/* * This file is a part of TTMath Bignum Library * and is distributed under the (new) BSD licence. * Author: Tomasz Sowa */ /* * Copyright (c) 2006-2011, Tomasz Sowa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name Tomasz Sowa nor the names of contributors to this * project may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef headerfilettmathuint #define headerfilettmathuint /*! \file ttmathuint.h \brief template class UInt */ #include #include #include "ttmathtypes.h" #include "ttmathmisc.h" /*! \brief a namespace for the TTMath library */ namespace ttmath { /*! \brief UInt implements a big integer value without a sign value_size - how many bytes specify our value on 32bit platforms: value_size=1 -> 4 bytes -> 32 bits on 64bit platforms: value_size=1 -> 8 bytes -> 64 bits value_size = 1,2,3,4,5,6.... */ template class UInt { public: /*! buffer for the integer value table[0] - the lowest word of the value */ uint table[value_size]; /*! some methods used for debugging purposes */ /*! this method is used when macro TTMATH_DEBUG_LOG is defined */ template static void PrintVectorLog(const char_type * msg, ostream_type & output, const uint * vector, uint vector_len) { output << msg << std::endl; for(uint i=0 ; i static void PrintVectorLog(const char_type * msg, uint carry, ostream_type & output, const uint * vector, uint vector_len) { PrintVectorLog(msg, output, vector, vector_len); output << " carry: " << carry << std::endl; } /*! this method is used when macro TTMATH_DEBUG_LOG is defined */ template void PrintLog(const char_type * msg, ostream_type & output) const { PrintVectorLog(msg, output, table, value_size); } /*! this method is used when macro TTMATH_DEBUG_LOG is defined */ template void PrintLog(const char_type * msg, uint carry, ostream_type & output) const { PrintVectorLog(msg, output, table, value_size); output << " carry: " << carry << std::endl; } /*! this method returns the size of the table */ uint Size() const { return value_size; } /*! this method sets zero */ void SetZero() { // in the future here can be 'memset' for(uint i=0 ; i & ss2) { for(uint i=0 ; i=0 && temp_table_index=0 ; --i) table[i] = 0; TTMATH_LOG("UInt::SetFromTable") } #endif #ifdef TTMATH_PLATFORM64 /*! this method copies the value stored in an another table (warning: first values in temp_table are the highest words -- it's different from our table) ***this method is created only on a 64bit platform*** we copy as many words as it is possible if temp_table_len is bigger than value_size we'll try to round the lowest word from table depending on the last not used bit in temp_table (this rounding isn't a perfect rounding -- look at the description below) and if temp_table_len is smaller than value_size we'll clear the rest words in the table warning: we're using 'temp_table' as a pointer at 32bit words */ void SetFromTable(const unsigned int * temp_table, uint temp_table_len) { uint temp_table_index = 0; sint i; // 'i' with a sign for(i=value_size-1 ; i>=0 && temp_table_index= 0 ; --i) table[i] = 0; TTMATH_LOG("UInt::SetFromTable") } #endif /*! * * basic mathematic functions * */ /*! this method adds one to the existing value */ uint AddOne() { return AddInt(1); } /*! this method subtracts one from the existing value */ uint SubOne() { return SubInt(1); } private: /*! an auxiliary method for moving bits into the left hand side this method moves only words */ void RclMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c) { rest_bits = bits % TTMATH_BITS_PER_UINT; uint all_words = bits / TTMATH_BITS_PER_UINT; uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0; if( all_words >= value_size ) { if( all_words == value_size && rest_bits == 0 ) last_c = table[0] & 1; // else: last_c is default set to 0 // clearing for(uint i = 0 ; i 0 ) { // 0 < all_words < value_size sint first, second; last_c = table[value_size - all_words] & 1; // all_words is greater than 0 // copying the first part of the value for(first = value_size-1, second=first-all_words ; second>=0 ; --first, --second) table[first] = table[second]; // setting the rest to 'c' for( ; first>=0 ; --first ) table[first] = mask; } TTMATH_LOG("UInt::RclMoveAllWords") } public: /*! moving all bits into the left side 'bits' times return value <- this <- C bits is from a range of <0, man * TTMATH_BITS_PER_UINT> or it can be even bigger then all bits will be set to 'c' the value c will be set into the lowest bits and the method returns state of the last moved bit */ uint Rcl(uint bits, uint c=0) { uint last_c = 0; uint rest_bits = bits; if( bits == 0 ) return 0; if( bits >= TTMATH_BITS_PER_UINT ) RclMoveAllWords(rest_bits, last_c, bits, c); if( rest_bits == 0 ) { TTMATH_LOG("UInt::Rcl") return last_c; } // rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now if( rest_bits == 1 ) { last_c = Rcl2_one(c); } else if( rest_bits == 2 ) { // performance tests showed that for rest_bits==2 it's better to use Rcl2_one twice instead of Rcl2(2,c) Rcl2_one(c); last_c = Rcl2_one(c); } else { last_c = Rcl2(rest_bits, c); } TTMATH_LOGC("UInt::Rcl", last_c) return last_c; } private: /*! an auxiliary method for moving bits into the right hand side this method moves only words */ void RcrMoveAllWords(uint & rest_bits, uint & last_c, uint bits, uint c) { rest_bits = bits % TTMATH_BITS_PER_UINT; uint all_words = bits / TTMATH_BITS_PER_UINT; uint mask = ( c ) ? TTMATH_UINT_MAX_VALUE : 0; if( all_words >= value_size ) { if( all_words == value_size && rest_bits == 0 ) last_c = (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0; // else: last_c is default set to 0 // clearing for(uint i = 0 ; i 0 ) { // 0 < all_words < value_size uint first, second; last_c = (table[all_words - 1] & TTMATH_UINT_HIGHEST_BIT) ? 