/* * This file is a part of TTMath Bignum Library * and is distributed under the (new) BSD licence. * Author: Tomasz Sowa */ /* * Copyright (c) 2006-2012, Tomasz Sowa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name Tomasz Sowa nor the names of contributors to this * project may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef headerfilettmathmathtt #define headerfilettmathmathtt /*! \file ttmath.h \brief Mathematics functions. */ #ifdef _MSC_VER //warning C4127: conditional expression is constant #pragma warning( disable: 4127 ) //warning C4702: unreachable code #pragma warning( disable: 4702 ) //warning C4800: forcing value to bool 'true' or 'false' (performance warning) #pragma warning( disable: 4800 ) #endif #define TTMATH_DONT_USE_WCHAR #include "ttmathint.h" #include "ttmathobjects.h" namespace ttmath { /* * * functions defined here are used only with Big<> types * * */ /* * * functions for rounding * * */ /*! this function skips the fraction from x e.g 2.2 = 2 2.7 = 2 -2.2 = 2 -2.7 = 2 */ template ValueType SkipFraction(const ValueType & x) { ValueType result( x ); result.SkipFraction(); return result; } /*! this function rounds to the nearest integer value e.g 2.2 = 2 2.7 = 3 -2.2 = -2 -2.7 = -3 */ template ValueType Round(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType result( x ); uint c = result.Round(); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function returns a value representing the smallest integer that is greater than or equal to x Ceil(-3.7) = -3 Ceil(-3.1) = -3 Ceil(-3.0) = -3 Ceil(4.0) = 4 Ceil(4.2) = 5 Ceil(4.8) = 5 */ template ValueType Ceil(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType result(x); uint c = 0; result.SkipFraction(); if( result != x ) { // x is with fraction // if x is negative we don't have to do anything if( !x.IsSign() ) { ValueType one; one.SetOne(); c += result.Add(one); } } if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function returns a value representing the largest integer that is less than or equal to x Floor(-3.6) = -4 Floor(-3.1) = -4 Floor(-3) = -3 Floor(2) = 2 Floor(2.3) = 2 Floor(2.8) = 2 */ template ValueType Floor(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType result(x); uint c = 0; result.SkipFraction(); if( result != x ) { // x is with fraction // if x is positive we don't have to do anything if( x.IsSign() ) { ValueType one; one.SetOne(); c += result.Sub(one); } } if( err ) *err = c ? err_overflow : err_ok; return result; } /* * * logarithms and the exponent * * */ /*! this function calculates the natural logarithm (logarithm with the base 'e') */ template ValueType Ln(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType result; uint state = result.Ln(x); if( err ) { switch( state ) { case 0: *err = err_ok; break; case 1: *err = err_overflow; break; case 2: *err = err_improper_argument; break; default: *err = err_internal_error; break; } } return result; } /*! this function calculates the logarithm */ template ValueType Log(const ValueType & x, const ValueType & base, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } if( base.IsNan() ) { if( err ) *err = err_improper_argument; return base; } ValueType result; uint state = result.Log(x, base); if( err ) { switch( state ) { case 0: *err = err_ok; break; case 1: *err = err_overflow; break; case 2: case 3: *err = err_improper_argument; break; default: *err = err_internal_error; break; } } return result; } /*! this function calculates the expression e^x */ template ValueType Exp(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType result; uint c = result.Exp(x); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! * * trigonometric functions * */ /* this namespace consists of auxiliary functions (something like 'private' in a class) */ namespace auxiliaryfunctions { /*! an auxiliary function for calculating the Sine (you don't have to call this function) */ template uint PrepareSin(ValueType & x, bool & change_sign) { ValueType temp; change_sign = false; if( x.IsSign() ) { // we're using the formula 'sin(-x) = -sin(x)' change_sign = !change_sign; x.ChangeSign(); } // we're reducing the period 2*PI // (for big values there'll always be zero) temp.Set2Pi(); if( x.Mod(temp) ) return 1; // we're setting 'x' as being in the range of <0, 0.5PI> temp.SetPi(); if( x > temp ) { // x is in (pi, 2*pi> x.Sub( temp ); change_sign = !change_sign; } temp.Set05Pi(); if( x > temp ) { // x is in (0.5pi, pi> x.Sub( temp ); x = temp - x; } return 0; } /*! an auxiliary function for calculating the Sine (you don't have to call this function) it returns Sin(x) where 'x' is from <0, PI/2> we're calculating the Sin with using Taylor series in zero or PI/2 (depending on which point of these two points is nearer to the 'x') Taylor series: sin(x) = sin(a) + cos(a)*(x-a)/(1!) - sin(a)*((x-a)^2)/(2!) - cos(a)*((x-a)^3)/(3!) + sin(a)*((x-a)^4)/(4!) + ... when a=0 it'll be: sin(x) = (x)/(1!) - (x^3)/(3!) + (x^5)/(5!) - (x^7)/(7!) + (x^9)/(9!) ... and when a=PI/2: sin(x) = 1 - ((x-PI/2)^2)/(2!) + ((x-PI/2)^4)/(4!) - ((x-PI/2)^6)/(6!) ... */ template ValueType Sin0pi05(const ValueType & x) { ValueType result; ValueType numerator, denominator; ValueType d_numerator, d_denominator; ValueType one, temp, old_result; // temp = pi/4 temp.Set05Pi(); temp.exponent.SubOne(); one.SetOne(); if( x < temp ) { // we're using the Taylor series with a=0 result = x; numerator = x; denominator = one; // d_numerator = x^2 d_numerator = x; d_numerator.Mul(x); d_denominator = 2; } else { // we're using the Taylor series with a=PI/2 result = one; numerator = one; denominator = one; // d_numerator = (x-pi/2)^2 ValueType pi05; pi05.Set05Pi(); temp = x; temp.Sub( pi05 ); d_numerator = temp; d_numerator.Mul( temp ); d_denominator = one; } uint c = 0; bool addition = false; old_result = result; for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i) { // we're starting from a second part of the formula c += numerator. Mul( d_numerator ); c += denominator. Mul( d_denominator ); c += d_denominator.Add( one ); c += denominator. Mul( d_denominator ); c += d_denominator.Add( one ); temp = numerator; c += temp.Div(denominator); if( c ) // Sin is from <-1,1> and cannot make an overflow // but the carry can be from the Taylor series // (then we only break our calculations) break; if( addition ) result.Add( temp ); else result.Sub( temp ); addition = !addition; // we're testing whether the result has changed after adding // the next part of the Taylor formula, if not we end the loop // (it means 'x' is zero or 'x' is PI/2 or this part of the formula // is too small) if( result == old_result ) break; old_result = result; } return result; } } // namespace auxiliaryfunctions /*! this function calculates the Sine */ template ValueType Sin(ValueType x, ErrorCode * err = 0) { using namespace auxiliaryfunctions; ValueType one, result; bool change_sign; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } if( err ) *err = err_ok; if( PrepareSin( x, change_sign ) ) { // x is too big, we cannnot reduce the 2*PI period // prior to version 0.8.5 the result was zero // result has NaN flag set by default if( err ) *err = err_overflow; // maybe another error code? err_improper_argument? return result; // NaN is set by default } result = Sin0pi05( x ); one.SetOne(); // after calculations there can be small distortions in the result if( result > one ) result = one; else if( result.IsSign() ) // we've calculated the sin from <0, pi/2> and the result // should be positive result.SetZero(); if( change_sign ) result.ChangeSign(); return