0, maxlen_);
|
||||
std::uniform_int_distribution<int> random_alphabet_index(
|
||||
0, static_cast<int>(alphabet_.size()) - 1);
|
||||
|
||||
// Pick length.
|
||||
int len = random_len(rng_);
|
||||
digits_.resize(len);
|
||||
for (int i = 0; i < len; i++)
|
||||
digits_[i] = random_alphabet_index(rng_);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns the next string in the iteration, which is the one
|
||||
// currently described by digits_. Calls IncrementDigits
|
||||
// after computing the string, so that it knows the answer
|
||||
// for subsequent HasNext() calls.
|
||||
const StringPiece& StringGenerator::Next() {
|
||||
CHECK(hasnext_);
|
||||
if (generate_null_) {
|
||||
generate_null_ = false;
|
||||
sp_ = StringPiece();
|
||||
return sp_;
|
||||
}
|
||||
s_.clear();
|
||||
for (size_t i = 0; i < digits_.size(); i++) {
|
||||
s_ += alphabet_[digits_[i]];
|
||||
}
|
||||
hasnext_ = random_ ? RandomDigits() : IncrementDigits();
|
||||
sp_ = s_;
|
||||
return sp_;
|
||||
}
|
||||
|
||||
// Sets generator up to return n random strings.
|
||||
void StringGenerator::Random(int32_t seed, int n) {
|
||||
rng_.seed(seed);
|
||||
|
||||
random_ = true;
|
||||
nrandom_ = n;
|
||||
hasnext_ = nrandom_ > 0;
|
||||
}
|
||||
|
||||
void StringGenerator::GenerateNULL() {
|
||||
generate_null_ = true;
|
||||
hasnext_ = true;
|
||||
}
|
||||
|
||||
} // namespace re2
|
63
extern/re2/re2/testing/string_generator.h
vendored
Normal file
63
extern/re2/re2/testing/string_generator.h
vendored
Normal file
@ -0,0 +1,63 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_TESTING_STRING_GENERATOR_H_
|
||||
#define RE2_TESTING_STRING_GENERATOR_H_
|
||||
|
||||
// String generator: generates all possible strings of up to
|
||||
// maxlen letters using the set of letters in alpha.
|
||||
// Fetch strings using a Java-like Next()/HasNext() interface.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <random>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "re2/stringpiece.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
class StringGenerator {
|
||||
public:
|
||||
StringGenerator(int maxlen, const std::vector<std::string>& alphabet);
|
||||
~StringGenerator() {}
|
||||
|
||||
const StringPiece& Next();
|
||||
bool HasNext() { return hasnext_; }
|
||||
|
||||
// Resets generator to start sequence over.
|
||||
void Reset();
|
||||
|
||||
// Causes generator to emit random strings for next n calls to Next().
|
||||
void Random(int32_t seed, int n);
|
||||
|
||||
// Causes generator to emit a NULL as the next call.
|
||||
void GenerateNULL();
|
||||
|
||||
private:
|
||||
bool IncrementDigits();
|
||||
bool RandomDigits();
|
||||
|
||||
// Global state.
|
||||
int maxlen_; // Maximum length string to generate.
|
||||
std::vector<std::string> alphabet_; // Alphabet, one string per letter.
|
||||
|
||||
// Iteration state.
|
||||
StringPiece sp_; // Last StringPiece returned by Next().
|
||||
std::string s_; // String data in last StringPiece returned by Next().
|
||||
bool hasnext_; // Whether Next() can be called again.
|
||||
std::vector<int> digits_; // Alphabet indices for next string.
|
||||
bool generate_null_; // Whether to generate a NULL StringPiece next.
|
||||
bool random_; // Whether generated strings are random.
|
||||
int nrandom_; // Number of random strings left to generate.
|
||||
std::minstd_rand0 rng_; // Random number generator.
|
||||
|
||||
StringGenerator(const StringGenerator&) = delete;
|
||||
StringGenerator& operator=(const StringGenerator&) = delete;
|
||||
};
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_TESTING_STRING_GENERATOR_H_
|
110
extern/re2/re2/testing/string_generator_test.cc
vendored
Normal file
110
extern/re2/re2/testing/string_generator_test.cc
vendored
Normal file
@ -0,0 +1,110 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test StringGenerator.
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
|
||||
#include "util/test.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/testing/string_generator.h"
|
||||
#include "re2/testing/regexp_generator.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// Returns i to the e.
|
||||
static int64_t IntegerPower(int i, int e) {
|
||||
int64_t p = 1;
|
||||
while (e-- > 0)
|
||||
p *= i;
|
||||
return p;
|
||||
}
|
||||
|
||||
// Checks that for given settings of the string generator:
|
||||
// * it generates strings that are non-decreasing in length.
|
||||
// * strings of the same length are sorted in alphabet order.
|
||||
// * it doesn't generate the same string twice.
|
||||
// * it generates the right number of strings.
|
||||
//
|
||||
// If all of these hold, the StringGenerator is behaving.
|
||||
// Assumes that the alphabet is sorted, so that the generated
|
||||
// strings can just be compared lexicographically.
|
||||
static void RunTest(int len, const std::string& alphabet, bool donull) {
|
||||
StringGenerator g(len, Explode(alphabet));
|
||||
|
||||
int n = 0;
|
||||
int last_l = -1;
|
||||
std::string last_s;
|
||||
|
||||
if (donull) {
|
||||
g.GenerateNULL();
|
||||
EXPECT_TRUE(g.HasNext());
|
||||
StringPiece sp = g.Next();
|
||||
EXPECT_EQ(sp.data(), static_cast<const char*>(NULL));
|
||||
EXPECT_EQ(sp.size(), 0);
|
||||
}
|
||||
|
||||
while (g.HasNext()) {
|
||||
std::string s = std::string(g.Next());
|
||||
n++;
|
||||
|
||||
// Check that all characters in s appear in alphabet.
|
||||
for (const char *p = s.c_str(); *p != '\0'; ) {
|
||||
Rune r;
|
||||
p += chartorune(&r, p);
|
||||
EXPECT_TRUE(utfrune(alphabet.c_str(), r) != NULL);
|
||||
}
|
||||
|
||||
// Check that string is properly ordered w.r.t. previous string.
|
||||
int l = utflen(s.c_str());
|
||||
EXPECT_LE(l, len);
|
||||
if (last_l < l) {
|
||||
last_l = l;
|
||||
} else {
|
||||
EXPECT_EQ(last_l, l);
|
||||
EXPECT_LT(last_s, s);
|
||||
}
|
||||
last_s = s;
|
||||
}
|
||||
|
||||
// Check total string count.
|
||||
int64_t m = 0;
|
||||
int alpha = utflen(alphabet.c_str());
|
||||
if (alpha == 0) // Degenerate case.
|
||||
len = 0;
|
||||
for (int i = 0; i <= len; i++)
|
||||
m += IntegerPower(alpha, i);
|
||||
EXPECT_EQ(n, m);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, NoLength) {
|
||||
RunTest(0, "abc", false);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, NoLengthNoAlphabet) {
|
||||
RunTest(0, "", false);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, NoAlphabet) {
|
||||
RunTest(5, "", false);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, Simple) {
|
||||
RunTest(3, "abc", false);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, UTF8) {
|
||||
RunTest(4, "abc\xE2\x98\xBA", false);
|
||||
}
|
||||
|
||||
TEST(StringGenerator, GenNULL) {
|
||||
RunTest(0, "abc", true);
|
||||
RunTest(0, "", true);
|
||||
RunTest(5, "", true);
|
||||
RunTest(3, "abc", true);
|
||||
RunTest(4, "abc\xE2\x98\xBA", true);
|
||||
}
|
||||
|
||||
} // namespace re2
|
669
extern/re2/re2/testing/tester.cc
vendored
Normal file
669
extern/re2/re2/testing/tester.cc
vendored
Normal file
@ -0,0 +1,669 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Regular expression engine tester -- test all the implementations against each other.
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/flags.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "re2/testing/tester.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/re2.h"
|
||||
#include "re2/regexp.h"
|
||||
|
||||
DEFINE_bool(dump_prog, false, "dump regexp program");
|
||||
DEFINE_bool(log_okay, false, "log successful runs");
|
||||
DEFINE_bool(dump_rprog, false, "dump reversed regexp program");
|
||||
|
||||
DEFINE_int32(max_regexp_failures, 100,
|
||||
"maximum number of regexp test failures (-1 = unlimited)");
|
||||
|
||||
DEFINE_string(regexp_engines, "", "pattern to select regexp engines to test");
|
||||
|
||||
namespace re2 {
|
||||
|
||||
enum {
|
||||
kMaxSubmatch = 1+16, // $0...$16
|
||||
};
|
||||
|
||||
const char* engine_names[kEngineMax] = {
|
||||
"Backtrack",
|
||||
"NFA",
|
||||
"DFA",
|
||||
"DFA1",
|
||||
"OnePass",
|
||||
"BitState",
|
||||
"RE2",
|
||||
"RE2a",
|
||||
"RE2b",
|
||||
"PCRE",
|
||||
};
|
||||
|
||||
// Returns the name of the engine.
|
||||
static const char* EngineName(Engine e) {
|
||||
CHECK_GE(e, 0);
|
||||
CHECK_LT(e, arraysize(engine_names));
|
||||
CHECK(engine_names[e] != NULL);
|
||||
return engine_names[e];
|
||||
}
|
||||
|
||||
// Returns bit mask of engines to use.
|
||||
static uint32_t Engines() {
|
||||
static bool did_parse = false;
|
||||
static uint32_t cached_engines = 0;
|
||||
|
||||
if (did_parse)
|
||||
return cached_engines;
|
||||
|
||||
if (FLAGS_regexp_engines.empty()) {
|
||||
cached_engines = ~0;
|
||||
} else {
|
||||
for (Engine i = static_cast<Engine>(0); i < kEngineMax; i++)
|
||||
if (FLAGS_regexp_engines.find(EngineName(i)) != std::string::npos)
|
||||
cached_engines |= 1<<i;
|
||||
}
|
||||
|
||||
if (cached_engines == 0)
|
||||
LOG(INFO) << "Warning: no engines enabled.";
|
||||
if (!UsingPCRE)
|
||||
cached_engines &= ~(1<<kEnginePCRE);
|
||||
for (Engine i = static_cast<Engine>(0); i < kEngineMax; i++) {
|
||||
if (cached_engines & (1<<i))
|
||||
LOG(INFO) << EngineName(i) << " enabled";
|
||||
}
|
||||
|
||||
did_parse = true;
|
||||
return cached_engines;
|
||||
}
|
||||
|
||||
// The result of running a match.
|
||||
struct TestInstance::Result {
|
||||
bool skipped; // test skipped: wasn't applicable
|
||||
bool matched; // found a match
|
||||
bool untrusted; // don't really trust the answer
|
||||
bool have_submatch; // computed all submatch info
|
||||
bool have_submatch0; // computed just submatch[0]
|
||||
StringPiece submatch[kMaxSubmatch];
|
||||
};
|
||||
|
||||
typedef TestInstance::Result Result;
|
||||
|
||||
// Formats a single capture range s in text in the form (a,b)
|
||||
// where a and b are the starting and ending offsets of s in text.