1 : 0; // all_words is > 0 // copying the first part of the value for(first=0, second=all_words ; second this -> return value bits is from a range of <0, man * TTMATH_BITS_PER_UINT> or it can be even bigger then all bits will be set to 'c' the value c will be set into the highest bits and the method returns state of the last moved bit */ uint Rcr(uint bits, uint c=0) { uint last_c = 0; uint rest_bits = bits; if( bits == 0 ) return 0; if( bits >= TTMATH_BITS_PER_UINT ) RcrMoveAllWords(rest_bits, last_c, bits, c); if( rest_bits == 0 ) { TTMATH_LOG("UInt::Rcr") return last_c; } // rest_bits is from 1 to TTMATH_BITS_PER_UINT-1 now if( rest_bits == 1 ) { last_c = Rcr2_one(c); } else if( rest_bits == 2 ) { // performance tests showed that for rest_bits==2 it's better to use Rcr2_one twice instead of Rcr2(2,c) Rcr2_one(c); last_c = Rcr2_one(c); } else { last_c = Rcr2(rest_bits, c); } TTMATH_LOGC("UInt::Rcr", last_c) return last_c; } /*! this method moves all bits into the left side (it returns value how many bits have been moved) */ uint CompensationToLeft() { uint moving = 0; // a - index a last word which is different from zero sint a; for(a=value_size-1 ; a>=0 && table[a]==0 ; --a); if( a < 0 ) return moving; // all words in table have zero if( a != value_size-1 ) { moving += ( value_size-1 - a ) * TTMATH_BITS_PER_UINT; // moving all words sint i; for(i=value_size-1 ; a>=0 ; --i, --a) table[i] = table[a]; // setting the rest word to zero for(; i>=0 ; --i) table[i] = 0; } uint moving2 = FindLeadingBitInWord( table[value_size-1] ); // moving2 is different from -1 because the value table[value_size-1] // is not zero moving2 = TTMATH_BITS_PER_UINT - moving2 - 1; Rcl(moving2); TTMATH_LOG("UInt::CompensationToLeft") return moving + moving2; } /*! this method looks for the highest set bit result: if 'this' is not zero: return value - true 'table_id' - the index of a word <0..value_size-1> 'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT) if 'this' is zero: return value - false both 'table_id' and 'index' are zero */ bool FindLeadingBit(uint & table_id, uint & index) const { for(table_id=value_size-1 ; table_id!=0 && table[table_id]==0 ; --table_id); if( table_id==0 && table[table_id]==0 ) { // is zero index = 0; return false; } // table[table_id] is different from 0 index = FindLeadingBitInWord( table[table_id] ); return true; } /*! this method looks for the smallest set bit result: if 'this' is not zero: return value - true 'table_id' - the index of a word <0..value_size-1> 'index' - the index of this set bit in the word <0..TTMATH_BITS_PER_UINT) if 'this' is zero: return value - false both 'table_id' and 'index' are zero */ bool FindLowestBit(uint & table_id, uint & index) const { for(table_id=0 ; table_id= value_size ) { // is zero index = 0; table_id = 0; return false; } // table[table_id] is different from 0 index = FindLowestBitInWord( table[table_id] ); return true; } /*! getting the 'bit_index' bit bit_index bigger or equal zero */ uint GetBit(uint bit_index) const { TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT ) uint index = bit_index / TTMATH_BITS_PER_UINT; uint bit = bit_index % TTMATH_BITS_PER_UINT; uint temp = table[index]; uint res = SetBitInWord(temp, bit); return res; } /*! setting the 'bit_index' bit and returning the last state of the bit bit_index bigger or equal zero */ uint SetBit(uint bit_index) { TTMATH_ASSERT( bit_index < value_size * TTMATH_BITS_PER_UINT ) uint index = bit_index / TTMATH_BITS_PER_UINT; uint bit = bit_index % TTMATH_BITS_PER_UINT; uint res = SetBitInWord(table[index], bit); TTMATH_LOG("UInt::SetBit") return res; } /*! this method performs a bitwise operation AND */ void BitAnd(const UInt & ss2) { for(uint x=0 ; x & ss2) { for(uint x=0 ; x & ss2) { for(uint x=0 ; x for example: BitNot2(8) = BitNot2( 1000(bin) ) = 111(bin) = 7 */ void BitNot2() { uint table_id, index; if( FindLeadingBit(table_id, index) ) { for(uint x=0 ; x>= shift; table[table_id] ^= mask; } else table[0] = 1; TTMATH_LOG("UInt::BitNot2") } /*! * * Multiplication * * */ public: /*! multiplication: this = this * ss2 it can return a carry */ uint MulInt(uint ss2) { uint r1, r2, x1; uint c = 0; UInt u(*this); SetZero(); if( ss2 == 0 ) { TTMATH_LOGC("UInt::MulInt(uint)", 0) return 0; } for(x1=0 ; x1 void MulInt(uint ss2, UInt & result) const { TTMATH_ASSERT( result_size > value_size ) uint r2,r1; uint x1size=value_size; uint x1start=0; result.SetZero(); if( ss2 == 0 ) { TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size) return; } if( value_size > 2 ) { // if the value_size is smaller than or equal to 2 // there is no sense to set x1size and x1start to another values for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size); if( x1size == 0 ) { TTMATH_VECTOR_LOG("UInt::MulInt(uint, UInt<>)", result.table, result_size) return; } for(x1start=0 ; x1start)", result.table, result_size) return; } /*! the multiplication 'this' = 'this' * ss2 algorithm: 100 - means automatically choose the fastest algorithm */ uint Mul(const UInt & ss2, uint algorithm = 100) { switch( algorithm ) { case 1: return Mul1(ss2); case 2: return Mul2(ss2); case 3: return Mul3(ss2); case 100: default: return MulFastest(ss2); } } /*! the multiplication 'result' = 'this' * ss2 since the 'result' is twice bigger than 'this' and 'ss2' this method never returns a carry algorithm: 100 - means automatically choose the fastest algorithm */ void MulBig(const UInt & ss2, UInt & result, uint algorithm = 100) { switch( algorithm ) { case 1: return Mul1Big(ss2, result); case 2: return Mul2Big(ss2, result); case 3: return Mul3Big(ss2, result); case 100: default: return MulFastestBig(ss2, result); } } /*! the first version of the multiplication algorithm */ private: /*! multiplication: this = this * ss2 it returns carry if it has been */ uint Mul1Ref(const UInt & ss2) { TTMATH_REFERENCE_ASSERT( ss2 ) UInt ss1( *this ); SetZero(); for(uint i=0; i < value_size*TTMATH_BITS_PER_UINT ; ++i) { if( Add(*this) ) { TTMATH_LOGC("UInt::Mul1", 1) return 1; } if( ss1.Rcl(1) ) if( Add(ss2) ) { TTMATH_LOGC("UInt::Mul1", 1) return 1; } } TTMATH_LOGC("UInt::Mul1", 0) return 0; } public: /*! multiplication: this = this * ss2 can return carry */ uint Mul1(const UInt & ss2) { if( this == &ss2 ) { UInt copy_ss2(ss2); return Mul1Ref(copy_ss2); } else { return Mul1Ref(ss2); } } /*! multiplication: result = this * ss2 result is twice bigger than 'this' and 'ss2' this method never returns carry */ void Mul1Big(const UInt & ss2_, UInt & result) { UInt ss2; uint