result; } /*! this function calulates the Cosine we're using the formula cos(x) = sin(x + PI/2) */ template ValueType Cos(ValueType x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType pi05; pi05.Set05Pi(); uint c = x.Add( pi05 ); if( c ) { if( err ) *err = err_overflow; return ValueType(); // result is undefined (NaN is set by default) } return Sin(x, err); } /*! this function calulates the Tangent we're using the formula tan(x) = sin(x) / cos(x) it takes more time than calculating the Tan directly from for example Taylor series but should be a bit preciser because Tan receives its values from -infinity to +infinity and when we calculate it from any series then we can make a greater mistake than calculating 'sin/cos' */ template ValueType Tan(const ValueType & x, ErrorCode * err = 0) { ValueType result = Cos(x, err); if( err && *err != err_ok ) return result; if( result.IsZero() ) { if( err ) *err = err_improper_argument; result.SetNan(); return result; } return Sin(x, err) / result; } /*! this function calulates the Tangent look at the description of Tan(...) (the abbreviation of Tangent can be 'tg' as well) */ template ValueType Tg(const ValueType & x, ErrorCode * err = 0) { return Tan(x, err); } /*! this function calulates the Cotangent we're using the formula tan(x) = cos(x) / sin(x) (why do we make it in this way? look at information in Tan() function) */ template ValueType Cot(const ValueType & x, ErrorCode * err = 0) { ValueType result = Sin(x, err); if( err && *err != err_ok ) return result; if( result.IsZero() ) { if( err ) *err = err_improper_argument; result.SetNan(); return result; } return Cos(x, err) / result; } /*! this function calulates the Cotangent look at the description of Cot(...) (the abbreviation of Cotangent can be 'ctg' as well) */ template ValueType Ctg(const ValueType & x, ErrorCode * err = 0) { return Cot(x, err); } /* * * inverse trigonometric functions * * */ namespace auxiliaryfunctions { /*! an auxiliary function for calculating the Arc Sine we're calculating asin from the following formula: asin(x) = x + (1*x^3)/(2*3) + (1*3*x^5)/(2*4*5) + (1*3*5*x^7)/(2*4*6*7) + ... where abs(x) <= 1 we're using this formula when x is from <0, 1/2> */ template ValueType ASin_0(const ValueType & x) { ValueType nominator, denominator, nominator_add, nominator_x, denominator_add, denominator_x; ValueType two, result(x), x2(x); ValueType nominator_temp, denominator_temp, old_result = result; uint c = 0; x2.Mul(x); two = 2; nominator.SetOne(); denominator = two; nominator_add = nominator; denominator_add = denominator; nominator_x = x; denominator_x = 3; for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i) { c += nominator_x.Mul(x2); nominator_temp = nominator_x; c += nominator_temp.Mul(nominator); denominator_temp = denominator; c += denominator_temp.Mul(denominator_x); c += nominator_temp.Div(denominator_temp); // if there is a carry somewhere we only break the calculating // the result should be ok -- it's from <-pi/2, pi/2> if( c ) break; result.Add(nominator_temp); if( result == old_result ) // there's no sense to calculate more break; old_result = result; c += nominator_add.Add(two); c += denominator_add.Add(two); c += nominator.Mul(nominator_add); c += denominator.Mul(denominator_add); c += denominator_x.Add(two); } return result; } /*! an auxiliary function for calculating the Arc Sine we're calculating asin from the following formula: asin(x) = pi/2 - sqrt(2)*sqrt(1-x) * asin_temp asin_temp = 1 + (1*(1-x))/((2*3)*(2)) + (1*3*(1-x)^2)/((2*4*5)*(4)) + (1*3*5*(1-x)^3)/((2*4*6*7)*(8)) + ... where abs(x) <= 1 we're using this formula when x is from (1/2, 1> */ template ValueType ASin_1(const ValueType & x) { ValueType nominator, denominator, nominator_add, nominator_x, nominator_x_add, denominator_add, denominator_x; ValueType