// Copyright (c) 2006-2018 Maxim Khizhinsky // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H #define CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H #include #include namespace cds { namespace container { /// Hash map based on multi-level array /** @ingroup cds_nonintrusive_map @anchor cds_container_FeldmanHashMap_rcu Source: - [2013] Steven Feldman, Pierre LaBorde, Damian Dechev "Concurrent Multi-level Arrays: Wait-free Extensible Hash Maps" See algorithm short description @ref cds_container_FeldmanHashMap_hp "here" @note Two important things you should keep in mind when you're using \p %FeldmanHashMap: - all keys is converted to fixed-size bit-string by hash functor provided. You can use variable-length keys, for example, \p std::string as a key for \p %FeldmanHashMap, but real key in the map will be fixed-size hash values of your keys. For the strings you may use well-known hashing algorithms like SHA1, SHA2, MurmurHash, CityHash or its successor FarmHash and so on, which converts variable-length strings to fixed-length bit-strings, and such hash values will be the keys in \p %FeldmanHashMap. If your key is fixed-sized the hash functor is optional, see \p feldman_hashmap::traits::hash for explanation and examples. - \p %FeldmanHashMap uses a perfect hashing. It means that if two different keys, for example, of type \p std::string, have identical hash then you cannot insert both that keys in the map. \p %FeldmanHashMap does not maintain the key, it maintains its fixed-size hash value. The map supports @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional thread-safe iterators". Template parameters: - \p RCU - one of \ref cds_urcu_gc "RCU type" - \p Key - a key type to be stored in the map - \p T - a value type to be stored in the map - \p Traits - type traits, the structure based on \p feldman_hashmap::traits or result of \p feldman_hashmap::make_traits metafunction. @note Before including you should include appropriate RCU header file, see \ref cds_urcu_gc "RCU type" for list of existing RCU class and corresponding header files. */ template < class RCU ,typename Key ,typename T #ifdef CDS_DOXYGEN_INVOKED ,class Traits = feldman_hashmap::traits #else ,class Traits #endif > class FeldmanHashMap< cds::urcu::gc< RCU >, Key, T, Traits > #ifdef CDS_DOXYGEN_INVOKED : protected cds::intrusive::FeldmanHashSet< cds::urcu::gc< RCU >, std::pair, Traits > #else : protected cds::container::details::make_feldman_hashmap< cds::urcu::gc< RCU >, Key, T, Traits >::type #endif { //@cond typedef cds::container::details::make_feldman_hashmap< cds::urcu::gc< RCU >, Key, T, Traits > maker; typedef typename maker::type base_class; //@endcond public: typedef cds::urcu::gc< RCU > gc; ///< RCU garbage collector typedef Key key_type; ///< Key type typedef T mapped_type; ///< Mapped type typedef std::pair< key_type const, mapped_type> value_type; ///< Key-value pair to be stored in the map typedef Traits traits; ///< Map traits #ifdef CDS_DOXYGEN_INVOKED typedef typename traits::hash hasher; ///< Hash functor, see \p feldman_hashmap::traits::hash #else typedef typename maker::hasher hasher; #endif typedef typename maker::hash_type hash_type; ///< Hash type deduced from \p hasher return type typedef typename base_class::hash_comparator hash_comparator; ///< hash compare functor based on \p Traits::compare and \p Traits::less typedef typename traits::item_counter item_counter; ///< Item counter type typedef typename traits::allocator allocator; ///< Element allocator typedef typename traits::node_allocator node_allocator; ///< Array node allocator typedef typename traits::memory_model memory_model; ///< Memory model typedef typename traits::back_off back_off; ///< Back-off strategy typedef typename traits::stat stat; ///< Internal statistics type typedef typename traits::rcu_check_deadlock rcu_check_deadlock; ///< Deadlock checking policy typedef typename gc::scoped_lock rcu_lock; ///< RCU scoped lock static constexpr const bool c_bExtractLockExternal = false; ///< Group of \p extract_xxx functions does not require external locking /// Level statistics typedef feldman_hashmap::level_statistics level_statistics; protected: //@cond typedef typename maker::node_type node_type; typedef typename maker::cxx_node_allocator cxx_node_allocator; typedef std::unique_ptr< node_type, typename maker::node_disposer > scoped_node_ptr; typedef typename base_class::check_deadlock_policy check_deadlock_policy; struct node_cast { value_type * operator()(node_type * p) const { return p ? &p->m_Value : nullptr; } }; public: /// pointer to extracted node using exempt_ptr = cds::urcu::exempt_ptr< gc, node_type, value_type, typename base_class::disposer, node_cast >; protected: template class bidirectional_iterator: public base_class::iterator_base { friend class FeldmanHashMap; typedef typename base_class::iterator_base iterator_base; protected: static constexpr bool const c_bConstantIterator = IsConst; public: typedef typename std::conditional< IsConst, value_type const*, value_type*>::type value_ptr; ///< Value pointer typedef typename std::conditional< IsConst, value_type const&, value_type&>::type value_ref; ///< Value reference public: bidirectional_iterator() noexcept {} bidirectional_iterator( bidirectional_iterator const& rhs ) noexcept : iterator_base( rhs ) {} bidirectional_iterator& operator=(bidirectional_iterator const& rhs) noexcept { iterator_base::operator=( rhs ); return *this; } bidirectional_iterator& operator++() { iterator_base::operator++(); return *this; } bidirectional_iterator& operator--() { iterator_base::operator--(); return *this; } value_ptr operator ->() const noexcept { node_type * p = iterator_base::pointer(); return p ? &p->m_Value : nullptr; } value_ref operator *() const noexcept { node_type * p = iterator_base::pointer(); assert( p ); return p->m_Value; } void release() { iterator_base::release(); } template bool operator ==(bidirectional_iterator const& rhs) const noexcept { return iterator_base::operator==( rhs ); } template bool operator !=(bidirectional_iterator const& rhs) const noexcept { return !( *this == rhs ); } public: // for internal use only! bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx, bool ) : iterator_base( set, pNode, idx, false ) {} bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx ) : iterator_base( set, pNode, idx ) {} }; /// Reverse bidirectional iterator template class reverse_bidirectional_iterator : public base_class::iterator_base { friend class FeldmanHashMap; typedef typename base_class::iterator_base iterator_base; public: typedef typename std::conditional< IsConst, value_type const*, value_type*>::type value_ptr; ///< Value pointer typedef typename std::conditional< IsConst, value_type const&, value_type&>::type value_ref; ///< Value reference public: reverse_bidirectional_iterator() noexcept : iterator_base() {} reverse_bidirectional_iterator( reverse_bidirectional_iterator const& rhs ) noexcept : iterator_base( rhs ) {} reverse_bidirectional_iterator& operator=( reverse_bidirectional_iterator const& rhs) noexcept { iterator_base::operator=( rhs ); return *this; } reverse_bidirectional_iterator& operator++() { iterator_base::operator--(); return *this; } reverse_bidirectional_iterator& operator--() { iterator_base::operator++(); return *this; } value_ptr operator ->() const noexcept { node_type * p = iterator_base::pointer(); return p ? &p->m_Value : nullptr; } value_ref operator *() const noexcept { node_type * p = iterator_base::pointer(); assert( p ); return p->m_Value; } void release() { iterator_base::release(); } template bool operator ==(reverse_bidirectional_iterator const& rhs) const { return iterator_base::operator==( rhs ); } template bool operator !=(reverse_bidirectional_iterator const& rhs) { return !( *this == rhs ); } public: // for internal use only! reverse_bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx, bool ) : iterator_base( set, pNode, idx, false ) {} reverse_bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx ) : iterator_base( set, pNode, idx, false ) { iterator_base::backward(); } }; //@endcond public: #ifdef CDS_DOXYGEN_INVOKED typedef implementation_defined iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional iterator" type typedef implementation_defined const_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional const iterator" type typedef implementation_defined reverse_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional reverse iterator" type typedef implementation_defined const_reverse_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional reverse const iterator" type #else typedef bidirectional_iterator iterator; typedef bidirectional_iterator const_iterator; typedef reverse_bidirectional_iterator reverse_iterator; typedef reverse_bidirectional_iterator const_reverse_iterator; #endif protected: //@cond hasher m_Hasher; //@endcond public: /// Creates empty map /** @param head_bits - 2head_bits specifies the size of head array, minimum is 4. @param array_bits - 2array_bits specifies the size of array node, minimum is 2. Equation for \p head_bits and \p array_bits: \code