i; // copying *this into result and ss2_ into ss2 for(i=0 ; i & ss2) { UInt result; uint i, c = 0; Mul2Big(ss2, result); // copying result for(i=0 ; i & ss2, UInt & result) { Mul2Big2(table, ss2.table, result); TTMATH_LOG("UInt::Mul2Big") } private: /*! an auxiliary method for calculating the multiplication arguments we're taking as pointers (this is to improve the Mul3Big2()- avoiding unnecessary copying objects), the result should be taken as a pointer too, but at the moment there is no method AddTwoInts() which can operate on pointers */ template void Mul2Big2(const uint * ss1, const uint * ss2, UInt & result) { uint x1size = ss_size, x2size = ss_size; uint x1start = 0, x2start = 0; if( ss_size > 2 ) { // if the ss_size is smaller than or equal to 2 // there is no sense to set x1size (and others) to another values for(x1size=ss_size ; x1size>0 && ss1[x1size-1]==0 ; --x1size); for(x2size=ss_size ; x2size>0 && ss2[x2size-1]==0 ; --x2size); for(x1start=0 ; x1start(ss1, ss2, result, x1start, x1size, x2start, x2size); } /*! an auxiliary method for calculating the multiplication */ template void Mul2Big3(const uint * ss1, const uint * ss2, UInt & result, uint x1start, uint x1size, uint x2start, uint x2size) { uint r2, r1; result.SetZero(); if( x1size==0 || x2size==0 ) return; for(uint x1=x1start ; x1 & ss2) { UInt result; uint i, c = 0; Mul3Big(ss2, result); // copying result for(i=0 ; i & ss2, UInt & result) { Mul3Big2(table, ss2.table, result.table); TTMATH_LOG("UInt::Mul3Big") } private: /*! an auxiliary method for calculating the Karatsuba multiplication result_size is equal ss_size*2 */ template void Mul3Big2(const uint * ss1, const uint * ss2, uint * result) { const uint * x1, * x0, * y1, * y0; if( ss_size>1 && ss_size res; Mul2Big2(ss1, ss2, res); #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wtautological-compare" #endif for(uint i=0 ; i(x1, x0, y1, y0, result); } else { // ss_size is even x0 = ss1; y0 = ss2; x1 = ss1 + ss_size / 2; y1 = ss2 + ss_size / 2; // all four vectors (x0 x1 y0 y1) are equal in size Mul3Big3(x1, x0, y1, y0, result); } } #ifdef _MSC_VER #pragma warning (disable : 4717) //warning C4717: recursive on all control paths, function will cause runtime stack overflow //we have the stop point in Mul3Big2() method #endif /*! an auxiliary method for calculating the Karatsuba multiplication x = x1*B^m + x0 y = y1*B^m + y0 first_size - is the size of vectors: x0 and y0 second_size - is the size of vectors: x1 and y1 (can be either equal first_size or smaller about one from first_size) x*y = (x1*B^m + x0)(y1*B^m + y0) = z2*B^(2m) + z1*B^m + z0 where z0 = x0*y0 z2 = x1*y1 z1 = (x1 + x0)*(y1 + y0) - z2 - z0 */ template uint Mul3Big3(const uint * x1, const uint * x0, const uint * y1, const uint * y0, uint * result) { uint i, c, xc, yc; UInt temp, temp2; UInt z1; // z0 and z2 we store directly in the result (we don't use any temporary variables) Mul3Big2(x0, y0, result); // z0 Mul3Big2(x1, y1, result+first_size*2); // z2 // now we calculate z1 // temp = (x0 + x1) // temp2 = (y0 + y1) // we're using temp and temp2 with UInt, although there can be a carry but // we simple remember it in xc and yc (xc and yc can be either 0 or 1), // and (x0 + x1)*(y0 + y1) we calculate in this way (schoolbook algorithm): // // xc | temp // yc | temp2 // -------------------- // (temp * temp2) // xc*temp2 | // yc*temp | // xc*yc | // ---------- z1 -------- // // and the result is never larger in size than 3*first_size xc = AddVector(x0, x1, first_size, second_size, temp.table); yc = AddVector(y0, y1, first_size, second_size, temp2.table); Mul3Big2(temp.table, temp2.table, z1.table); #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wtautological-compare" #endif // clearing the rest of z1 for(i=first_size*2 ; i second_size ) { uint z1_size = result_size - first_size; TTMATH_ASSERT( z1_size <= first_size*3 ) #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wtautological-compare" #endif for(i=z1_size ; i & ss2) { UInt result; uint i, c = 0; MulFastestBig(ss2, result); // copying result for(i=0 ; i & ss2, UInt & result) { if( value_size < TTMATH_USE_KARATSUBA_MULTIPLICATION_FROM_SIZE ) return Mul2Big(ss2, result); uint x1size = value_size, x2size = value_size; uint x1start = 0, x2start = 0; for(x1size=value_size ; x1size>0 && table[x1size-1]==0 ; --x1size); for(x2size=value_size ; x2size>0 && ss2.table[x2size-1]==0 ; --x2size); if( x1size==0 || x2size==0 ) { // either 'this' or 'ss2' is equal zero - the result is zero too result.SetZero(); return; } for(x1start=0 ; x1start(table, ss2.table, result, x1start, x1size, x2start, x2size); // Karatsuba multiplication Mul3Big(ss2, result); TTMATH_LOG("UInt::MulFastestBig") } /*! * * Division * * */ public: /*! division by one unsigned word returns 1 when divisor is zero */ uint DivInt(uint divisor, uint * remainder = 0) { if( divisor == 0 ) { if( remainder ) *remainder = 0; // this is for convenience, without it the compiler can report that 'remainder' is uninitialized TTMATH_LOG("UInt::DivInt") return 1; } if( divisor == 1 ) { if( remainder ) *remainder = 0; TTMATH_LOG("UInt::DivInt") return 0; } UInt dividend(*this); SetZero(); sint i; // i must be with a sign uint r = 0; // we're looking for the last word in ss1 for(i=value_size-1 ; i>0 && dividend.table[i]==0 ; --i); for( ; i>=0 ; --i) DivTwoWords(r, dividend.table[i], divisor, &table[i], &r); if( remainder ) *remainder = r; TTMATH_LOG("UInt::DivInt") return 0; } uint DivInt(uint divisor, uint & remainder) { return DivInt(divisor, &remainder); } /*! division this = this / ss2 return values: 0 - ok 1 - division by zero 'this' will be the quotient 'remainder' - remainder */ uint Div( const UInt & divisor, UInt * remainder = 0, uint algorithm = 3) { switch( algorithm ) { case 1: return Div1(divisor, remainder); case 2: return Div2(divisor, remainder); case 3: default: return Div3(divisor, remainder); } } uint Div(const UInt & divisor, UInt & remainder, uint algorithm = 3) { return Div(divisor, &remainder, algorithm); } private: /*! return values: 0 - none has to be done 1 - division by zero 2 - division should be made */ uint