denominator2; ValueType one, two, result; ValueType nominator_temp, denominator_temp, old_result; uint c = 0; two = 2; one.SetOne(); nominator = one; result = one; old_result = result; denominator = two; nominator_add = nominator; denominator_add = denominator; nominator_x = one; nominator_x.Sub(x); nominator_x_add = nominator_x; denominator_x = 3; denominator2 = two; for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i) { nominator_temp = nominator_x; c += nominator_temp.Mul(nominator); denominator_temp = denominator; c += denominator_temp.Mul(denominator_x); c += denominator_temp.Mul(denominator2); c += nominator_temp.Div(denominator_temp); // if there is a carry somewhere we only break the calculating // the result should be ok -- it's from <-pi/2, pi/2> if( c ) break; result.Add(nominator_temp); if( result == old_result ) // there's no sense to calculate more break; old_result = result; c += nominator_x.Mul(nominator_x_add); c += nominator_add.Add(two); c += denominator_add.Add(two); c += nominator.Mul(nominator_add); c += denominator.Mul(denominator_add); c += denominator_x.Add(two); c += denominator2.Mul(two); } nominator_x_add.exponent.AddOne(); // *2 one.exponent.SubOne(); // =0.5 nominator_x_add.Pow(one); // =sqrt(nominator_x_add) result.Mul(nominator_x_add); one.Set05Pi(); one.Sub(result); return one; } } // namespace auxiliaryfunctions /*! this function calculates the Arc Sine x is from <-1,1> */ template ValueType ASin(ValueType x, ErrorCode * err = 0) { using namespace auxiliaryfunctions; ValueType result, one; one.SetOne(); bool change_sign = false; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } if( x.GreaterWithoutSignThan(one) ) { if( err ) *err = err_improper_argument; return result; // NaN is set by default } if( x.IsSign() ) { change_sign = true; x.Abs(); } one.exponent.SubOne(); // =0.5 // asin(-x) = -asin(x) if( x.GreaterWithoutSignThan(one) ) result = ASin_1(x); else result = ASin_0(x); if( change_sign ) result.ChangeSign(); if( err ) *err = err_ok; return result; } /*! this function calculates the Arc Cosine we're using the formula: acos(x) = pi/2 - asin(x) */ template ValueType ACos(const ValueType & x, ErrorCode * err = 0) { ValueType temp; temp.Set05Pi(); temp.Sub(ASin(x, err)); return temp; } namespace auxiliaryfunctions { /*! an auxiliary function for calculating the Arc Tangent arc tan (x) where x is in <0; 0.5) (x can be in (-0.5 ; 0.5) too) we're using the Taylor series expanded in zero: atan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ... */ template ValueType ATan0(const ValueType & x) { ValueType nominator, denominator, nominator_add, denominator_add, temp; ValueType result, old_result; bool adding = false; uint c = 0; result = x; old_result = result; nominator = x; nominator_add = x; nominator_add.Mul(x); denominator.SetOne(); denominator_add = 2; for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i) { c += nominator.Mul(nominator_add); c += denominator.Add(denominator_add); temp = nominator; c += temp.Div(denominator); if( c ) // the result should be ok break; if( adding ) result.Add(temp); else result.Sub(temp); if( result == old_result ) // there's no sense to calculate more break; old_result = result; adding = !adding; } return result; } /*! an auxiliary function for calculating the Arc Tangent where x is in <0 ; 1> */ template ValueType ATan01(const ValueType & x) { ValueType half; half.Set05(); /* it would be better if we chose about sqrt(2)-1=0.41... instead of 0.5 here because as you can see below: when x = sqrt(2)-1 abs(x) = abs( (x-1)/(1+x) ) so when we're calculating values around x then they will be better converged to each other for example if we have x=0.4999 then during calculating ATan0(0.4999) we