sizeof(hash_type) * 8 == head_bits + N * array_bits \endcode where \p N is multi-level array depth. */ FeldmanHashMap( size_t head_bits = 8, size_t array_bits = 4 ) : base_class( head_bits, array_bits ) {} /// Destructs the map and frees all data ~FeldmanHashMap() {} /// Inserts new element with key and default value /** The function creates an element with \p key and default value, and then inserts the node created into the map. Preconditions: - The \p key_type should be constructible from a value of type \p K. In trivial case, \p K is equal to \p key_type. - The \p mapped_type should be default-constructible. Returns \p true if inserting successful, \p false otherwise. The function locks RCU internally. */ template bool insert( K&& key ) { scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward(key))); if ( base_class::insert( *sp )) { sp.release(); return true; } return false; } /// Inserts new element /** The function creates a node with copy of \p val value and then inserts the node created into the map. Preconditions: - The \p key_type should be constructible from \p key of type \p K. - The \p value_type should be constructible from \p val of type \p V. Returns \p true if \p val is inserted into the map, \p false otherwise. The function locks RCU internally. */ template bool insert( K&& key, V&& val ) { scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward(key), std::forward(val))); if ( base_class::insert( *sp )) { sp.release(); return true; } return false; } /// Inserts new element and initialize it by a functor /** This function inserts new element with key \p key and if inserting is successful then it calls \p func functor with signature \code struct functor { void operator()( value_type& item ); }; \endcode The argument \p item of user-defined functor \p func is the reference to the map's item inserted: - item.first is a const reference to item's key that cannot be changed. - item.second is a reference to item's value that may be changed. \p key_type should be constructible from value of type \p K. The function allows to split creating of new item into two part: - create item from \p key; - insert new item into the map; - if inserting is successful, initialize the value of item by calling \p func functor This can be useful if complete initialization of object of \p value_type is heavyweight and it is preferable that the initialization should be completed only if inserting is successful. The function locks RCU internally. */ template bool insert_with( K&& key, Func func ) { scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward(key))); if ( base_class::insert( *sp, [&func]( node_type& item ) { func( item.m_Value ); } )) { sp.release(); return true; } return false; } /// For key \p key inserts data of type \p value_type created in-place from std::forward(args)... /** Returns \p true if inserting successful, \p false otherwise. The function locks RCU internally. */ template bool emplace( K&& key, Args&&... args ) { scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward(key), std::forward(args)... )); if ( base_class::insert( *sp )) { sp.release(); return true; } return false; } /// Updates data by \p key /** The operation performs inserting or replacing the element with lock-free manner. If the \p key not found in the map, then the new item created from \p key will be inserted into the map iff \p bInsert is \p true (note that in this case the \ref key_type should be constructible from type \p K). Otherwise, if \p key is found, it is replaced with a new item created from \p key. The functor \p Func signature: \code struct my_functor { void operator()( value_type& item, value_type * old ); }; \endcode where: - \p item - item of the map - \p old - old item of the map, if \p nullptr - the new item was inserted The functor may change any fields of the \p item.second. Returns std::pair where \p first is \p true if operation is successful, \p second is \p true if new item has been added or \p false if \p key already exists. The function locks RCU internally. @warning See \ref cds_intrusive_item_creating "insert item troubleshooting" */ template std::pair update( K&& key, Func func, bool bInsert = true ) { scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward(key))); std::pair result = base_class::do_update( *sp, [&func]( node_type& node, node_type * old ) { func( node.m_Value, old ? &old->m_Value : nullptr );}, bInsert ); if ( result.first ) sp.release(); return result; } /// Delete \p key from the map /** \p key_type must be constructible from value of type \p K. The function