|
||||
static std::string FormatCapture(const StringPiece& text,
|
||||
const StringPiece& s) {
|
||||
if (s.begin() == NULL)
|
||||
return "(?,?)";
|
||||
return StringPrintf("(%td,%td)",
|
||||
s.begin() - text.begin(), s.end() - text.begin());
|
||||
}
|
||||
|
||||
// Returns whether text contains non-ASCII (>= 0x80) bytes.
|
||||
static bool NonASCII(const StringPiece& text) {
|
||||
for (size_t i = 0; i < text.size(); i++)
|
||||
if ((uint8_t)text[i] >= 0x80)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns string representation of match kind.
|
||||
static std::string FormatKind(Prog::MatchKind kind) {
|
||||
switch (kind) {
|
||||
case Prog::kFullMatch:
|
||||
return "full match";
|
||||
case Prog::kLongestMatch:
|
||||
return "longest match";
|
||||
case Prog::kFirstMatch:
|
||||
return "first match";
|
||||
case Prog::kManyMatch:
|
||||
return "many match";
|
||||
}
|
||||
return "???";
|
||||
}
|
||||
|
||||
// Returns string representation of anchor kind.
|
||||
static std::string FormatAnchor(Prog::Anchor anchor) {
|
||||
switch (anchor) {
|
||||
case Prog::kAnchored:
|
||||
return "anchored";
|
||||
case Prog::kUnanchored:
|
||||
return "unanchored";
|
||||
}
|
||||
return "???";
|
||||
}
|
||||
|
||||
struct ParseMode {
|
||||
Regexp::ParseFlags parse_flags;
|
||||
std::string desc;
|
||||
};
|
||||
|
||||
static const Regexp::ParseFlags single_line =
|
||||
Regexp::LikePerl;
|
||||
static const Regexp::ParseFlags multi_line =
|
||||
static_cast<Regexp::ParseFlags>(Regexp::LikePerl & ~Regexp::OneLine);
|
||||
|
||||
static ParseMode parse_modes[] = {
|
||||
{ single_line, "single-line" },
|
||||
{ single_line|Regexp::Latin1, "single-line, latin1" },
|
||||
{ multi_line, "multiline" },
|
||||
{ multi_line|Regexp::NonGreedy, "multiline, nongreedy" },
|
||||
{ multi_line|Regexp::Latin1, "multiline, latin1" },
|
||||
};
|
||||
|
||||
static std::string FormatMode(Regexp::ParseFlags flags) {
|
||||
for (size_t i = 0; i < arraysize(parse_modes); i++)
|
||||
if (parse_modes[i].parse_flags == flags)
|
||||
return parse_modes[i].desc;
|
||||
return StringPrintf("%#x", static_cast<uint32_t>(flags));
|
||||
}
|
||||
|
||||
// Constructs and saves all the matching engines that
|
||||
// will be required for the given tests.
|
||||
TestInstance::TestInstance(const StringPiece& regexp_str, Prog::MatchKind kind,
|
||||
Regexp::ParseFlags flags)
|
||||
: regexp_str_(regexp_str),
|
||||
kind_(kind),
|
||||
flags_(flags),
|
||||
error_(false),
|
||||
regexp_(NULL),
|
||||
num_captures_(0),
|
||||
prog_(NULL),
|
||||
rprog_(NULL),
|
||||
re_(NULL),
|
||||
re2_(NULL) {
|
||||
|
||||
VLOG(1) << CEscape(regexp_str);
|
||||
|
||||
// Compile regexp to prog.
|
||||
// Always required - needed for backtracking (reference implementation).
|
||||
RegexpStatus status;
|
||||
regexp_ = Regexp::Parse(regexp_str, flags, &status);
|
||||
if (regexp_ == NULL) {
|
||||
LOG(INFO) << "Cannot parse: " << CEscape(regexp_str_)
|
||||
<< " mode: " << FormatMode(flags);
|
||||
error_ = true;
|
||||
return;
|
||||
}
|
||||
num_captures_ = regexp_->NumCaptures();
|
||||
prog_ = regexp_->CompileToProg(0);
|
||||
if (prog_ == NULL) {
|
||||
LOG(INFO) << "Cannot compile: " << CEscape(regexp_str_);
|
||||
error_ = true;
|
||||
return;
|
||||
}
|
||||
if (FLAGS_dump_prog) {
|
||||
LOG(INFO) << "Prog for "
|
||||
<< " regexp "
|
||||
<< CEscape(regexp_str_)
|
||||
<< " (" << FormatKind(kind_)
|
||||
<< ", " << FormatMode(flags_)
|
||||
<< ")\n"
|
||||
<< prog_->Dump();
|
||||
}
|
||||
|
||||
// Compile regexp to reversed prog. Only needed for DFA engines.
|
||||
if (Engines() & ((1<<kEngineDFA)|(1<<kEngineDFA1))) {
|
||||
rprog_ = regexp_->CompileToReverseProg(0);
|
||||
if (rprog_ == NULL) {
|
||||
LOG(INFO) << "Cannot reverse compile: " << CEscape(regexp_str_);
|
||||
error_ = true;
|
||||
return;
|
||||
}
|
||||
if (FLAGS_dump_rprog)
|
||||
LOG(INFO) << rprog_->Dump();
|
||||
}
|
||||
|
||||
// Create re string that will be used for RE and RE2.
|
||||
std::string re = std::string(regexp_str);
|
||||
// Accomodate flags.
|
||||
// Regexp::Latin1 will be accomodated below.
|
||||
if (!(flags & Regexp::OneLine))
|
||||
re = "(?m)" + re;
|
||||
if (flags & Regexp::NonGreedy)
|
||||
re = "(?U)" + re;
|
||||
if (flags & Regexp::DotNL)
|
||||
re = "(?s)" + re;
|
||||
|
||||
// Compile regexp to RE2.
|
||||
if (Engines() & ((1<<kEngineRE2)|(1<<kEngineRE2a)|(1<<kEngineRE2b))) {
|
||||
RE2::Options options;
|
||||
if (flags & Regexp::Latin1)
|
||||
options.set_encoding(RE2::Options::EncodingLatin1);
|
||||
if (kind_ == Prog::kLongestMatch)
|
||||
options.set_longest_match(true);
|
||||
re2_ = new RE2(re, options);
|
||||
if (!re2_->error().empty()) {
|
||||
LOG(INFO) << "Cannot RE2: " << CEscape(re);
|
||||
error_ = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Compile regexp to RE.
|
||||
// PCRE as exposed by the RE interface isn't always usable.
|
||||
// 1. It disagrees about handling of empty-string reptitions
|
||||
// like matching (a*)* against "b". PCRE treats the (a*) as
|
||||
// occurring once, while we treat it as occurring not at all.
|
||||
// 2. It treats $ as this weird thing meaning end of string
|
||||
// or before the \n at the end of the string.
|
||||
// 3. It doesn't implement POSIX leftmost-longest matching.
|
||||
// 4. It lets \s match vertical tab.
|
||||
// MimicsPCRE() detects 1 and 2.
|
||||
if ((Engines() & (1<<kEnginePCRE)) && regexp_->MimicsPCRE() &&
|
||||
kind_ != Prog::kLongestMatch) {
|
||||
PCRE_Options o;
|
||||
o.set_option(PCRE::UTF8);
|
||||
if (flags & Regexp::Latin1)
|
||||
o.set_option(PCRE::None);
|
||||
// PCRE has interface bug keeping us from finding $0, so
|
||||
// add one more layer of parens.
|
||||
re_ = new PCRE("("+re+")", o);
|
||||
if (!re_->error().empty()) {
|
||||
LOG(INFO) << "Cannot PCRE: " << CEscape(re);
|
||||
error_ = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TestInstance::~TestInstance() {
|
||||
if (regexp_)
|
||||
regexp_->Decref();
|
||||
delete prog_;
|
||||
delete rprog_;
|
||||
delete re_;
|
||||
delete re2_;
|
||||
}
|
||||
|
||||
// Runs a single search using the named engine type.
|
||||
// This interface hides all the irregularities of the various
|
||||
// engine interfaces from the rest of this file.
|
||||
void TestInstance::RunSearch(Engine type,
|
||||
const StringPiece& orig_text,
|
||||
const StringPiece& orig_context,
|
||||
Prog::Anchor anchor,
|
||||
Result* result) {
|
||||
// Result is not trivial, so we cannot freely clear it with memset(3),
|
||||
// but zeroing objects like so is safe and expedient for our purposes.
|
||||
memset(reinterpret_cast<void*>(result), 0, sizeof *result);
|
||||
if (regexp_ == NULL) {
|
||||
result->skipped = true;
|
||||
return;
|
||||
}
|
||||
int nsubmatch = 1 + num_captures_; // NumCaptures doesn't count $0
|
||||
if (nsubmatch > kMaxSubmatch)
|
||||
nsubmatch = kMaxSubmatch;
|
||||
|
||||
StringPiece text = orig_text;
|
||||
StringPiece context = orig_context;
|
||||
|
||||
switch (type) {
|
||||
default:
|
||||
LOG(FATAL) << "Bad RunSearch type: " << (int)type;
|
||||
|
||||
case kEngineBacktrack:
|
||||
if (prog_ == NULL) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched =
|
||||
prog_->UnsafeSearchBacktrack(text, context, anchor, kind_,
|
||||
result->submatch, nsubmatch);
|
||||
result->have_submatch = true;
|
||||
break;
|
||||
|
||||
case kEngineNFA:
|
||||
if (prog_ == NULL) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched =
|
||||
prog_->SearchNFA(text, context, anchor, kind_,
|
||||
result->submatch, nsubmatch);
|
||||
result->have_submatch = true;
|
||||
break;
|
||||
|
||||
case kEngineDFA:
|
||||
if (prog_ == NULL) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched = prog_->SearchDFA(text, context, anchor, kind_, NULL,
|
||||
&result->skipped, NULL);
|
||||
break;
|
||||
|
||||
case kEngineDFA1:
|
||||
if (prog_ == NULL || rprog_ == NULL) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched =
|
||||
prog_->SearchDFA(text, context, anchor, kind_, result->submatch,
|
||||
&result->skipped, NULL);
|
||||
// If anchored, no need for second run,
|
||||
// but do it anyway to find more bugs.