Div_StandardTest( const UInt & v, uint & m, uint & n, UInt * remainder = 0) { switch( Div_CalculatingSize(v, m, n) ) { case 4: // 'this' is equal v if( remainder ) remainder->SetZero(); SetOne(); TTMATH_LOG("UInt::Div_StandardTest") return 0; case 3: // 'this' is smaller than v if( remainder ) *remainder = *this; SetZero(); TTMATH_LOG("UInt::Div_StandardTest") return 0; case 2: // 'this' is zero if( remainder ) remainder->SetZero(); SetZero(); TTMATH_LOG("UInt::Div_StandardTest") return 0; case 1: // v is zero TTMATH_LOG("UInt::Div_StandardTest") return 1; } TTMATH_LOG("UInt::Div_StandardTest") return 2; } /*! return values: 0 - ok 'm' - is the index (from 0) of last non-zero word in table ('this') 'n' - is the index (from 0) of last non-zero word in v.table 1 - v is zero 2 - 'this' is zero 3 - 'this' is smaller than v 4 - 'this' is equal v if the return value is different than zero the 'm' and 'n' are undefined */ uint Div_CalculatingSize(const UInt & v, uint & m, uint & n) { m = n = value_size-1; for( ; n!=0 && v.table[n]==0 ; --n); if( n==0 && v.table[n]==0 ) return 1; for( ; m!=0 && table[m]==0 ; --m); if( m==0 && table[m]==0 ) return 2; if( m < n ) return 3; else if( m == n ) { uint i; for(i = n ; i!=0 && table[i]==v.table[i] ; --i); if( table[i] < v.table[i] ) return 3; else if (table[i] == v.table[i] ) return 4; } return 0; } public: /*! the first division algorithm radix 2 */ uint Div1(const UInt & divisor, UInt * remainder = 0) { uint m,n, test; test = Div_StandardTest(divisor, m, n, remainder); if( test < 2 ) return test; if( !remainder ) { UInt rem; return Div1_Calculate(divisor, rem); } return Div1_Calculate(divisor, *remainder); } /*! the first division algorithm radix 2 */ uint Div1(const UInt & divisor, UInt & remainder) { return Div1(divisor, &remainder); } private: uint Div1_Calculate(const UInt & divisor, UInt & rest) { if( this == &divisor ) { UInt divisor_copy(divisor); return Div1_CalculateRef(divisor_copy, rest); } else { return Div1_CalculateRef(divisor, rest); } } uint Div1_CalculateRef(const UInt & divisor, UInt & rest) { TTMATH_REFERENCE_ASSERT( divisor ) sint loop; sint c; rest.SetZero(); loop = value_size * TTMATH_BITS_PER_UINT; c = 0; div_a: c = Rcl(1, c); c = rest.Add(rest,c); c = rest.Sub(divisor,c); c = !c; if(!c) goto div_d; div_b: --loop; if(loop) goto div_a; c = Rcl(1, c); TTMATH_LOG("UInt::Div1_Calculate") return 0; div_c: c = Rcl(1, c); c = rest.Add(rest,c); c = rest.Add(divisor); if(c) goto div_b; div_d: --loop; if(loop) goto div_c; c = Rcl(1, c); c = rest.Add(divisor); TTMATH_LOG("UInt::Div1_Calculate") return 0; } public: /*! the second division algorithm return values: 0 - ok 1 - division by zero */ uint Div2(const UInt & divisor, UInt * remainder = 0) { if( this == &divisor ) { UInt divisor_copy(divisor); return Div2Ref(divisor_copy, remainder); } else { return Div2Ref(divisor, remainder); } } /*! the second division algorithm return values: 0 - ok 1 - division by zero */ uint Div2(const UInt & divisor, UInt & remainder) { return Div2(divisor, &remainder); } private: /*! the second division algorithm return values: 0 - ok 1 - division by zero */ uint Div2Ref(const UInt & divisor, UInt * remainder = 0) { uint bits_diff; uint status = Div2_Calculate(divisor, remainder, bits_diff); if( status < 2 ) return status; if( CmpBiggerEqual(divisor) ) { Div2(divisor, remainder); SetBit(bits_diff); } else { if( remainder ) *remainder = *this; SetZero(); SetBit(bits_diff); } TTMATH_LOG("UInt::Div2") return 0; } /*! return values: 0 - we've calculated the division 1 - division by zero 2 - we have to still calculate */ uint Div2_Calculate(const UInt & divisor, UInt * remainder, uint & bits_diff) { uint table_id, index; uint divisor_table_id, divisor_index; uint status = Div2_FindLeadingBitsAndCheck( divisor, remainder, table_id, index, divisor_table_id, divisor_index); if( status < 2 ) { TTMATH_LOG("UInt::Div2_Calculate") return status; } // here we know that 'this' is greater than divisor // then 'index' is greater or equal 'divisor_index' bits_diff = index - divisor_index; UInt divisor_copy(divisor); divisor_copy.Rcl(bits_diff, 0); if( CmpSmaller(divisor_copy, table_id) ) { divisor_copy.Rcr(1); --bits_diff; } Sub(divisor_copy, 0); TTMATH_LOG("UInt::Div2_Calculate") return 2; } /*! return values: 0 - we've calculated the division 1 - division by zero 2 - we have to still calculate */ uint Div2_FindLeadingBitsAndCheck( const UInt & divisor, UInt * remainder, uint & table_id, uint & index, uint & divisor_table_id, uint & divisor_index) { if( !divisor.FindLeadingBit(divisor_table_id, divisor_index) ) { // division by zero TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck") return 1; } if( !FindLeadingBit(table_id, index) ) { // zero is divided by something SetZero(); if( remainder ) remainder->SetZero(); TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck") return 0; } divisor_index += divisor_table_id * TTMATH_BITS_PER_UINT; index += table_id * TTMATH_BITS_PER_UINT; if( divisor_table_id == 0 ) { // dividor has only one 32-bit word uint r; DivInt(divisor.table[0], &r); if( remainder ) { remainder->SetZero(); remainder->table[0] = r; } TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck") return 0; } if( Div2_DivisorGreaterOrEqual( divisor, remainder, table_id, index, divisor_index) ) { TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck") return 0; } TTMATH_LOG("UInt::Div2_FindLeadingBitsAndCheck") return 2; } /*! return values: true if divisor is equal or greater than 'this' */ bool Div2_DivisorGreaterOrEqual( const UInt & divisor, UInt * remainder, uint table_id, uint index, uint divisor_index ) { if( divisor_index > index ) { // divisor is greater than this if( remainder ) *remainder = *this; SetZero(); TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual") return true; } if( divisor_index == index ) { // table_id == divisor_table_id as well uint i; for(i = table_id ; i!