deletes the element with hash value equal to hash( key_type( key )) Return \p true if \p key is found and deleted, \p false otherwise. RCU should not be locked. The function locks RCU internally. */ template bool erase( K const& key ) { return base_class::erase(m_Hasher(key_type(key))); } /// Delete \p key from the map /** The function searches an item with hash value equal to hash( key_type( key )), calls \p f functor and deletes the item. If \p key is not found, the functor is not called. The functor \p Func interface: \code struct extractor { void operator()(value_type& item) { ... } }; \endcode where \p item is the element found. \p key_type must be constructible from value of type \p K. Return \p true if key is found and deleted, \p false otherwise RCU should not be locked. The function locks RCU internally. */ template bool erase( K const& key, Func f ) { return base_class::erase(m_Hasher(key_type(key)), [&f]( node_type& node) { f( node.m_Value ); }); } /// Extracts the item from the map with specified \p key /** The function searches an item with key equal to hash( key_type( key )) in the map, unlinks it from the map, and returns a guarded pointer to the item found. If \p key is not found the function returns an empty guarded pointer. RCU \p synchronize method can be called. RCU should NOT be locked. The function does not call the disposer for the item found. The disposer will be implicitly invoked when the returned object is destroyed or when its \p release() member function is called. Example: \code typedef cds::container::FeldmanHashMap< cds::urcu::gc< cds::urcu::general_buffered<>>, int, foo, my_traits > map_type; map_type theMap; // ... typename map_type::exempt_ptr ep( theMap.extract( 5 )); if ( ep ) { // Deal with ep //... // Dispose returned item. ep.release(); } \endcode */ template exempt_ptr extract( K const& key ) { check_deadlock_policy::check(); node_type * p; { rcu_lock rcuLock; p = base_class::do_erase( m_Hasher( key_type(key)), [](node_type const&) -> bool {return true;}); } return exempt_ptr(p); } /// Checks whether the map contains \p key /** The function searches the item by its hash that is equal to hash( key_type( key )) and returns \p true if it is found, or \p false otherwise. */ template bool contains( K const& key ) { return base_class::contains( m_Hasher( key_type( key ))); } /// Find the key \p key /** The function searches the item by its hash that is equal to hash( key_type( key )) and calls the functor \p f for item found. The interface of \p Func functor is: \code struct functor { void operator()( value_type& item ); }; \endcode where \p item is the item found. The functor may change \p item.second. The function returns \p true if \p key is found, \p false otherwise. */ template bool find( K const& key, Func f ) { return base_class::find( m_Hasher( key_type( key )), [&f](node_type& node) { f( node.m_Value );}); } /// Finds the key \p key and return the item found /** The function searches the item by its \p hash and returns the pointer to the item found. If \p hash is not found the function returns \p nullptr. RCU should be locked before the function invocation. Returned pointer is valid only while RCU is locked. Usage: \code typedef cds::container::FeldmanHashMap< your_template_params > my_map; my_map theMap; // ... { // lock RCU my_map::rcu_lock; foo * p = theMap.get( 5 ); if ( p ) { // Deal with p //... } } \endcode */ template value_type * get( K const& key ) { node_type * p = base_class::get( m_Hasher( key_type( key ))); return p ? &p->m_Value : nullptr; } /// Clears the map (non-atomic) /** The function unlink all data node from the map. The function is not atomic but is thread-safe. After \p %clear() the map may not be empty because another threads may insert items. */ void clear() { base_class::clear(); } /// Checks if the map is empty /** Emptiness is checked by item counting: if item count is zero then the map is empty. Thus, the correct item counting feature is an important part of the map implementation. */ bool empty() const { return base_class::empty(); } /// Returns item count in the map size_t size() const { return base_class::size(); } /// Returns const reference to internal statistics stat const& statistics() const { return base_class::statistics(); } /// Returns the size of head node size_t head_size() const { return base_class::head_size(); } /// Returns the size of the array node size_t array_node_size() const { return base_class::array_node_size(); } /// Collects tree level statistics into \p stat /** The function traverses the set and