|
||||
if (result->matched) {
|
||||
if (!rprog_->SearchDFA(result->submatch[0], context,
|
||||
Prog::kAnchored, Prog::kLongestMatch,
|
||||
result->submatch,
|
||||
&result->skipped, NULL)) {
|
||||
LOG(ERROR) << "Reverse DFA inconsistency: "
|
||||
<< CEscape(regexp_str_)
|
||||
<< " on " << CEscape(text);
|
||||
result->matched = false;
|
||||
}
|
||||
}
|
||||
result->have_submatch0 = true;
|
||||
break;
|
||||
|
||||
case kEngineOnePass:
|
||||
if (prog_ == NULL ||
|
||||
!prog_->IsOnePass() ||
|
||||
anchor == Prog::kUnanchored ||
|
||||
nsubmatch > Prog::kMaxOnePassCapture) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched = prog_->SearchOnePass(text, context, anchor, kind_,
|
||||
result->submatch, nsubmatch);
|
||||
result->have_submatch = true;
|
||||
break;
|
||||
|
||||
case kEngineBitState:
|
||||
if (prog_ == NULL ||
|
||||
!prog_->CanBitState()) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
result->matched = prog_->SearchBitState(text, context, anchor, kind_,
|
||||
result->submatch, nsubmatch);
|
||||
result->have_submatch = true;
|
||||
break;
|
||||
|
||||
case kEngineRE2:
|
||||
case kEngineRE2a:
|
||||
case kEngineRE2b: {
|
||||
if (!re2_ || text.end() != context.end()) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
|
||||
RE2::Anchor re_anchor;
|
||||
if (anchor == Prog::kAnchored)
|
||||
re_anchor = RE2::ANCHOR_START;
|
||||
else
|
||||
re_anchor = RE2::UNANCHORED;
|
||||
if (kind_ == Prog::kFullMatch)
|
||||
re_anchor = RE2::ANCHOR_BOTH;
|
||||
|
||||
result->matched = re2_->Match(
|
||||
context,
|
||||
static_cast<size_t>(text.begin() - context.begin()),
|
||||
static_cast<size_t>(text.end() - context.begin()),
|
||||
re_anchor,
|
||||
result->submatch,
|
||||
nsubmatch);
|
||||
result->have_submatch = nsubmatch > 0;
|
||||
break;
|
||||
}
|
||||
|
||||
case kEnginePCRE: {
|
||||
if (!re_ || text.begin() != context.begin() ||
|
||||
text.end() != context.end()) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// In Perl/PCRE, \v matches any character considered vertical
|
||||
// whitespace, not just vertical tab. Regexp::MimicsPCRE() is
|
||||
// unable to handle all cases of this, unfortunately, so just
|
||||
// catch them here. :(
|
||||
if (regexp_str_.find("\\v") != StringPiece::npos &&
|
||||
(text.find('\n') != StringPiece::npos ||
|
||||
text.find('\f') != StringPiece::npos ||
|
||||
text.find('\r') != StringPiece::npos)) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// PCRE 8.34 or so started allowing vertical tab to match \s,
|
||||
// following a change made in Perl 5.18. RE2 does not.
|
||||
if ((regexp_str_.find("\\s") != StringPiece::npos ||
|
||||
regexp_str_.find("\\S") != StringPiece::npos) &&
|
||||
text.find('\v') != StringPiece::npos) {
|
||||
result->skipped = true;
|
||||
break;
|
||||
}
|
||||
|
||||
const PCRE::Arg **argptr = new const PCRE::Arg*[nsubmatch];
|
||||
PCRE::Arg *a = new PCRE::Arg[nsubmatch];
|
||||
for (int i = 0; i < nsubmatch; i++) {
|
||||
a[i] = PCRE::Arg(&result->submatch[i]);
|
||||
argptr[i] = &a[i];
|
||||
}
|
||||
size_t consumed;
|
||||
PCRE::Anchor pcre_anchor;
|
||||
if (anchor == Prog::kAnchored)
|
||||
pcre_anchor = PCRE::ANCHOR_START;
|
||||
else
|
||||
pcre_anchor = PCRE::UNANCHORED;
|
||||
if (kind_ == Prog::kFullMatch)
|
||||
pcre_anchor = PCRE::ANCHOR_BOTH;
|
||||
re_->ClearHitLimit();
|
||||
result->matched =
|
||||
re_->DoMatch(text,
|
||||
pcre_anchor,
|
||||
&consumed,
|
||||
argptr, nsubmatch);
|
||||
if (re_->HitLimit()) {
|
||||
result->untrusted = true;
|
||||
delete[] argptr;
|
||||
delete[] a;
|
||||
break;
|
||||
}
|
||||
result->have_submatch = true;
|
||||
delete[] argptr;
|
||||
delete[] a;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!result->matched)
|
||||
memset(result->submatch, 0, sizeof result->submatch);
|
||||
}
|
||||
|
||||
// Checks whether r is okay given that correct is the right answer.
|
||||
// Specifically, r's answers have to match (but it doesn't have to
|
||||
// claim to have all the answers).
|
||||
static bool ResultOkay(const Result& r, const Result& correct) {
|
||||
if (r.skipped)
|
||||
return true;
|
||||
if (r.matched != correct.matched)
|
||||
return false;
|
||||
if (r.have_submatch || r.have_submatch0) {
|
||||
for (int i = 0; i < kMaxSubmatch; i++) {
|
||||
if (correct.submatch[i].begin() != r.submatch[i].begin() ||
|
||||
correct.submatch[i].size() != r.submatch[i].size())
|
||||
return false;
|
||||
if (!r.have_submatch)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Runs a single test.
|
||||
bool TestInstance::RunCase(const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor) {
|
||||
// Backtracking is the gold standard.
|
||||
Result correct;
|
||||
RunSearch(kEngineBacktrack, text, context, anchor, &correct);
|
||||
if (correct.skipped) {
|
||||
if (regexp_ == NULL)
|
||||
return true;
|
||||
LOG(ERROR) << "Skipped backtracking! " << CEscape(regexp_str_)
|
||||
<< " " << FormatMode(flags_);
|
||||
return false;
|
||||
}
|
||||
VLOG(1) << "Try: regexp " << CEscape(regexp_str_)
|
||||
<< " text " << CEscape(text)
|
||||
<< " (" << FormatKind(kind_)
|
||||
<< ", " << FormatAnchor(anchor)
|
||||
<< ", " << FormatMode(flags_)
|
||||
<< ")";
|
||||
|
||||
// Compare the others.
|
||||
bool all_okay = true;
|
||||
for (Engine i = kEngineBacktrack+1; i < kEngineMax; i++) {
|
||||
if (!(Engines() & (1<<i)))
|
||||
continue;
|
||||
|
||||
Result r;
|
||||
RunSearch(i, text, context, anchor, &r);
|
||||
if (ResultOkay(r, correct)) {
|
||||
if (FLAGS_log_okay)
|
||||
LogMatch(r.skipped ? "Skipped: " : "Okay: ", i, text, context, anchor);
|
||||
continue;
|
||||
}
|
||||
|
||||
// We disagree with PCRE on the meaning of some Unicode matches.
|
||||
// In particular, we treat non-ASCII UTF-8 as non-word characters.
|
||||
// We also treat "empty" character sets like [^\w\W] as being
|
||||
// impossible to match, while PCRE apparently excludes some code
|
||||
// points (e.g., 0x0080) from both \w and \W.
|
||||
if (i == kEnginePCRE && NonASCII(text))
|
||||
continue;
|
||||
|
||||
if (!r.untrusted)
|
||||
all_okay = false;
|
||||
|
||||
LogMatch(r.untrusted ? "(Untrusted) Mismatch: " : "Mismatch: ", i, text,
|
||||
context, anchor);
|
||||
if (r.matched != correct.matched) {
|
||||
if (r.matched) {
|
||||
LOG(INFO) << " Should not match (but does).";
|
||||
} else {
|
||||
LOG(INFO) << " Should match (but does not).";
|
||||
continue;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < 1+num_captures_; i++) {
|
||||
if (r.submatch[i].begin() != correct.submatch[i].begin() ||
|
||||
r.submatch[i].end() != correct.submatch[i].end()) {
|
||||
LOG(INFO) <<
|
||||
StringPrintf(" $%d: should be %s is %s",
|
||||
i,
|
||||
FormatCapture(text, correct.submatch[i]).c_str(),
|
||||
FormatCapture(text, r.submatch[i]).c_str());
|
||||
} else {
|
||||
LOG(INFO) <<
|
||||
StringPrintf(" $%d: %s ok", i,
|
||||
FormatCapture(text, r.submatch[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!all_okay) {
|
||||
if (FLAGS_max_regexp_failures > 0 && --FLAGS_max_regexp_failures == 0)
|
||||
LOG(QFATAL) << "Too many regexp failures.";
|
||||
}
|
||||
|
||||
return all_okay;
|
||||
}
|
||||
|
||||
void TestInstance::LogMatch(const char* prefix, Engine e,
|
||||
const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor) {
|
||||
LOG(INFO) << prefix
|
||||
<< EngineName(e)
|
||||
<< " regexp "
|
||||
<< CEscape(regexp_str_)
|
||||
<< " "
|
||||
<< CEscape(regexp_->ToString())
|
||||
<< " text "
|
||||
<< CEscape(text)
|
||||
<< " ("
|
||||
<< text.begin() - context.begin()
|
||||
<< ","
|
||||
<< text.end() - context.begin()
|
||||
<< ") of context "
|
||||
<< CEscape(context)
|
||||
<< " (" << FormatKind(kind_)
|
||||
<< ", " << FormatAnchor(anchor)
|
||||
<< ", " << FormatMode(flags_)
|
||||
<< ")";
|
||||
}
|
||||
|
||||
static Prog::MatchKind kinds[] = {
|
||||
Prog::kFirstMatch,
|
||||
Prog::kLongestMatch,
|
||||
Prog::kFullMatch,
|
||||
};
|
||||
|
||||
// Test all possible match kinds and parse modes.
|
||||
Tester::Tester(const StringPiece& regexp) {
|
||||
error_ = false;
|
||||
for (size_t i = 0; i < arraysize(kinds); i++) {
|
||||
for (size_t j = 0; j < arraysize(parse_modes); j++) {
|
||||
TestInstance* t = new TestInstance(regexp, kinds[i],
|
||||
parse_modes[j].parse_flags);
|
||||
error_ |= t->error();
|
||||
v_.push_back(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Tester::~Tester() {
|
||||
for (size_t i = 0; i < v_.size(); i++)
|
||||
delete v_[i];
|
||||
}
|
||||
|
||||
bool Tester::TestCase(const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor) {
|
||||
bool okay = true;
|
||||
for (size_t i = 0; i < v_.size(); i++)
|
||||
okay &= (!v_[i]->error() && v_[i]->RunCase(text, context, anchor));
|
||||
return okay;
|
||||
}
|
||||
|
||||
static Prog::Anchor anchors[] = {
|
||||
Prog::kAnchored,
|
||||
Prog::kUnanchored
|
||||
};
|
||||
|
||||
bool Tester::TestInput(const StringPiece& text) {
|
||||
bool okay = TestInputInContext(text, text);
|
||||
if (text.size() > 0) {
|
||||
StringPiece sp;
|
||||
sp = text;
|
||||
sp.remove_prefix(1);
|
||||
okay &= TestInputInContext(sp, text);
|
||||
sp = text;
|
||||
sp.remove_suffix(1);
|
||||
okay &= TestInputInContext(sp, text);
|
||||
}
|
||||
return okay;
|
||||
}
|
||||
|
||||
bool Tester::TestInputInContext(const StringPiece& text,
|
||||
const StringPiece& context) {
|
||||
bool okay = true;
|
||||
for (size_t i = 0; i < arraysize(anchors); i++)
|
||||
okay &= TestCase(text, context, anchors[i]);
|
||||
return okay;
|
||||
}
|
||||
|
||||
bool TestRegexpOnText(const StringPiece& regexp,
|
||||
const StringPiece& text) {
|
||||
Tester t(regexp);
|
||||
return t.TestInput(text);
|
||||
}
|
||||
|
||||
} // namespace re2
|
123
extern/re2/re2/testing/tester.h
vendored
Normal file
123
extern/re2/re2/testing/tester.h
vendored
Normal file
@ -0,0 +1,123 @@
|
||||
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
#ifndef RE2_TESTING_TESTER_H_
|
||||
#define RE2_TESTING_TESTER_H_
|
||||
|
||||
// Comparative tester for regular expression matching.
|
||||
// Checks all implementations against each other.