=0 && table[i]==divisor.table[i] ; --i); if( table[i] < divisor.table[i] ) { // divisor is greater than 'this' if( remainder ) *remainder = *this; SetZero(); TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual") return true; } else if( table[i] == divisor.table[i] ) { // divisor is equal 'this' if( remainder ) remainder->SetZero(); SetOne(); TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual") return true; } } TTMATH_LOG("UInt::Div2_DivisorGreaterOrEqual") return false; } public: /*! the third division algorithm */ uint Div3(const UInt & ss2, UInt * remainder = 0) { if( this == &ss2 ) { UInt copy_ss2(ss2); return Div3Ref(copy_ss2, remainder); } else { return Div3Ref(ss2, remainder); } } /*! the third division algorithm */ uint Div3(const UInt & ss2, UInt & remainder) { return Div3(ss2, &remainder); } private: /*! the third division algorithm this algorithm is described in the following book: "The art of computer programming 2" (4.3.1 page 272) Donald E. Knuth !! give the description here (from the book) */ uint Div3Ref(const UInt & v, UInt * remainder = 0) { uint m,n, test; test = Div_StandardTest(v, m, n, remainder); if( test < 2 ) return test; if( n == 0 ) { uint r; DivInt( v.table[0], &r ); if( remainder ) { remainder->SetZero(); remainder->table[0] = r; } TTMATH_LOG("UInt::Div3") return 0; } // we can only use the third division algorithm when // the divisor is greater or equal 2^32 (has more than one 32-bit word) ++m; ++n; m = m - n; Div3_Division(v, remainder, m, n); TTMATH_LOG("UInt::Div3") return 0; } private: void Div3_Division(UInt v, UInt * remainder, uint m, uint n) { TTMATH_ASSERT( n>=2 ) UInt uu, vv; UInt q; uint d, u_value_size, u0, u1, u2, v1, v0, j=m; u_value_size = Div3_Normalize(v, n, d); if( j+n == value_size ) u2 = u_value_size; else u2 = table[j+n]; Div3_MakeBiggerV(v, vv); for(uint i = j+1 ; i & uu, uint j, uint n, uint u_max) { uint i; for(i=0 ; i so and 'i' is from <0..value_size> // then table[i] is always correct (look at the declaration of 'uu') uu.table[i] = u_max; for( ++i ; i & uu, uint j, uint n) { uint i; for(i=0 ; i & v, UInt & vv) { for(uint i=0 ; i & v, uint n, uint & d) { // v.table[n-1] is != 0 uint bit = (uint)FindLeadingBitInWord(v.table[n-1]); uint move = (TTMATH_BITS_PER_UINT - bit - 1); uint res = table[value_size-1]; d = move; if( move > 0 ) { v.Rcl(move, 0); Rcl(move, 0); res = res >> (bit + 1); } else { res = 0; } TTMATH_LOG("UInt::Div3_Normalize") return res; } void Div3_Unnormalize(UInt * remainder, uint n, uint d) { for(uint i=n ; i u_temp; uint rp; bool next_test; TTMATH_ASSERT( v1 != 0 ) u_temp.table[1] = u2; u_temp.table[0] = u1; u_temp.DivInt(v1, &rp); TTMATH_ASSERT( u_temp.table[1]==0 || u_temp.table[1]==1 ) do { bool decrease = false; if( u_temp.table[1] == 1 ) decrease = true; else { UInt<2> temp1, temp2; UInt<2>::MulTwoWords(u_temp.table[0], v0, temp1.table+1, temp1.table); temp2.table[1] = rp; temp2.table[0] = u0; if( temp1 > temp2 ) decrease = true; } next_test = false; if( decrease ) { u_temp.SubOne(); rp += v1; if( rp >= v1 ) // it means that there wasn't a carry (r & uu, const UInt & vv, uint & qp) { // D4 (in the book) UInt vv_temp(vv); vv_temp.MulInt(qp); if( uu.Sub(vv_temp) ) { // there was a carry // // !!! this part of code was not tested // --qp; uu.Add(vv); // can be a carry from this additions but it should be ignored // because it cancels with the borrow from uu.Sub(vv_temp) } TTMATH_LOG("UInt::Div3_MultiplySubtract") } public: /*! power this = this ^ pow binary algorithm (r-to-l) return values: 0 - ok 1 - carry 2 - incorrect argument (0^0) */ uint Pow(UInt pow) { if(pow.IsZero() && IsZero()) // we don't define zero^zero return 2; UInt start(*this); UInt result; result.SetOne(); uint c = 0; while( !c ) { if( pow.table[0] & 1 ) c += result.Mul(start); pow.Rcr2_one(0); if( pow.IsZero() ) break; c += start.Mul(start); } *this = result; TTMATH_LOGC("UInt::Pow(UInt<>)", c) return (c==0)? 0 : 1; } /*! square root e.g. Sqrt(9) = 3 ('digit-by-digit' algorithm) */ void Sqrt() { UInt bit, temp; if( IsZero() ) return; UInt value(*this); SetZero(); bit.SetZero(); bit.table[value_size-1] = (TTMATH_UINT_HIGHEST_BIT >> 1); while( bit > value ) bit.Rcr(2); while( !bit.IsZero() ) { temp = *this; temp.Add(bit); if( value >= temp ) { value.Sub(temp); Rcr(1); Add(bit); } else { Rcr(1); } bit.Rcr(2); } TTMATH_LOG("UInt::Sqrt") } /*! this method sets n first bits to value zero For example: let n=2 then if there's a value 111 (bin) there'll be '100' (bin) */ void ClearFirstBits(uint n) { if( n >= value_size*TTMATH_BITS_PER_UINT ) { SetZero(); TTMATH_LOG("UInt::ClearFirstBits") return; } uint * p = table; // first we're clearing the whole words while( n >= TTMATH_BITS_PER_UINT ) { *p++ = 0; n -= TTMATH_BITS_PER_UINT; } if( n == 0 ) { TTMATH_LOG("UInt::ClearFirstBits") return; } // and then we're clearing one word which has left // mask -- all bits are set to one uint mask = TTMATH_UINT_MAX_VALUE; mask = mask << n; (*p) &= mask; TTMATH_LOG("UInt::ClearFirstBits") } /*! this method returns true if the highest bit of the value is set */ bool IsTheHighestBitSet() const { return (table[value_size-1] & TTMATH_UINT_HIGHEST_BIT) != 0; } /*! this method returns true if the lowest bit of the value is set */ bool IsTheLowestBitSet() const { return (*table & 1) != 0; } /*! returning true if only the highest bit is set */ bool IsOnlyTheHighestBitSet() const { #ifdef __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wtautological-compare" #endif for(uint i=0 ; i> (TTMATH_BITS_PER_UINT - rest); return (table[i] & mask) == 0; } /*! * * conversion methods * */ /*! this method converts an UInt type to this class this operation has mainly sense if the value from p is equal or smaller than that one which is returned from UInt::SetMax() it returns a carry if the value 'p' is too big */ template uint FromUInt(const UInt & p) { uint min_size = (value_size < argument_size)? value_size : argument_size; uint i; for(i=0 ; i argument_size ) { // 'this' is longer than 'p' for( ; i)", 1) return 1; } } TTMATH_LOGC("UInt::FromUInt(UInt<>)", 0) return 0; } /*! this method converts an UInt type to this class this operation has mainly sense if the value from p is equal or smaller than that one which is returned from UInt::SetMax() it returns a carry if the value 'p' is too big */ template