collects statistics for each level of the tree into \p feldman_hashset::level_statistics struct. The element of \p stat[i] represents statistics for level \p i, level 0 is head array. The function is thread-safe and may be called in multi-threaded environment. Result can be useful for estimating efficiency of hash functor you use. */ void get_level_statistics(std::vector< feldman_hashmap::level_statistics>& stat) const { base_class::get_level_statistics(stat); } public: ///@name Thread-safe iterators /** @anchor cds_container_FeldmanHashMap_rcu_iterators The map supports thread-safe iterators: you may iterate over the map in multi-threaded environment under explicit RCU lock. RCU lock requirement means that inserting or searching is allowed but you must not erase the items from the map since erasing under RCU lock can lead to a deadlock. However, another thread can call \p erase() safely while your thread is iterating. A typical example is: \code struct foo { // ... other fields uint32_t payload; // only for example }; typedef cds::urcu::gc< cds::urcu::general_buffered<>> rcu; typedef cds::container::FeldmanHashMap< rcu, std::string, foo> map_type; map_type m; // ... // iterate over the map { // lock the RCU. typename set_type::rcu_lock l; // scoped RCU lock // traverse the map for ( auto i = m.begin(); i != s.end(); ++i ) { // deal with i. Remember, erasing is prohibited here! i->second.payload++; } } // at this point RCU lock is released \endcode Each iterator object supports the common interface: - dereference operators: @code value_type [const] * operator ->() noexcept value_type [const] & operator *() noexcept @endcode - pre-increment and pre-decrement. Post-operators is not supported - equality operators == and !=. Iterators are equal iff they point to the same cell of the same array node. Note that for two iterators \p it1 and \p it2 the condition it1 == it2 does not entail &(*it1) == &(*it2) : welcome to concurrent containers @note It is possible the item can be iterated more that once, for example, if an iterator points to the item in an array node that is being splitted. */ ///@{ /// Returns an iterator to the beginning of the map iterator begin() { return base_class::template init_begin(); } /// Returns an const iterator to the beginning of the map const_iterator begin() const { return base_class::template init_begin(); } /// Returns an const iterator to the beginning of the map const_iterator cbegin() { return base_class::template init_begin(); } /// Returns an iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior. iterator end() { return base_class::template init_end(); } /// Returns a const iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior. const_iterator end() const { return base_class::template init_end(); } /// Returns a const iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior. const_iterator cend() { return base_class::template init_end(); } /// Returns a reverse iterator to the first element of the reversed map reverse_iterator rbegin() { return base_class::template init_rbegin(); } /// Returns a const reverse iterator to the first element of the reversed map const_reverse_iterator rbegin() const { return base_class::template init_rbegin(); } /// Returns a const reverse iterator to the first element of the reversed map const_reverse_iterator crbegin() { return base_class::template init_rbegin(); } /// Returns a reverse iterator to the element following the last element of the reversed map /** It corresponds to the element preceding the first element of the non-reversed container. This element acts as a placeholder, attempting to access it results in undefined behavior. */ reverse_iterator rend() { return base_class::template init_rend(); } /// Returns a const reverse iterator to the element following the last element of the reversed map /** It corresponds to the element preceding the first element of the non-reversed container. This element acts as a placeholder, attempting to access it results in undefined behavior. */ const_reverse_iterator rend() const { return base_class::template init_rend(); } /// Returns a const reverse iterator to the element following the last element of the reversed map /** It corresponds to the element preceding the first element of the non-reversed container. This element acts as a placeholder, attempting to access it results in undefined behavior. */ const_reverse_iterator crend() { return base_class::template init_rend(); } ///@} }; }} // namespace cds::container #endif // #ifndef CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H