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "re2/stringpiece.h"
|
||||
#include "re2/prog.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/re2.h"
|
||||
#include "util/pcre.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
// All the supported regexp engines.
|
||||
enum Engine {
|
||||
kEngineBacktrack = 0, // Prog::UnsafeSearchBacktrack
|
||||
kEngineNFA, // Prog::SearchNFA
|
||||
kEngineDFA, // Prog::SearchDFA, only ask whether it matched
|
||||
kEngineDFA1, // Prog::SearchDFA, ask for match[0]
|
||||
kEngineOnePass, // Prog::SearchOnePass, if applicable
|
||||
kEngineBitState, // Prog::SearchBitState
|
||||
kEngineRE2, // RE2, all submatches
|
||||
kEngineRE2a, // RE2, only ask for match[0]
|
||||
kEngineRE2b, // RE2, only ask whether it matched
|
||||
kEnginePCRE, // PCRE (util/pcre.h)
|
||||
|
||||
kEngineMax,
|
||||
};
|
||||
|
||||
// Make normal math on the enum preserve the type.
|
||||
// By default, C++ doesn't define ++ on enum, and e+1 has type int.
|
||||
static inline void operator++(Engine& e, int unused) {
|
||||
e = static_cast<Engine>(e+1);
|
||||
}
|
||||
|
||||
static inline Engine operator+(Engine e, int i) {
|
||||
return static_cast<Engine>(static_cast<int>(e)+i);
|
||||
}
|
||||
|
||||
// A TestInstance caches per-regexp state for a given
|
||||
// regular expression in a given configuration
|
||||
// (UTF-8 vs Latin1, longest vs first match, etc.).
|
||||
class TestInstance {
|
||||
public:
|
||||
struct Result;
|
||||
|
||||
TestInstance(const StringPiece& regexp, Prog::MatchKind kind,
|
||||
Regexp::ParseFlags flags);
|
||||
~TestInstance();
|
||||
Regexp::ParseFlags flags() { return flags_; }
|
||||
bool error() { return error_; }
|
||||
|
||||
// Runs a single test case: search in text, which is in context,
|
||||
// using the given anchoring.
|
||||
bool RunCase(const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor);
|
||||
|
||||
private:
|
||||
// Runs a single search using the named engine type.
|
||||
void RunSearch(Engine type,
|
||||
const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor,
|
||||
Result *result);
|
||||
|
||||
void LogMatch(const char* prefix, Engine e, const StringPiece& text,
|
||||
const StringPiece& context, Prog::Anchor anchor);
|
||||
|
||||
const StringPiece regexp_str_; // regexp being tested
|
||||
Prog::MatchKind kind_; // kind of match
|
||||
Regexp::ParseFlags flags_; // flags for parsing regexp_str_
|
||||
bool error_; // error during constructor?
|
||||
|
||||
Regexp* regexp_; // parsed regexp
|
||||
int num_captures_; // regexp_->NumCaptures() cached
|
||||
Prog* prog_; // compiled program
|
||||
Prog* rprog_; // compiled reverse program
|
||||
PCRE* re_; // PCRE implementation
|
||||
RE2* re2_; // RE2 implementation
|
||||
|
||||
TestInstance(const TestInstance&) = delete;
|
||||
TestInstance& operator=(const TestInstance&) = delete;
|
||||
};
|
||||
|
||||
// A group of TestInstances for all possible configurations.
|
||||
class Tester {
|
||||
public:
|
||||
explicit Tester(const StringPiece& regexp);
|
||||
~Tester();
|
||||
|
||||
bool error() { return error_; }
|
||||
|
||||
// Runs a single test case: search in text, which is in context,
|
||||
// using the given anchoring.
|
||||
bool TestCase(const StringPiece& text, const StringPiece& context,
|
||||
Prog::Anchor anchor);
|
||||
|
||||
// Run TestCase(text, text, anchor) for all anchoring modes.
|
||||
bool TestInput(const StringPiece& text);
|
||||
|
||||
// Run TestCase(text, context, anchor) for all anchoring modes.
|
||||
bool TestInputInContext(const StringPiece& text, const StringPiece& context);
|
||||
|
||||
private:
|
||||
bool error_;
|
||||
std::vector<TestInstance*> v_;
|
||||
|
||||
Tester(const Tester&) = delete;
|
||||
Tester& operator=(const Tester&) = delete;
|
||||
};
|
||||
|
||||
// Run all possible tests using regexp and text.
|
||||
bool TestRegexpOnText(const StringPiece& regexp, const StringPiece& text);
|
||||
|
||||
} // namespace re2
|
||||
|
||||
#endif // RE2_TESTING_TESTER_H_
|
351
extern/re2/re2/tostring.cc
vendored
Normal file
351
extern/re2/re2/tostring.cc
vendored
Normal file
@ -0,0 +1,351 @@
|
||||
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Format a regular expression structure as a string.
|
||||
// Tested by parse_test.cc
|
||||
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
|
||||
#include "util/util.h"
|
||||
#include "util/logging.h"
|
||||
#include "util/strutil.h"
|
||||
#include "util/utf.h"
|
||||
#include "re2/regexp.h"
|
||||
#include "re2/walker-inl.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
enum {
|
||||
PrecAtom,
|
||||
PrecUnary,
|
||||
PrecConcat,
|
||||
PrecAlternate,
|
||||
PrecEmpty,
|
||||
PrecParen,
|
||||
PrecToplevel,
|
||||
};
|
||||
|
||||
// Helper function. See description below.
|
||||
static void AppendCCRange(std::string* t, Rune lo, Rune hi);
|
||||
|
||||
// Walker to generate string in s_.
|
||||
// The arg pointers are actually integers giving the
|
||||
// context precedence.
|
||||
// The child_args are always NULL.
|
||||
class ToStringWalker : public Regexp::Walker<int> {
|
||||
public:
|
||||
explicit ToStringWalker(std::string* t) : t_(t) {}
|
||||
|
||||
virtual int PreVisit(Regexp* re, int parent_arg, bool* stop);
|
||||
virtual int PostVisit(Regexp* re, int parent_arg, int pre_arg,
|
||||
int* child_args, int nchild_args);
|
||||
virtual int ShortVisit(Regexp* re, int parent_arg) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
std::string* t_; // The string the walker appends to.
|
||||
|
||||
ToStringWalker(const ToStringWalker&) = delete;
|
||||
ToStringWalker& operator=(const ToStringWalker&) = delete;
|
||||
};
|
||||
|
||||
std::string Regexp::ToString() {
|
||||
std::string t;
|
||||
ToStringWalker w(&t);
|
||||
w.WalkExponential(this, PrecToplevel, 100000);
|
||||
if (w.stopped_early())
|
||||
t += " [truncated]";
|
||||
return t;
|
||||
}
|
||||
|
||||
#define ToString DontCallToString // Avoid accidental recursion.
|
||||
|
||||
// Visits re before children are processed.
|
||||
// Appends ( if needed and passes new precedence to children.
|
||||
int ToStringWalker::PreVisit(Regexp* re, int parent_arg, bool* stop) {
|
||||
int prec = parent_arg;
|
||||
int nprec = PrecAtom;
|
||||
|
||||
switch (re->op()) {
|
||||
case kRegexpNoMatch:
|
||||
case kRegexpEmptyMatch:
|
||||
case kRegexpLiteral:
|
||||
case kRegexpAnyChar:
|
||||
case kRegexpAnyByte:
|
||||
case kRegexpBeginLine:
|
||||
case kRegexpEndLine:
|
||||
case kRegexpBeginText:
|
||||
case kRegexpEndText:
|
||||
case kRegexpWordBoundary:
|
||||
case kRegexpNoWordBoundary:
|
||||
case kRegexpCharClass:
|
||||
case kRegexpHaveMatch:
|
||||
nprec = PrecAtom;
|
||||
break;
|
||||
|
||||
case kRegexpConcat:
|
||||
case kRegexpLiteralString:
|
||||
if (prec < PrecConcat)
|
||||
t_->append("(?:");
|
||||
nprec = PrecConcat;
|
||||
break;
|
||||
|
||||
case kRegexpAlternate:
|
||||
if (prec < PrecAlternate)
|
||||
t_->append("(?:");
|
||||
nprec = PrecAlternate;
|
||||
break;
|
||||
|
||||
case kRegexpCapture:
|
||||
t_->append("(");
|
||||
if (re->cap() == 0)
|
||||
LOG(DFATAL) << "kRegexpCapture cap() == 0";
|
||||
if (re->name()) {
|
||||
t_->append("?P<");
|
||||
t_->append(*re->name());
|
||||
t_->append(">");
|
||||
}
|
||||
nprec = PrecParen;
|
||||
break;
|
||||
|
||||
case kRegexpStar:
|
||||
case kRegexpPlus:
|
||||
case kRegexpQuest:
|
||||
case kRegexpRepeat:
|
||||
if (prec < PrecUnary)
|
||||
t_->append("(?:");
|
||||
// The subprecedence here is PrecAtom instead of PrecUnary
|
||||
// because PCRE treats two unary ops in a row as a parse error.
|
||||
nprec = PrecAtom;
|
||||
break;
|
||||
}
|
||||
|
||||
return nprec;
|
||||
}
|
||||
|
||||
static void AppendLiteral(std::string *t, Rune r, bool foldcase) {
|
||||
if (r != 0 && r < 0x80 && strchr("(){}[]*+?|.^$\\", r)) {
|
||||
t->append(1, '\\');
|
||||
t->append(1, static_cast<char>(r));
|
||||
} else if (foldcase && 'a' <= r && r <= 'z') {
|
||||
r -= 'a' - 'A';
|
||||
t->append(1, '[');
|
||||
t->append(1, static_cast<char>(r));
|
||||
t->append(1, static_cast<char>(r) + 'a' - 'A');
|
||||
t->append(1, ']');
|
||||
} else {
|
||||
AppendCCRange(t, r, r);
|
||||
}
|
||||
}
|
||||
|
||||
// Visits re after children are processed.
|
||||
// For childless regexps, all the work is done here.
|
||||
// For regexps with children, append any unary suffixes or ).
|
||||
int ToStringWalker::PostVisit(Regexp* re, int parent_arg, int pre_arg,
|
||||
int* child_args, int nchild_args) {
|
||||
int prec = parent_arg;
|
||||
switch (re->op()) {
|
||||
case kRegexpNoMatch:
|
||||
// There's no simple symbol for "no match", but
|
||||
// [^0-Runemax] excludes everything.
|
||||
t_->append("[^\\x00-\\x{10ffff}]");
|
||||
break;
|
||||
|
||||
case kRegexpEmptyMatch:
|
||||
// Append (?:) to make empty string visible,
|
||||
// unless this is already being parenthesized.