uint FromInt(const UInt & p) { return FromUInt(p); } /*! this method converts the uint type to this class */ uint FromUInt(uint value) { for(uint i=1 ; i type to this class it doesn't return a carry */ /* template UInt & operator=(const UInt & p) { FromUInt(p); return *this; } */ /*! the assignment operator */ /* UInt & operator=(const UInt & p) { for(uint i=0 ; i)") return *this; } */ /*! this method converts the uint type to this class */ UInt & operator=(uint i) { FromUInt(i); return *this; } /*! a constructor for converting the uint to this class */ /* UInt(uint i) { FromUInt(i); } */ /*! this method converts the sint type to this class */ UInt & operator=(sint i) { FromInt(i); return *this; } /*! a constructor for converting the sint to this class look at the description of UInt::operator=(sint) */ /* UInt(sint i) { FromInt(i); } */ #ifdef TTMATH_PLATFORM32 /*! this method converts unsigned 64 bit int type to this class ***this method is created only on a 32bit platform*** */ uint FromUInt(ulint n) { table[0] = (uint)n; if( value_size == 1 ) { uint c = ((n >> TTMATH_BITS_PER_UINT) == 0) ? 0 : 1; TTMATH_LOGC("UInt::FromUInt(ulint)", c) return c; } table[1] = (uint)(n >> TTMATH_BITS_PER_UINT); for(uint i=2 ; i & operator=(ulint n) { FromUInt(n); return *this; } /*! a constructor for converting unsigned 64 bit int to this class ***this constructor is created only on a 32bit platform*** */ /* UInt(ulint n) { FromUInt(n); } */ /*! this operator converts signed 64 bit int type to this class ***this operator is created only on a 32bit platform*** */ UInt & operator=(slint n) { FromInt(n); return *this; } /*! a constructor for converting signed 64 bit int to this class ***this constructor is created only on a 32bit platform*** */ /* UInt(slint n) { FromInt(n); } */ #endif #ifdef TTMATH_PLATFORM64 /*! this method converts 32 bit unsigned int type to this class ***this operator is created only on a 64bit platform*** */ uint FromUInt(unsigned int i) { return FromUInt(uint(i)); } /*! this method converts 32 bit unsigned int type to this class ***this operator is created only on a 64bit platform*** */ uint FromInt(unsigned int i) { return FromUInt(uint(i)); } /*! this method converts 32 bit signed int type to this class ***this operator is created only on a 64bit platform*** */ uint FromInt(signed int i) { return FromInt(sint(i)); } /*! this operator converts 32 bit unsigned int type to this class ***this operator is created only on a 64bit platform*** */ UInt & operator=(unsigned int i) { FromUInt(i); return *this; } /*! a constructor for converting 32 bit unsigned int to this class ***this constructor is created only on a 64bit platform*** */ /* UInt(unsigned int i) { FromUInt(i); } */ /*! an operator for converting 32 bit signed int to this class ***this constructor is created only on a 64bit platform*** */ UInt & operator=(signed int i) { FromInt(i); return *this; } /*! a constructor for converting 32 bit signed int to this class ***this constructor is created only on a 64bit platform*** */ /* UInt(signed int i) { FromInt(i); } */ #endif /*! a constructor for converting a string to this class (with the base=10) */ /* UInt(const char * s) { FromString(s); } */ /*! a constructor for converting a string to this class (with the base=10) */ /* UInt(const std::string & s) { FromString( s.c_str() ); } */ #ifndef TTMATH_DONT_USE_WCHAR /*! a constructor for converting a string to this class (with the base=10) */ UInt(const wchar_t * s) { FromString(s); } /*! a constructor for converting a string to this class (with the base=10) */ UInt(const std::wstring & s) { FromString( s.c_str() ); } #endif /*! a default constructor we don't clear the table */ /* UInt() { // when macro TTMATH_DEBUG_LOG is defined // we set special values to the table // in order to be everywhere the same value of the UInt object // without this it would be difficult to analyse the log file #ifdef TTMATH_DEBUG_LOG #ifdef TTMATH_PLATFORM32 for(uint i=0 ; i & u) { for(uint i=0 ; i)") } */ /*! a template for producting constructors for copying from another types */ /* template UInt(const UInt & u) { // look that 'size' we still set as 'value_size' and not as u.value_size FromUInt(u); } */ /*! a destructor */ /* ~UInt() { } */ /*! this method returns the lowest value from table we must be sure when we using this method whether the value will hold in an uint type or not (the rest value from the table must be zero) */ uint ToUInt() const { return table[0]; } /*! this method converts the value to uint type can return a carry if the value is too long to store it in uint type */ uint ToUInt(uint & result) const { result = table[0]; for(uint i=1 ; i> 32) != 0 ) return 1; for(uint i=1 ; i */ double ToStringLog2(uint x) const { static double log_tab[] = { 1.000000000000000000, 0.630929753571457437, 0.500000000000000000, 0.430676558073393050, 0.386852807234541586, 0.356207187108022176, 0.333333333333333333, 0.315464876785728718, 0.301029995663981195, 0.289064826317887859, 0.278942945651129843, 0.270238154427319741, 0.262649535037193547, 0.255958024809815489, 0.250000000000000000 }; if( x<2 || x>16 ) return 0; return log_tab[x-2]; } public: /*! an auxiliary method for converting to a string it's used from Int::ToString() too (negative is set true then) */ template void ToStringBase(string_type & result, uint b = 10, bool negative = false) const { UInt temp(*this); uint rest, table_id, index, digits; double digits_d; char character; result.clear(); if( b<2 || b>16 ) return; if( !FindLeadingBit(table_id, index) ) { result = '0'; return; } if( negative ) result = '-'; digits_d = table_id; // for not making an overflow in uint type digits_d *= TTMATH_BITS_PER_UINT; digits_d += index + 1; digits_d *= ToStringLog2(b); digits = static_cast(digits_d) + 3; // plus some epsilon if( result.capacity() < digits ) result.reserve(digits); do { temp.DivInt(b, &rest); character = static_cast(Misc::DigitToChar(rest)); result.insert(result.end(), character); } while( !temp.IsZero() ); size_t i1 = negative ? 