|
||||
if (prec < PrecEmpty)
|
||||
t_->append("(?:)");
|
||||
break;
|
||||
|
||||
case kRegexpLiteral:
|
||||
AppendLiteral(t_, re->rune(),
|
||||
(re->parse_flags() & Regexp::FoldCase) != 0);
|
||||
break;
|
||||
|
||||
case kRegexpLiteralString:
|
||||
for (int i = 0; i < re->nrunes(); i++)
|
||||
AppendLiteral(t_, re->runes()[i],
|
||||
(re->parse_flags() & Regexp::FoldCase) != 0);
|
||||
if (prec < PrecConcat)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpConcat:
|
||||
if (prec < PrecConcat)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpAlternate:
|
||||
// Clumsy but workable: the children all appended |
|
||||
// at the end of their strings, so just remove the last one.
|
||||
if ((*t_)[t_->size()-1] == '|')
|
||||
t_->erase(t_->size()-1);
|
||||
else
|
||||
LOG(DFATAL) << "Bad final char: " << t_;
|
||||
if (prec < PrecAlternate)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpStar:
|
||||
t_->append("*");
|
||||
if (re->parse_flags() & Regexp::NonGreedy)
|
||||
t_->append("?");
|
||||
if (prec < PrecUnary)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpPlus:
|
||||
t_->append("+");
|
||||
if (re->parse_flags() & Regexp::NonGreedy)
|
||||
t_->append("?");
|
||||
if (prec < PrecUnary)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpQuest:
|
||||
t_->append("?");
|
||||
if (re->parse_flags() & Regexp::NonGreedy)
|
||||
t_->append("?");
|
||||
if (prec < PrecUnary)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpRepeat:
|
||||
if (re->max() == -1)
|
||||
t_->append(StringPrintf("{%d,}", re->min()));
|
||||
else if (re->min() == re->max())
|
||||
t_->append(StringPrintf("{%d}", re->min()));
|
||||
else
|
||||
t_->append(StringPrintf("{%d,%d}", re->min(), re->max()));
|
||||
if (re->parse_flags() & Regexp::NonGreedy)
|
||||
t_->append("?");
|
||||
if (prec < PrecUnary)
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpAnyChar:
|
||||
t_->append(".");
|
||||
break;
|
||||
|
||||
case kRegexpAnyByte:
|
||||
t_->append("\\C");
|
||||
break;
|
||||
|
||||
case kRegexpBeginLine:
|
||||
t_->append("^");
|
||||
break;
|
||||
|
||||
case kRegexpEndLine:
|
||||
t_->append("$");
|
||||
break;
|
||||
|
||||
case kRegexpBeginText:
|
||||
t_->append("(?-m:^)");
|
||||
break;
|
||||
|
||||
case kRegexpEndText:
|
||||
if (re->parse_flags() & Regexp::WasDollar)
|
||||
t_->append("(?-m:$)");
|
||||
else
|
||||
t_->append("\\z");
|
||||
break;
|
||||
|
||||
case kRegexpWordBoundary:
|
||||
t_->append("\\b");
|
||||
break;
|
||||
|
||||
case kRegexpNoWordBoundary:
|
||||
t_->append("\\B");
|
||||
break;
|
||||
|
||||
case kRegexpCharClass: {
|
||||
if (re->cc()->size() == 0) {
|
||||
t_->append("[^\\x00-\\x{10ffff}]");
|
||||
break;
|
||||
}
|
||||
t_->append("[");
|
||||
// Heuristic: show class as negated if it contains the
|
||||
// non-character 0xFFFE and yet somehow isn't full.
|
||||
CharClass* cc = re->cc();
|
||||
if (cc->Contains(0xFFFE) && !cc->full()) {
|
||||
cc = cc->Negate();
|
||||
t_->append("^");
|
||||
}
|
||||
for (CharClass::iterator i = cc->begin(); i != cc->end(); ++i)
|
||||
AppendCCRange(t_, i->lo, i->hi);
|
||||
if (cc != re->cc())
|
||||
cc->Delete();
|
||||
t_->append("]");
|
||||
break;
|
||||
}
|
||||
|
||||
case kRegexpCapture:
|
||||
t_->append(")");
|
||||
break;
|
||||
|
||||
case kRegexpHaveMatch:
|
||||
// There's no syntax accepted by the parser to generate
|
||||
// this node (it is generated by RE2::Set) so make something
|
||||
// up that is readable but won't compile.
|
||||
t_->append("(?HaveMatch:%d)", re->match_id());
|
||||
break;
|
||||
}
|
||||
|
||||
// If the parent is an alternation, append the | for it.
|
||||
if (prec == PrecAlternate)
|
||||
t_->append("|");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Appends a rune for use in a character class to the string t.
|
||||
static void AppendCCChar(std::string* t, Rune r) {
|
||||
if (0x20 <= r && r <= 0x7E) {
|
||||
if (strchr("[]^-\\", r))
|
||||
t->append("\\");
|
||||
t->append(1, static_cast<char>(r));
|
||||
return;
|
||||
}
|
||||
switch (r) {
|
||||
default:
|
||||
break;
|
||||
|
||||
case '\r':
|
||||
t->append("\\r");
|
||||
return;
|
||||
|
||||
case '\t':
|
||||
t->append("\\t");
|
||||
return;
|
||||
|
||||
case '\n':
|
||||
t->append("\\n");
|
||||
return;
|
||||
|
||||
case '\f':
|
||||
t->append("\\f");
|
||||
return;
|
||||
}
|
||||
|
||||
if (r < 0x100) {
|
||||
*t += StringPrintf("\\x%02x", static_cast<int>(r));
|
||||
return;
|
||||
}
|
||||
*t += StringPrintf("\\x{%x}", static_cast<int>(r));
|
||||
}
|
||||
|
||||
static void AppendCCRange(std::string* t, Rune lo, Rune hi) {
|
||||
if (lo > hi)
|
||||
return;
|
||||
AppendCCChar(t, lo);
|
||||
if (lo < hi) {
|
||||
t->append("-");
|
||||
AppendCCChar(t, hi);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace re2
|
303
extern/re2/re2/unicode.py
vendored
Normal file
303
extern/re2/re2/unicode.py
vendored
Normal file
@ -0,0 +1,303 @@
|
||||
# Copyright 2008 The RE2 Authors. All Rights Reserved.
|
||||
# Use of this source code is governed by a BSD-style
|
||||
# license that can be found in the LICENSE file.
|
||||
|
||||
"""Parser for Unicode data files (as distributed by unicode.org)."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import re
|
||||
from six.moves import urllib
|
||||
|
||||
# Directory or URL where Unicode tables reside.
|
||||
_UNICODE_DIR = "https://www.unicode.org/Public/12.1.0/ucd"
|
||||
|
||||
# Largest valid Unicode code value.
|
||||
_RUNE_MAX = 0x10FFFF
|
||||
|
||||
|
||||
class Error(Exception):
|
||||
"""Unicode error base class."""
|
||||
|
||||
|
||||
class InputError(Error):
|
||||
"""Unicode input error class. Raised on invalid input."""
|
||||
|
||||
|
||||
def _UInt(s):
|
||||
"""Converts string to Unicode code point ('263A' => 0x263a).
|
||||
|
||||
Args:
|
||||
s: string to convert
|
||||
|
||||
Returns:
|
||||
Unicode code point
|
||||
|
||||
Raises:
|
||||
InputError: the string is not a valid Unicode value.
|
||||
"""
|
||||
|
||||
try:
|
||||
v = int(s, 16)
|
||||
except ValueError:
|
||||
v = -1
|
||||
if len(s) < 4 or len(s) > 6 or v < 0 or v > _RUNE_MAX:
|
||||
raise InputError("invalid Unicode value %s" % (s,))
|
||||
return v
|
||||
|
||||
|
||||
def _URange(s):
|
||||
"""Converts string to Unicode range.
|
||||
|
||||
'0001..0003' => [1, 2, 3].
|
||||
'0001' => [1].
|
||||
|
||||
Args:
|
||||
s: string to convert
|
||||
|
||||
Returns:
|
||||
Unicode range
|
||||
|
||||
Raises:
|
||||
InputError: the string is not a valid Unicode range.
|
||||
"""
|
||||
a = s.split("..")
|
||||
if len(a) == 1:
|
||||
return [_UInt(a[0])]
|
||||
if len(a) == 2:
|
||||
lo = _UInt(a[0])
|
||||
hi = _UInt(a[1])
|
||||
if lo < hi:
|
||||
return range(lo, hi + 1)
|
||||
raise InputError("invalid Unicode range %s" % (s,))
|
||||
|
||||
|
||||
def _UStr(v):
|
||||
"""Converts Unicode code point to hex string.
|
||||
|
||||
0x263a => '0x263A'.
|
||||
|
||||
Args:
|
||||
v: code point to convert
|
||||
|
||||
Returns:
|
||||
Unicode string
|
||||
|
||||
Raises:
|
||||
InputError: the argument is not a valid Unicode value.
|
||||
"""
|
||||
if v < 0 or v > _RUNE_MAX:
|
||||
raise InputError("invalid Unicode value %s" % (v,))
|
||||
return "0x%04X" % (v,)
|
||||
|
||||
|
||||
def _ParseContinue(s):
|
||||
"""Parses a Unicode continuation field.
|
||||
|
||||
These are of the form '<Name, First>' or '<Name, Last>'.
|
||||
Instead of giving an explicit range in a single table entry,
|
||||
some Unicode tables use two entries, one for the first
|
||||
code value in the range and one for the last.
|
||||
The first entry's description is '<Name, First>' instead of 'Name'
|
||||
and the second is '<Name, Last>'.
|
||||
|
||||
'<Name, First>' => ('Name', 'First')
|
||||
'<Name, Last>' => ('Name', 'Last')
|
||||
'Anything else' => ('Anything else', None)
|
||||
|
||||
Args:
|
||||
s: continuation field string
|
||||
|
||||
Returns:
|
||||
pair: name and ('First', 'Last', or None)
|
||||
"""
|
||||
|
||||
match = re.match("<(.*), (First|Last)>", s)
|
||||
if match is not None:
|
||||
return match.groups()
|
||||
return (s, None)
|
||||
|
||||
|
||||
def ReadUnicodeTable(filename, nfields, doline):
|
||||
"""Generic Unicode table text file reader.
|
||||
|
||||
The reader takes care of stripping out comments and also
|
||||
parsing the two different ways that the Unicode tables specify
|
||||
code ranges (using the .. notation and splitting the range across
|
||||
multiple lines).
|
||||
|
||||
Each non-comment line in the table is expected to have the given
|
||||
number of fields. The first field is known to be the Unicode value
|
||||
and the second field its description.
|
||||
|
||||
The reader calls doline(codes, fields) for each entry in the table.
|
||||
If fn raises an exception, the reader prints that exception,
|
||||
prefixed with the file name and line number, and continues
|
||||
processing the file. When done with the file, the reader re-raises
|
||||
the first exception encountered during the file.
|
||||
|
||||
Arguments:
|
||||
filename: the Unicode data file to read, or a file-like object.
|
||||
nfields: the number of expected fields per line in that file.
|
||||
doline: the function to call for each table entry.
|
||||
|
||||
Raises:
|
||||
InputError: nfields is invalid (must be >= 2).
|
||||
"""
|
||||
|
||||
if nfields < 2:
|
||||
raise InputError("invalid number of fields %d" % (nfields,))
|
||||
|
||||
if type(filename) == str:
|
||||
if filename.startswith("https://"):
|
||||
fil = urllib.request.urlopen(filename)
|
||||
else:
|
||||
fil = open(filename, "rb")
|
||||
else:
|
||||
fil = filename
|
||||
|
||||
first = None # first code in multiline range
|
||||
expect_last = None # tag expected for "Last" line in multiline range
|
||||
lineno = 0 # current line number
|
||||
for line in fil:
|
||||
lineno += 1
|
||||
try:
|
||||
line = line.decode('latin1')
|
||||
|
||||
# Chop # comments and white space; ignore empty lines.
|
||||
sharp = line.find("#")
|
||||
if sharp >= 0:
|
||||
line = line[:sharp]
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
|
||||
# Split fields on ";", chop more white space.
|
||||
# Must have the expected number of fields.
|
||||
fields = [s.strip() for s in line.split(";")]
|
||||
if len(fields) != nfields:
|
||||
raise InputError("wrong number of fields %d %d - %s" %
|
||||
(len(fields), nfields, line))
|
||||
|
||||
# The Unicode text files have two different ways
|
||||
# to list a Unicode range. Either the first field is
|
||||
# itself a range (0000..FFFF), or the range is split
|
||||
# across two lines, with the second field noting
|
||||
# the continuation.
|
||||
codes = _URange(fields[0])
|
||||
(name, cont) = _ParseContinue(fields[1])
|
||||
|
||||
if expect_last is not None:
|
||||
# If the last line gave the First code in a range,
|
||||
# this one had better give the Last one.
|
||||
if (len(codes) != 1 or codes[0] <= first or
|
||||
cont != "Last" or name != expect_last):
|
||||
raise InputError("expected Last line for %s" %
|
||||
(expect_last,))
|
||||
codes = range(first, codes[0] + 1)
|
||||
first = None
|
||||
expect_last = None
|
||||
fields[0] = "%04X..%04X" % (codes[0], codes[-1])
|
||||
fields[1] = name
|
||||
elif cont == "First":
|
||||
# Otherwise, if this is the First code in a range,
|
||||
# remember it and go to the next line.
|
||||
if len(codes) != 1:
|
||||
raise InputError("bad First line: range given")
|
||||
expect_last = name
|
||||
first = codes[0]
|
||||
continue
|
||||
|
||||
doline(codes, fields)
|
||||
|
||||
except Exception as e:
|
||||
print("%s:%d: %s" % (filename, lineno, e))
|
||||
raise
|
||||
|
||||
if expect_last is not None:
|
||||
raise InputError("expected Last line for %s; got EOF" %
|
||||
(expect_last,))
|
||||
|
||||
|
||||
def CaseGroups(unicode_dir=_UNICODE_DIR):
|
||||
"""Returns list of Unicode code groups equivalent under case folding.
|
||||
|
||||
Each group is a sorted list of code points,
|
||||
and the list of groups is sorted by first code point
|
||||
in the group.
|
||||
|
||||
Args:
|
||||
unicode_dir: Unicode data directory
|
||||
|
||||
Returns:
|
||||
list of Unicode code groups
|
||||
"""
|
||||
|
||||
# Dict mapping lowercase code point to fold-equivalent group.
|
||||
togroup = {}
|
||||
|
||||
def DoLine(codes, fields):
|
||||
"""Process single CaseFolding.txt line, updating togroup."""
|
||||
(_, foldtype, lower, _) = fields
|
||||
if foldtype not in ("C", "S"):
|
||||
return
|
||||
lower = _UInt(lower)
|
||||
togroup.setdefault(lower, [lower]).extend(codes)
|
||||
|
||||
ReadUnicodeTable(unicode_dir+"/CaseFolding.txt", 4, DoLine)
|
||||
|
||||
groups = list(togroup.values())
|
||||
for g in groups:
|
||||
g.sort()
|
||||
groups.sort()
|
||||
return togroup, groups
|
||||
|
||||
|
||||
def Scripts(unicode_dir=_UNICODE_DIR):
|
||||
"""Returns dict mapping script names to code lists.
|
||||
|
||||
Args:
|
||||
unicode_dir: Unicode data directory
|
||||
|
||||
Returns:
|
||||
dict mapping script names to code lists
|
||||
"""
|
||||
|
||||
scripts = {}
|
||||
|
||||
def DoLine(codes, fields):
|
||||
"""Process single Scripts.txt line, updating scripts."""
|
||||
(_, name) = fields
|
||||
scripts.setdefault(name, []).extend(codes)
|
||||
|
||||
ReadUnicodeTable(unicode_dir+"/Scripts.txt", 2, DoLine)
|
||||
return scripts
|
||||
|
||||
|
||||
def Categories(unicode_dir=_UNICODE_DIR):
|
||||
"""Returns dict mapping category names to code lists.
|
||||
|
||||
Args:
|
||||
unicode_dir: Unicode data directory
|
||||
|
||||
Returns:
|
||||
dict mapping category names to code lists
|
||||
"""
|
||||
|
||||
categories = {}
|
||||
|
||||
def DoLine(codes, fields):
|
||||
"""Process single UnicodeData.txt line, updating categories."""
|
||||
category = fields[2]
|
||||
categories.setdefault(category, []).extend(codes)
|
||||
# Add codes from Lu into L, etc.
|
||||
if len(category) > 1:
|
||||
short = category[0]
|
||||
categories.setdefault(short, []).extend(codes)
|
||||
|
||||
ReadUnicodeTable(unicode_dir+"/UnicodeData.txt", 15, DoLine)
|
||||
return categories
|
||||
|
578
extern/re2/re2/unicode_casefold.cc
vendored
Normal file
578
extern/re2/re2/unicode_casefold.cc
vendored
Normal file
@ -0,0 +1,578 @@
|
||||
|
||||
// GENERATED BY make_unicode_casefold.py; DO NOT EDIT.
|
||||
// make_unicode_casefold.py >unicode_casefold.cc
|
||||
|
||||
#include "re2/unicode_casefold.h"
|
||||
|
||||
namespace re2 {
|
||||
|
||||
|
||||
// 1381 groups, 2792 pairs, 356 ranges
|
||||
const CaseFold unicode_casefold[] = {
|
||||
{ 65, 90, 32 },
|
||||
{ 97, 106, -32 },
|
||||
{ 107, 107, 8383 },
|
||||
{ 108, 114, -32 },
|
||||
{ 115, 115, 268 },
|
||||
{ 116, 122, -32 },
|
||||
{ 181, 181, 743 },
|
||||
{ 192, 214, 32 },
|
||||
{ 216, 222, 32 },
|
||||
{ 223, 223, 7615 },
|
||||
{ 224, 228, -32 },
|
||||
{ 229, 229, 8262 },
|
||||
{ 230, 246, -32 },
|
||||
{ 248, 254, -32 },
|
||||
{ 255, 255, 121 },
|
||||
{ 256, 303, EvenOdd },
|
||||
{ 306, 311, EvenOdd },
|
||||
{ 313, 328, OddEven },
|
||||
{ 330, 375, EvenOdd },
|
||||
{ 376, 376, -121 },
|
||||
{ 377, 382, OddEven },
|
||||
{ 383, 383, -300 },
|
||||
{ 384, 384, 195 },
|
||||
{ 385, 385, 210 },
|
||||
{ 386, 389, EvenOdd },
|
||||
{ 390, 390, 206 },
|
||||
{ 391, 392, OddEven },
|
||||
{ 393, 394, 205 },
|
||||
{ 395, 396, OddEven },
|
||||
{ 398, 398, 79 },
|
||||
{ 399, 399, 202 },
|
||||
{ 400, 400, 203 },
|
||||
{ 401, 402, OddEven },
|
||||
{ 403, 403, 205 },
|
||||
{ 404, 404, 207 },
|
||||
{ 405, 405, 97 },
|
||||
{ 406, 406, 211 },
|
||||
{ 407, 407, 209 },
|
||||
{ 408, 409, EvenOdd },
|
||||
{ 410, 410, 163 },
|
||||
{ 412, 412, 211 },
|
||||
{ 413, 413, 213 },
|
||||
{ 414, 414, 130 },
|
||||
{ 415, 415, 214 },
|
||||
{ 416, 421, EvenOdd },
|
||||
{ 422, 422, 218 },
|
||||
{ 423, 424, OddEven },
|
||||
{ 425, 425, 218 },
|
||||
{ 428, 429, EvenOdd },
|
||||
{ 430, 430, 218 },
|
||||
{ 431, 432, OddEven },
|
||||
{ 433, 434, 217 },
|
||||
{ 435, 438, OddEven },
|
||||
{ 439, 439, 219 },
|
||||
{ 440, 441, EvenOdd },
|
||||
{ 444, 445, EvenOdd },
|
||||
{ 447, 447, 56 },
|
||||
{ 452, 452, EvenOdd },
|
||||
{ 453, 453, OddEven },
|
||||
{ 454, 454, -2 },
|
||||
{ 455, 455, OddEven },
|
||||
{ 456, 456, EvenOdd },
|
||||
{ 457, 457, -2 },
|
||||
{ 458, 458, EvenOdd },
|
||||
{ 459, 459, OddEven },
|
||||
{ 460, 460, -2 },
|
||||
{ 461, 476, OddEven },
|
||||
{ 477, 477, -79 },
|
||||
{ 478, 495, EvenOdd },
|
||||
{ 497, 497, OddEven },
|
||||
{ 498, 498, EvenOdd },
|
||||