1 : 0; // the first is a hyphen (when negative is true) size_t i2 = result.size() - 1; for( ; i1 < i2 ; ++i1, --i2 ) { char tempc = static_cast(result[i1]); result[i1] = result[i2]; result[i2] = tempc; } } /*! this method converts the value to a string with a base equal 'b' */ void ToString(std::string & result, uint b = 10) const { return ToStringBase(result, b); } std::string ToString(uint b = 10) const { std::string result; ToStringBase(result, b); return result; } #ifndef TTMATH_DONT_USE_WCHAR void ToString(std::wstring & result, uint b = 10) const { return ToStringBase(result, b); } std::wstring ToWString(uint b = 10) const { std::wstring result; ToStringBase(result, b); return result; } #endif private: /*! an auxiliary method for converting from a string */ template uint FromStringBase(const char_type * s, uint b = 10, const char_type ** after_source = 0, bool * value_read = 0) { UInt base; base.FromUInt( b ); UInt temp; sint z; uint c = 0; SetZero(); temp.SetZero(); Misc::SkipWhiteCharacters(s); if( after_source ) *after_source = s; if( value_read ) *value_read = false; if( b<2 || b>16 ) return 1; for( ; (z=Misc::CharToDigit(*s, b)) != -1 ; ++s) { if( value_read ) *value_read = true; if( c == 0 ) { temp.table[0] = z; c += Mul(base); // !! IMPROVE ME: there can be used MulInt here c += Add(temp); } } if( after_source ) *after_source = s; TTMATH_LOGC("UInt::FromString", c) return (c==0)? 0 : 1; } public: /*! this method converts a string into its value it returns carry=1 if the value will be too big or an incorrect base 'b' is given string is ended with a non-digit value, for example: "12" will be translated to 12 as well as: "12foo" will be translated to 12 too existing first white characters will be ommited if the value from s is too large the rest digits will be skipped after_source (if exists) is pointing at the end of the parsed string value_read (if exists) tells whether something has actually been read (at least one digit) */ uint FromString(const char * s, uint b = 10, const char ** after_source = 0, bool * value_read = 0) { return FromStringBase(s, b, after_source, value_read); } /*! this method converts a string into its value (it returns carry=1 if the value will be too big or an incorrect base 'b' is given) */ uint FromString(const std::string & s, uint b = 10) { return FromString( s.c_str(), b ); } /*! this operator converts a string into its value (with base = 10) */ UInt & operator=(const char * s) { FromString(s); return *this; } /*! this operator converts a string into its value (with base = 10) */ UInt & operator=(const std::string & s) { FromString( s.c_str() ); return *this; } #ifndef TTMATH_DONT_USE_WCHAR /*! this method converts a string into its value */ uint FromString(const wchar_t * s, uint b = 10, const wchar_t ** after_source = 0, bool * value_read = 0) { return FromStringBase(s, b, after_source, value_read); } /*! this method converts a string into its value (it returns carry=1 if the value will be too big or an incorrect base 'b' is given) */ uint FromString(const std::wstring & s, uint b = 10) { return FromString( s.c_str(), b ); } /*! this operator converts a string into its value (with base = 10) */ UInt & operator=(const wchar_t * s) { FromString(s); return *this; } /*! this operator converts a string into its value (with base = 10) */ UInt & operator=(const std::wstring & s) { FromString( s.c_str() ); return *this; } #endif /*! * * methods for comparing * */ /*! this method returns true if 'this' is smaller than 'l' 'index' is an index of the first word from will be the comparison performed (note: we start the comparison from back - from the last word, when index is -1 /default/ it is automatically set into the last word) I introduced it for some kind of optimization made in the second division algorithm (Div2) */ bool CmpSmaller(const UInt & l, sint index = -1) const { sint i; if( index==-1 || index>=sint(value_size) ) i = value_size - 1; else i = index; for( ; i>=0 ; --i) { if( table[i] != l.table[i] ) return table[i] < l.table[i]; } // they're equal return false; } /*! this method returns true if 'this' is bigger than 'l' 'index' is an index of the first word from will be the comparison performed (note: we start the comparison from back - from the last word, when index is -1 /default/ it is automatically set into the last word) I introduced it for some kind of optimization made in the second division algorithm (Div2) */ bool CmpBigger(const UInt & l, sint index = -1) const { sint i; if( index==-1 || index>=sint(value_size) ) i = value_size - 1; else i = index; for( ; i>=0 ; --i) { if( table[i] != l.table[i] ) return table[i] > l.table[i]; } // they're equal return false; } /*! this method returns true if 'this' is equal 'l' 'index' is an index of the first word from will be the comparison performed (note: we start the comparison from back - from the last word, when index is -1 /default/ it is automatically set into the last word) */ bool CmpEqual(const UInt & l, sint index = -1) const { sint i; if( index==-1 || index>=sint(value_size) ) i = value_size - 1; else i = index; for( ; i>=0 ; --i) if( table[i] != l.table[i] ) return false; return true; } /*! this method returns true if 'this' is smaller than or equal 'l' 'index' is an index of the first word from will be the comparison performed (note: we start the comparison from back - from the last word, when index is -1 /default/ it is automatically set into the last word) */ bool CmpSmallerEqual(const UInt & l, sint index=-1) const { sint i; if( index==-1 || index>=sint(value_size) ) i = value_size - 1; else i = index; for( ; i>=0 ; --i) { if( table[i] != l.table[i] ) return table[i] < l.table[i]; } // they're equal return true; } /*! this method returns true if 'this' is bigger than or equal 'l' 'index' is an index of the first word from will be the comparison performed (note: we start the comparison from back - from the last word, when index is -1 /default/ it is automatically set into the last word) */ bool CmpBiggerEqual(const UInt & l, sint index=-1) const { sint i; if( index==-1 || index>=sint(value_size) ) i = value_size - 1; else i = index; for( ; i>=0 ; --i) { if( table[i] != l.table[i] ) return table[i] > l.table[i]; } // they're equal return true; } /* operators for comparising */ bool operator<(const UInt & l) const { return CmpSmaller(l); } bool operator>(const UInt & l) const { return CmpBigger(l); } bool operator==(const UInt & l) const { return CmpEqual(l); } bool operator!