{ 499, 499, -2 },
|
||||
{ 500, 501, EvenOdd },
|
||||
{ 502, 502, -97 },
|
||||
{ 503, 503, -56 },
|
||||
{ 504, 543, EvenOdd },
|
||||
{ 544, 544, -130 },
|
||||
{ 546, 563, EvenOdd },
|
||||
{ 570, 570, 10795 },
|
||||
{ 571, 572, OddEven },
|
||||
{ 573, 573, -163 },
|
||||
{ 574, 574, 10792 },
|
||||
{ 575, 576, 10815 },
|
||||
{ 577, 578, OddEven },
|
||||
{ 579, 579, -195 },
|
||||
{ 580, 580, 69 },
|
||||
{ 581, 581, 71 },
|
||||
{ 582, 591, EvenOdd },
|
||||
{ 592, 592, 10783 },
|
||||
{ 593, 593, 10780 },
|
||||
{ 594, 594, 10782 },
|
||||
{ 595, 595, -210 },
|
||||
{ 596, 596, -206 },
|
||||
{ 598, 599, -205 },
|
||||
{ 601, 601, -202 },
|
||||
{ 603, 603, -203 },
|
||||
{ 604, 604, 42319 },
|
||||
{ 608, 608, -205 },
|
||||
{ 609, 609, 42315 },
|
||||
{ 611, 611, -207 },
|
||||
{ 613, 613, 42280 },
|
||||
{ 614, 614, 42308 },
|
||||
{ 616, 616, -209 },
|
||||
{ 617, 617, -211 },
|
||||
{ 618, 618, 42308 },
|
||||
{ 619, 619, 10743 },
|
||||
{ 620, 620, 42305 },
|
||||
{ 623, 623, -211 },
|
||||
{ 625, 625, 10749 },
|
||||
{ 626, 626, -213 },
|
||||
{ 629, 629, -214 },
|
||||
{ 637, 637, 10727 },
|
||||
{ 640, 640, -218 },
|
||||
{ 642, 642, 42307 },
|
||||
{ 643, 643, -218 },
|
||||
{ 647, 647, 42282 },
|
||||
{ 648, 648, -218 },
|
||||
{ 649, 649, -69 },
|
||||
{ 650, 651, -217 },
|
||||
{ 652, 652, -71 },
|
||||
{ 658, 658, -219 },
|
||||
{ 669, 669, 42261 },
|
||||
{ 670, 670, 42258 },
|
||||
{ 837, 837, 84 },
|
||||
{ 880, 883, EvenOdd },
|
||||
{ 886, 887, EvenOdd },
|
||||
{ 891, 893, 130 },
|
||||
{ 895, 895, 116 },
|
||||
{ 902, 902, 38 },
|
||||
{ 904, 906, 37 },
|
||||
{ 908, 908, 64 },
|
||||
{ 910, 911, 63 },
|
||||
{ 913, 929, 32 },
|
||||
{ 931, 931, 31 },
|
||||
{ 932, 939, 32 },
|
||||
{ 940, 940, -38 },
|
||||
{ 941, 943, -37 },
|
||||
{ 945, 945, -32 },
|
||||
{ 946, 946, 30 },
|
||||
{ 947, 948, -32 },
|
||||
{ 949, 949, 64 },
|
||||
{ 950, 951, -32 },
|
||||
{ 952, 952, 25 },
|
||||
{ 953, 953, 7173 },
|
||||
{ 954, 954, 54 },
|
||||
{ 955, 955, -32 },
|
||||
{ 956, 956, -775 },
|
||||
{ 957, 959, -32 },
|
||||
{ 960, 960, 22 },
|
||||
{ 961, 961, 48 },
|
||||
{ 962, 962, EvenOdd },
|
||||
{ 963, 965, -32 },
|
||||
{ 966, 966, 15 },
|
||||
{ 967, 968, -32 },
|
||||
{ 969, 969, 7517 },
|
||||
{ 970, 971, -32 },
|
||||
{ 972, 972, -64 },
|
||||
{ 973, 974, -63 },
|
||||
{ 975, 975, 8 },
|
||||
{ 976, 976, -62 },
|
||||
{ 977, 977, 35 },
|
||||
{ 981, 981, -47 },
|
||||
{ 982, 982, -54 },
|
||||
{ 983, 983, -8 },
|
||||
{ 984, 1007, EvenOdd },
|
||||
{ 1008, 1008, -86 },
|
||||
{ 1009, 1009, -80 },
|
||||
{ 1010, 1010, 7 },
|
||||
{ 1011, 1011, -116 },
|
||||
{ 1012, 1012, -92 },
|
||||
{ 1013, 1013, -96 },
|
||||
{ 1015, 1016, OddEven },
|
||||
{ 1017, 1017, -7 },
|
||||
{ 1018, 1019, EvenOdd },
|
||||
{ 1021, 1023, -130 },
|
||||
{ 1024, 1039, 80 },
|
||||
{ 1040, 1071, 32 },
|
||||
{ 1072, 1073, -32 },
|
||||
{ 1074, 1074, 6222 },
|
||||
{ 1075, 1075, -32 },
|
||||
{ 1076, 1076, 6221 },
|
||||
{ 1077, 1085, -32 },
|
||||
{ 1086, 1086, 6212 },
|
||||
{ 1087, 1088, -32 },
|
||||
{ 1089, 1090, 6210 },
|
||||
{ 1091, 1097, -32 },
|
||||
{ 1098, 1098, 6204 },
|
||||
{ 1099, 1103, -32 },
|
||||
{ 1104, 1119, -80 },
|
||||
{ 1120, 1122, EvenOdd },
|
||||
{ 1123, 1123, 6180 },
|
||||
{ 1124, 1153, EvenOdd },
|
||||
{ 1162, 1215, EvenOdd },
|
||||
{ 1216, 1216, 15 },
|
||||
{ 1217, 1230, OddEven },
|
||||
{ 1231, 1231, -15 },
|
||||
{ 1232, 1327, EvenOdd },
|
||||
{ 1329, 1366, 48 },
|
||||
{ 1377, 1414, -48 },
|
||||
{ 4256, 4293, 7264 },
|
||||
{ 4295, 4295, 7264 },
|
||||
{ 4301, 4301, 7264 },
|
||||
{ 4304, 4346, 3008 },
|
||||
{ 4349, 4351, 3008 },
|
||||
{ 5024, 5103, 38864 },
|
||||
{ 5104, 5109, 8 },
|
||||
{ 5112, 5117, -8 },
|
||||
{ 7296, 7296, -6254 },
|
||||
{ 7297, 7297, -6253 },
|
||||
{ 7298, 7298, -6244 },
|
||||
{ 7299, 7299, -6242 },
|
||||
{ 7300, 7300, EvenOdd },
|
||||
{ 7301, 7301, -6243 },
|
||||
{ 7302, 7302, -6236 },
|
||||
{ 7303, 7303, -6181 },
|
||||
{ 7304, 7304, 35266 },
|
||||
{ 7312, 7354, -3008 },
|
||||
{ 7357, 7359, -3008 },
|
||||
{ 7545, 7545, 35332 },
|
||||
{ 7549, 7549, 3814 },
|
||||
{ 7566, 7566, 35384 },
|
||||
{ 7680, 7776, EvenOdd },
|
||||
{ 7777, 7777, 58 },
|
||||
{ 7778, 7829, EvenOdd },
|
||||
{ 7835, 7835, -59 },
|
||||
{ 7838, 7838, -7615 },
|
||||
{ 7840, 7935, EvenOdd },
|
||||
{ 7936, 7943, 8 },
|
||||
{ 7944, 7951, -8 },
|
||||
{ 7952, 7957, 8 },
|
||||
{ 7960, 7965, -8 },
|
||||
{ 7968, 7975, 8 },
|
||||
{ 7976, 7983, -8 },
|
||||
{ 7984, 7991, 8 },
|
||||
{ 7992, 7999, -8 },
|
||||
{ 8000, 8005, 8 },
|
||||
{ 8008, 8013, -8 },
|
||||
{ 8017, 8017, 8 },
|
||||
{ 8019, 8019, 8 },
|
||||
{ 8021, 8021, 8 },
|
||||
{ 8023, 8023, 8 },
|
||||
{ 8025, 8025, -8 },
|
||||
{ 8027, 8027, -8 },
|
||||
{ 8029, 8029, -8 },
|
||||
{ 8031, 8031, -8 },
|
||||
{ 8032, 8039, 8 },
|
||||
{ 8040, 8047, -8 },
|
||||
{ 8048, 8049, 74 },
|
||||
{ 8050, 8053, 86 },
|
||||
{ 8054, 8055, 100 },
|
||||
{ 8056, 8057, 128 },
|
||||
{ 8058, 8059, 112 },
|
||||
{ 8060, 8061, 126 },
|
||||
{ 8064, 8071, 8 },
|
||||
{ 8072, 8079, -8 },
|
||||
{ 8080, 8087, 8 },
|
||||
{ 8088, 8095, -8 },
|
||||
{ 8096, 8103, 8 },
|
||||
{ 8104, 8111, -8 },
|
||||
{ 8112, 8113, 8 },
|
||||
{ 8115, 8115, 9 },
|
||||
{ 8120, 8121, -8 },
|
||||
{ 8122, 8123, -74 },
|
||||
{ 8124, 8124, -9 },
|
||||
{ 8126, 8126, -7289 },
|
||||
{ 8131, 8131, 9 },
|
||||
{ 8136, 8139, -86 },
|
||||
{ 8140, 8140, -9 },
|
||||
{ 8144, 8145, 8 },
|
||||
{ 8152, 8153, -8 },
|
||||
{ 8154, 8155, -100 },
|
||||
{ 8160, 8161, 8 },
|
||||
{ 8165, 8165, 7 },
|
||||
{ 8168, 8169, -8 },
|
||||
{ 8170, 8171, -112 },
|
||||
{ 8172, 8172, -7 },
|
||||
{ 8179, 8179, 9 },
|
||||
{ 8184, 8185, -128 },
|
||||
{ 8186, 8187, -126 },
|
||||
{ 8188, 8188, -9 },
|
||||
{ 8486, 8486, -7549 },
|
||||
{ 8490, 8490, -8415 },
|
||||
{ 8491, 8491, -8294 },
|
||||
{ 8498, 8498, 28 },
|
||||
{ 8526, 8526, -28 },
|
||||
{ 8544, 8559, 16 },
|
||||
{ 8560, 8575, -16 },
|
||||
{ 8579, 8580, OddEven },
|
||||
{ 9398, 9423, 26 },
|
||||
{ 9424, 9449, -26 },
|
||||
{ 11264, 11310, 48 },
|
||||
{ 11312, 11358, -48 },
|
||||
{ 11360, 11361, EvenOdd },
|
||||
{ 11362, 11362, -10743 },
|
||||
{ 11363, 11363, -3814 },
|
||||
{ 11364, 11364, -10727 },
|
||||
{ 11365, 11365, -10795 },
|
||||
{ 11366, 11366, -10792 },
|
||||
{ 11367, 11372, OddEven },
|
||||
{ 11373, 11373, -10780 },
|
||||
{ 11374, 11374, -10749 },
|
||||
{ 11375, 11375, -10783 },
|
||||
{ 11376, 11376, -10782 },
|
||||
{ 11378, 11379, EvenOdd },
|
||||
{ 11381, 11382, OddEven },
|
||||
{ 11390, 11391, -10815 },
|
||||
{ 11392, 11491, EvenOdd },
|
||||
{ 11499, 11502, OddEven },
|
||||
{ 11506, 11507, EvenOdd },
|
||||
{ 11520, 11557, -7264 },
|
||||
{ 11559, 11559, -7264 },
|
||||
{ 11565, 11565, -7264 },
|
||||
{ 42560, 42570, EvenOdd },
|
||||
{ 42571, 42571, -35267 },
|
||||
{ 42572, 42605, EvenOdd },
|
||||
{ 42624, 42651, EvenOdd },
|
||||
{ 42786, 42799, EvenOdd },
|
||||
{ 42802, 42863, EvenOdd },
|
||||
{ 42873, 42876, OddEven },
|
||||
{ 42877, 42877, -35332 },
|
||||
{ 42878, 42887, EvenOdd },
|
||||
{ 42891, 42892, OddEven },
|
||||
{ 42893, 42893, -42280 },
|
||||
{ 42896, 42899, EvenOdd },
|
||||
{ 42900, 42900, 48 },
|
||||
{ 42902, 42921, EvenOdd },
|
||||
{ 42922, 42922, -42308 },
|
||||
{ 42923, 42923, -42319 },
|
||||
{ 42924, 42924, -42315 },
|
||||
{ 42925, 42925, -42305 },
|
||||
{ 42926, 42926, -42308 },
|
||||
{ 42928, 42928, -42258 },
|
||||
{ 42929, 42929, -42282 },
|
||||
{ 42930, 42930, -42261 },
|
||||
{ 42931, 42931, 928 },
|
||||
{ 42932, 42943, EvenOdd },
|
||||
{ 42946, 42947, EvenOdd },
|
||||
{ 42948, 42948, -48 },
|
||||
{ 42949, 42949, -42307 },
|
||||
{ 42950, 42950, -35384 },
|
||||
{ 43859, 43859, -928 },
|
||||
{ 43888, 43967, -38864 },
|
||||
{ 65313, 65338, 32 },
|
||||
{ 65345, 65370, -32 },
|
||||
{ 66560, 66599, 40 },
|
||||
{ 66600, 66639, -40 },
|
||||
{ 66736, 66771, 40 },
|
||||
{ 66776, 66811, -40 },
|
||||
{ 68736, 68786, 64 },
|
||||
{ 68800, 68850, -64 },
|
||||
{ 71840, 71871, 32 },
|
||||
{ 71872, 71903, -32 },
|
||||
{ 93760, 93791, 32 },
|
||||
{ 93792, 93823, -32 },
|
||||
{ 125184, 125217, 34 },
|
||||
{ 125218, 125251, -34 },
|
||||
};
|
||||
const int num_unicode_casefold = 356;
|
||||
|
||||
// 1381 groups, 1411 pairs, 198 ranges
|
||||
const CaseFold unicode_tolower[] = {
|
||||
{ 65, 90, 32 },
|
||||
{ 181, 181, 775 },
|
||||
{ 192, 214, 32 },
|
||||
{ 216, 222, 32 },
|
||||
{ 256, 302, EvenOddSkip },
|
||||
{ 306, 310, EvenOddSkip },
|
||||
{ 313, 327, OddEvenSkip },
|
||||
{ 330, 374, EvenOddSkip },
|
||||
{ 376, 376, -121 },
|
||||
{ 377, 381, OddEvenSkip },
|
||||
{ 383, 383, -268 },
|
||||
{ 385, 385, 210 },
|
||||
{ 386, 388, EvenOddSkip },
|
||||
{ 390, 390, 206 },
|
||||
{ 391, 391, OddEven },
|
||||
{ 393, 394, 205 },
|
||||
{ 395, 395, OddEven },
|
||||
{ 398, 398, 79 },
|
||||
{ 399, 399, 202 },
|
||||
{ 400, 400, 203 },
|
||||
{ 401, 401, OddEven },
|
||||
{ 403, 403, 205 },
|
||||
{ 404, 404, 207 },
|
||||
{ 406, 406, 211 },
|
||||
{ 407, 407, 209 },
|
||||
{ 408, 408, EvenOdd },
|
||||
{ 412, 412, 211 },
|
||||
{ 413, 413, 213 },
|
||||
{ 415, 415, 214 },
|
||||
{ 416, 420, EvenOddSkip },
|
||||
{ 422, 422, 218 },
|
||||
{ 423, 423, OddEven },
|
||||
{ 425, 425, 218 },
|
||||
{ 428, 428, EvenOdd },
|
||||
{ 430, 430, 218 },
|
||||
{ 431, 431, OddEven },
|
||||
{ 433, 434, 217 },
|
||||
{ 435, 437, OddEvenSkip },
|
||||
{ 439, 439, 219 },
|
||||
{ 440, 440, EvenOdd },
|
||||
{ 444, 444, EvenOdd },
|
||||
{ 452, 452, 2 },
|
||||
{ 453, 453, OddEven },
|
||||
{ 455, 455, 2 },
|
||||
{ 456, 456, EvenOdd },
|
||||
{ 458, 458, 2 },
|
||||
{ 459, 475, OddEvenSkip },
|
||||
{ 478, 494, EvenOddSkip },
|
||||
{ 497, 497, 2 },
|
||||
{ 498, 500, EvenOddSkip },
|
||||
{ 502, 502, -97 },
|
||||
{ 503, 503, -56 },
|
||||
{ 504, 542, EvenOddSkip },
|
||||
{ 544, 544, -130 },
|
||||
{ 546, 562, EvenOddSkip },
|
||||
{ 570, 570, 10795 },
|
||||
{ 571, 571, OddEven },
|
||||
{ 573, 573, -163 },
|
||||
{ 574, 574, 10792 },
|
||||
{ 577, 577, OddEven },
|
||||
{ 579, 579, -195 },
|
||||
{ 580, 580, 69 },
|
||||
{ 581, 581, 71 },
|
||||
{ 582, 590, EvenOddSkip },
|
||||
{ 837, 837, 116 },
|
||||
{ 880, 882, EvenOddSkip },
|
||||
{ 886, 886, EvenOdd },
|
||||
{ 895, 895, 116 },
|
||||
{ 902, 902, 38 },
|
||||
{ 904, 906, 37 },
|
||||
{ 908, 908, 64 },
|
||||
{ 910, 911, 63 },
|
||||
{ 913, 929, 32 },
|
||||
{ 931, 939, 32 },
|
||||
{ 962, 962, EvenOdd },
|
||||
{ 975, 975, 8 },
|
||||
{ 976, 976, -30 },
|
||||
{ 977, 977, -25 },
|
||||
{ 981, 981, -15 },
|
||||
{ 982, 982, -22 },
|
||||
{ 984, 1006, EvenOddSkip },
|
||||
{ 1008, 1008, -54 },
|
||||
{ 1009, 1009, -48 },
|
||||
{ 1012, 1012, -60 },
|
||||
{ 1013, 1013, -64 },
|
||||
{ 1015, 1015, OddEven },
|
||||
{ 1017, 1017, -7 },
|
||||
{ 1018, 1018, EvenOdd },
|
||||
{ 1021, 1023, -130 },
|
||||
{ 1024, 1039, 80 },
|
||||
{ 1040, 1071, 32 },
|
||||
{ 1120, 1152, EvenOddSkip },
|
||||
{ 1162, 1214, EvenOddSkip },
|
||||
{ 1216, 1216, 15 },
|
||||
{ 1217, 1229, OddEvenSkip },
|
||||
{ 1232, 1326, EvenOddSkip },
|
||||
{ 1329, 1366, 48 },
|
||||
{ 4256, 4293, 7264 },
|
||||
{ 4295, 4295, 7264 },
|
||||
{ 4301, 4301, 7264 },
|
||||
{ 5112, 5117, -8 },
|
||||
{ 7296, 7296, -6222 },
|
||||
{ 7297, 7297, -6221 },
|
||||
{ 7298, 7298, -6212 },
|
||||
{ 7299, 7300, -6210 },
|
||||
{ 7301, 7301, -6211 },
|
||||
{ 7302, 7302, -6204 },
|
||||
{ 7303, 7303, -6180 },
|
||||
{ 7304, 7304, 35267 },
|
||||
{ 7312, 7354, -3008 },
|
||||
{ 7357, 7359, -3008 },
|
||||
{ 7680, 7828, EvenOddSkip },
|
||||
{ 7835, 7835, -58 },
|
||||
{ 7838, 7838, -7615 },
|
||||
{ 7840, 7934, EvenOddSkip },
|
||||
{ 7944, 7951, -8 },
|
||||
{ 7960, 7965, -8 },
|
||||
{ 7976, 7983, -8 },
|
||||
{ 7992, 7999, -8 },
|
||||
{ 8008, 8013, -8 },
|
||||
{ 8025, 8025, -8 },
|
||||
{ 8027, 8027, -8 },
|
||||
{ 8029, 8029, -8 },
|
||||
{ 8031, 8031, -8 },
|
||||
{ 8040, 8047, -8 },
|
||||
{ 8072, 8079, -8 },
|
||||
{ 8088, 8095, -8 },
|
||||
{ 8104, 8111, -8 },
|
||||
{ 8120, 8121, -8 },
|
||||
{ 8122, 8123, -74 },
|
||||
{ 8124, 8124, -9 },
|
||||
{ 8126, 8126, -7173 },
|
||||
{ 8136, 8139, -86 },
|
||||
{ 8140, 8140, -9 },
|
||||
{ 8152, 8153, -8 },
|
||||
{ 8154, 8155, -100 },
|
||||
{ 8168, 8169, -8 },
|
||||
{ 8170, 8171, -112 },
|
||||
{ 8172, 8172, -7 },
|
||||
{ 8184, 8185, -128 },
|
||||
{ 8186, 8187, -126 },
|
||||
{ 8188, 8188, -9 },
|
||||
{ 8486, 8486, -7517 },
|
||||
{ 8490, 8490, -8383 },
|
||||
{ 8491, 8491, -8262 },
|
||||
{ 8498, 8498, 28 },
|
||||
{ 8544, 8559, 16 },
|
||||
{ 8579, 8579, OddEven },
|
||||
{ 9398, 9423, 26 },
|
||||
{ 11264, 11310, 48 },
|
||||
{ 11360, 11360, EvenOdd },
|
||||
{ 11362, 11362, -10743 },
|
||||
{ 11363, 11363, -3814 },
|
||||
{ 11364, 11364, -10727 },
|
||||
{ 11367, 11371, OddEvenSkip },
|
||||
{ 11373, 11373, -10780 },
|
||||
{ 11374, 11374, -10749 },
|
||||
{ 11375, 11375, -10783 },
|
||||
{ 11376, 11376, -10782 },
|
||||
{ 11378, 11378, EvenOdd },
|
||||
{ 11381, 11381, OddEven },
|
||||
{ 11390, 11391, -10815 },
|
||||
{ 11392, 11490, EvenOddSkip },
|
||||
{ 11499, 11501, OddEvenSkip },
|
||||
{ 11506, 11506, EvenOdd },
|
||||
{ 42560, 42604, EvenOddSkip },
|
||||
{ 42624, 42650, EvenOddSkip },
|
||||
{ 42786, 42798, EvenOddSkip },
|
||||
{ 42802, 42862, EvenOddSkip },
|
||||
{ 42873, 42875, OddEvenSkip },
|
||||
{ 42877, 42877, -35332 },
|
||||
{ 42878, 42886, EvenOddSkip },
|
||||
{ 42891, 42891, OddEven },
|
||||
{ 42893, 42893, -42280 },
|
||||
{ 42896, 42898, EvenOddSkip },
|
||||
{ 42902, 42920, EvenOddSkip },
|
||||
{ 42922, 42922, -42308 },
|
||||
{ 42923, 42923, -42319 },
|
||||
{ 42924, 42924, -42315 },
|
||||
{ 42925, 42925, -42305 },
|
||||
{ 42926, 42926, -42308 },
|
||||
{ 42928, 42928, -42258 },
|
||||
{ 42929, 42929, -42282 },
|
||||
{ 42930, 42930, -42261 },
|
||||
{ 42931, 42931, 928 },
|
||||
{ 42932, 42942, EvenOddSkip },
|
||||
{ 42946, 42946, EvenOdd },
|
||||
{ 42948, 42948, -48 },
|
||||
{ 42949, 42949, -42307 },
|
||||
{ 42950, 42950, -35384 },
|
||||
{ 43888, 43967, -38864 },
|
||||
{ 65313, 65338, 32 },
|
||||
{ 66560, 66599, 40 },
|
||||
{ 66736, 66771, 40 },
|
||||
{ 68736, 68786, 64 },
|
||||
{ 71840, 71871, 32 },
|
||||
{ 93760, 93791, 32 },
|
||||
{ 125184, 125217, 34 },
|
||||
};
|
||||
const int num_unicode_tolower = 198;
|
||||
|
||||
|
||||
|
||||
} // namespace re2
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user