=(const UInt & l) const { return !operator==(l); } bool operator<=(const UInt & l) const { return CmpSmallerEqual(l); } bool operator>=(const UInt & l) const { return CmpBiggerEqual(l); } /*! * * standard mathematical operators * */ UInt operator-(const UInt & p2) const { UInt temp(*this); temp.Sub(p2); return temp; } UInt & operator-=(const UInt & p2) { Sub(p2); return *this; } UInt operator+(const UInt & p2) const { UInt temp(*this); temp.Add(p2); return temp; } UInt & operator+=(const UInt & p2) { Add(p2); return *this; } UInt operator*(const UInt & p2) const { UInt temp(*this); temp.Mul(p2); return temp; } UInt & operator*=(const UInt & p2) { Mul(p2); return *this; } UInt operator/(const UInt & p2) const { UInt temp(*this); temp.Div(p2); return temp; } UInt & operator/=(const UInt & p2) { Div(p2); return *this; } UInt operator%(const UInt & p2) const { UInt temp(*this); UInt remainder; temp.Div( p2, remainder ); return remainder; } UInt & operator%=(const UInt & p2) { UInt remainder; Div( p2, remainder ); operator=(remainder); return *this; } /*! Prefix operator e.g ++variable */ UInt & operator++() { AddOne(); return *this; } /*! Postfix operator e.g variable++ */ UInt operator++(int) { UInt temp( *this ); AddOne(); return temp; } UInt & operator--() { SubOne(); return *this; } UInt operator--(int) { UInt temp( *this ); SubOne(); return temp; } /*! * * bitwise operators * */ UInt operator~() const { UInt temp( *this ); temp.BitNot(); return temp; } UInt operator&(const UInt & p2) const { UInt temp( *this ); temp.BitAnd(p2); return temp; } UInt & operator&=(const UInt & p2) { BitAnd(p2); return *this; } UInt operator|(const UInt & p2) const { UInt temp( *this ); temp.BitOr(p2); return temp; } UInt & operator|=(const UInt & p2) { BitOr(p2); return *this; } UInt operator^(const UInt & p2) const { UInt temp( *this ); temp.BitXor(p2); return temp; } UInt & operator^=(const UInt & p2) { BitXor(p2); return *this; } UInt operator>>(int move) const { UInt temp( *this ); temp.Rcr(move); return temp; } UInt & operator>>=(int move) { Rcr(move); return *this; } UInt operator<<(int move) const { UInt temp( *this ); temp.Rcl(move); return temp; } UInt & operator<<=(int move) { Rcl(move); return *this; } /*! * * input/output operators for standard streams * * (they are very simple, in the future they should be changed) * */ private: /*! an auxiliary method for outputing to standard streams */ template static ostream_type & OutputToStream(ostream_type & s, const UInt & l) { string_type ss; l.ToString(ss); s << ss; return s; } public: /*! output to standard streams */ friend std::ostream & operator<<(std::ostream & s, const UInt & l) { return OutputToStream(s, l); } #ifndef TTMATH_DONT_USE_WCHAR /*! output to standard streams */ friend std::wostream & operator<<(std::wostream & s, const UInt & l) { return OutputToStream(s, l); } #endif private: /*! an auxiliary method for reading from standard streams */ template static istream_type & InputFromStream(istream_type & s, UInt & l) { string_type ss; // char or wchar_t for operator>> char_type z; // operator>> omits white characters if they're set for ommiting s >> z; // we're reading only digits (base=10) while( s.good() && Misc::CharToDigit(z, 10)>=0 ) { ss += z; z = static_cast(s.get()); } // we're leaving the last read character // (it's not belonging to the value) s.unget(); l.FromString(ss); return s; } public: /*! input from standard streams */ friend std::istream & operator>>(std::istream & s, UInt & l) { return InputFromStream(s, l); } #ifndef TTMATH_DONT_USE_WCHAR /*! input from standard streams */ friend std::wistream & operator>>(std::wistream & s, UInt & l) { return InputFromStream(s, l); } #endif /* Following methods are defined in: ttmathuint_x86.h ttmathuint_x86_64.h ttmathuint_noasm.h */ #ifdef TTMATH_NOASM static uint AddTwoWords(uint a, uint b, uint carry, uint * result); static uint SubTwoWords(uint a, uint b, uint carry, uint * result); #ifdef TTMATH_PLATFORM64 union uint_ { struct { unsigned int low; // 32 bit unsigned int high; // 32 bit } u_; uint u; // 64 bit }; static void DivTwoWords2(uint a,uint b, uint c, uint * r, uint * rest); static uint DivTwoWordsNormalize(uint_ & a_, uint_ & b_, uint_ & c_); static uint DivTwoWordsUnnormalize(uint u, uint d); static unsigned int DivTwoWordsCalculate(uint_ u_, unsigned int u3, uint_ v_); static void MultiplySubtract(uint_ & u_, unsigned int & u3, unsigned int & q, uint_ v_); #endif // TTMATH_PLATFORM64 #endif // TTMATH_NOASM private: uint Rcl2_one(uint c); uint Rcr2_one(uint c); uint Rcl2(uint bits, uint c); uint Rcr2(uint bits, uint c); public: static const char * LibTypeStr(); static LibTypeCode LibType(); uint Add(const UInt & ss2, uint c=0); uint AddInt(uint value, uint index = 0); uint AddTwoInts(uint x2, uint x1, uint index); static uint AddVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result); uint Sub(const UInt & ss2, uint c=0); uint SubInt(uint value, uint index = 0); static uint SubVector(const uint * ss1, const uint * ss2, uint ss1_size, uint ss2_size, uint * result); static sint FindLeadingBitInWord(uint x); static sint FindLowestBitInWord(uint x); static uint SetBitInWord(uint & value, uint bit); static void MulTwoWords(uint a, uint b, uint * result_high, uint * result_low); static void DivTwoWords(uint a,uint b, uint c, uint * r, uint * rest); }; /*! this specialization is needed in order to not confused the compiler "error: ISO C++ forbids zero-size array" when compiling Mul3Big2() method */ template<> class UInt<0> { public: uint table[1]; void Mul2Big(const UInt<0> &, UInt<0> &) { TTMATH_ASSERT(false) }; void SetZero() { TTMATH_ASSERT(false) }; uint AddTwoInts(uint, uint, uint) { TTMATH_ASSERT(false) return 0; }; }; } //namespace #include "ttmathuint_x86.h" #include "ttmathuint_x86_64.h" #include "ttmathuint_noasm.h" #endif