have to make about 141 iterations but when we have x=0.5 then during calculating ATan0( (x-1)/(1+x) ) we have to make only about 89 iterations (both for Big<3,9>) in the future this 0.5 can be changed */ if( x.SmallerWithoutSignThan(half) ) return ATan0(x); /* x>=0.5 and x<=1 (x can be even smaller than 0.5) y = atac(x) x = tan(y) tan(y-b) = (tan(y)-tab(b)) / (1+tan(y)*tan(b)) y-b = atan( (tan(y)-tab(b)) / (1+tan(y)*tan(b)) ) y = b + atan( (x-tab(b)) / (1+x*tan(b)) ) let b = pi/4 tan(b) = tan(pi/4) = 1 y = pi/4 + atan( (x-1)/(1+x) ) so atac(x) = pi/4 + atan( (x-1)/(1+x) ) when x->1 (x converges to 1) the (x-1)/(1+x) -> 0 and we can use ATan0() function here */ ValueType n(x),d(x),one,result; one.SetOne(); n.Sub(one); d.Add(one); n.Div(d); result = ATan0(n); n.Set05Pi(); n.exponent.SubOne(); // =pi/4 result.Add(n); return result; } /*! an auxiliary function for calculating the Arc Tangent where x > 1 we're using the formula: atan(x) = pi/2 - atan(1/x) for x>0 */ template ValueType ATanGreaterThanPlusOne(const ValueType & x) { ValueType temp, atan; temp.SetOne(); if( temp.Div(x) ) { // if there was a carry here that means x is very big // and atan(1/x) fast converged to 0 atan.SetZero(); } else atan = ATan01(temp); temp.Set05Pi(); temp.Sub(atan); return temp; } } // namespace auxiliaryfunctions /*! this function calculates the Arc Tangent */ template ValueType ATan(ValueType x) { using namespace auxiliaryfunctions; ValueType one, result; one.SetOne(); bool change_sign = false; if( x.IsNan() ) return x; // if x is negative we're using the formula: // atan(-x) = -atan(x) if( x.IsSign() ) { change_sign = true; x.Abs(); } if( x.GreaterWithoutSignThan(one) ) result = ATanGreaterThanPlusOne(x); else result = ATan01(x); if( change_sign ) result.ChangeSign(); return result; } /*! this function calculates the Arc Tangent look at the description of ATan(...) (the abbreviation of Arc Tangent can be 'atg' as well) */ template ValueType ATg(const ValueType & x) { return ATan(x); } /*! this function calculates the Arc Cotangent we're using the formula: actan(x) = pi/2 - atan(x) */ template ValueType ACot(const ValueType & x) { ValueType result; result.Set05Pi(); result.Sub(ATan(x)); return result; } /*! this function calculates the Arc Cotangent look at the description of ACot(...) (the abbreviation of Arc Cotangent can be 'actg' as well) */ template ValueType ACtg(const ValueType & x) { return ACot(x); } /* * * hyperbolic functions * * */ /*! this function calculates the Hyperbolic Sine we're using the formula sinh(x)= ( e^x - e^(-x) ) / 2 */ template ValueType Sinh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType ex, emx; uint c = 0; c += ex.Exp(x); c += emx.Exp(-x); c += ex.Sub(emx); c += ex.exponent.SubOne(); if( err ) *err = c ? err_overflow : err_ok; return ex; } /*! this function calculates the Hyperbolic Cosine we're using the formula cosh(x)= ( e^x + e^(-x) ) / 2 */ template ValueType Cosh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType ex, emx; uint c = 0; c += ex.Exp(x); c += emx.Exp(-x); c += ex.Add(emx); c += ex.exponent.SubOne(); if( err ) *err = c ? err_overflow : err_ok; return ex; } /*! this function calculates the Hyperbolic Tangent we're using the formula tanh(x)= ( e^x - e^(-x) ) / ( e^x + e^(-x) ) */ template ValueType Tanh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType ex, emx, nominator, denominator; uint c = 0; c += ex.Exp(x); c += emx.Exp(-x); nominator = ex; c += nominator.Sub(emx); denominator = ex; c += denominator.Add(emx); c += nominator.Div(denominator); if( err ) *err = c ? err_overflow : err_ok; return nominator; } /*! this function calculates the Hyperbolic Tangent look at the description of Tanh(...) (the abbreviation of Hyperbolic Tangent can be 'tgh' as well) */ template ValueType Tgh(const ValueType & x, ErrorCode * err = 0) { return Tanh(x, err); } /*! this function calculates the Hyperbolic Cotangent we're using the formula coth(x)= ( e^x + e^(-x) ) / ( e^x - e^(-x) ) */ template ValueType Coth(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } if( x.IsZero() ) { if( err ) *err = err_improper_argument; return ValueType(); // NaN is set by default } ValueType ex, emx, nominator, denominator; uint c = 0; c += ex.Exp(x); c += emx.Exp(-x); nominator = ex; c += nominator.Add(emx); denominator = ex; c += denominator.Sub(emx); c += nominator.Div(denominator); if( err ) *err = c ? err_overflow : err_ok; return nominator; } /*! this function calculates the Hyperbolic Cotangent look at the description of Coth(...) (the abbreviation of Hyperbolic Cotangent can be 'ctgh' as well) */ template ValueType Ctgh(const ValueType & x, ErrorCode * err = 0) { return Coth(x, err); } /* * * inverse hyperbolic functions * * */ /*! inverse hyperbolic sine asinh(x) = ln( x + sqrt(x^2 + 1) ) */ template ValueType ASinh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType xx(x), one, result; uint c = 0; one.SetOne(); c += xx.Mul(x); c += xx.Add(one); one.exponent.SubOne(); // one=0.5 // xx is >= 1 c += xx.PowFrac(one); // xx=sqrt(xx) c += xx.Add(x); c += result.Ln(xx); // xx > 0 // here can only be a carry if( err ) *err = c ? err_overflow : err_ok; return result; } /*! inverse hyperbolic cosine acosh(x) = ln( x + sqrt(x^2 - 1) ) x in <1, infinity) */ template ValueType ACosh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType xx(x), one, result; uint c = 0; one.SetOne(); if( x < one ) { if( err ) *err = err_improper_argument; return result; // NaN is set by default } c += xx.Mul(x); c += xx.Sub(one); // xx is >= 0 // we can't call a PowFrac when the 'x' is zero // if x is 0 the sqrt(0) is 0 if( !xx.IsZero() ) { one.exponent.SubOne(); // one=0.5 c += xx.PowFrac(one); // xx=sqrt(xx) } c += xx.Add(x); c += result.Ln(xx); // xx >= 1 // here can only be a carry if( err ) *err = c ? err_overflow : err_ok; return result; } /*! inverse hyperbolic tangent atanh(x) = 0.5 * ln( (1+x) / (1-x) ) x in (-1, 1) */ template ValueType ATanh(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType nominator(x), denominator, one, result; uint c = 0; one.SetOne(); if( !x.SmallerWithoutSignThan(one) ) { if( err ) *err = err_improper_argument; return result; // NaN is set by default } c += nominator.Add(one); denominator = one; c += denominator.Sub(x); c += nominator.Div(denominator); c += result.Ln(nominator); c += result.exponent.SubOne(); // here can only be a carry if( err ) *err = c ? err_overflow : err_ok; return result; } /*! inverse hyperbolic tantent */ template ValueType ATgh(const ValueType & x, ErrorCode * err = 0) { return ATanh(x, err); } /*! inverse hyperbolic cotangent acoth(x) = 0.5 * ln( (x+1) / (x-1) ) x in (-infinity, -1) or (1, infinity) */ template ValueType ACoth(const ValueType & x, ErrorCode * err = 0) { if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; // NaN } ValueType nominator(x), denominator(x), one, result; uint c = 0; one.SetOne(); if( !x.GreaterWithoutSignThan(one) ) { if( err ) *err = err_improper_argument; return result; // NaN is set by default } c += nominator.Add(one); c += denominator.Sub(one); c += nominator.Div(denominator); c += result.Ln(nominator); c += result.exponent.SubOne(); // here can only be a carry if( err ) *err = c ? err_overflow : err_ok; return result; } /*! inverse hyperbolic cotantent */ template ValueType ACtgh(const ValueType & x, ErrorCode * err = 0) { return ACoth(x, err); } /* * * functions for converting between degrees, radians and gradians * * */ /*! this function converts degrees to radians it returns: x * pi / 180 */ template ValueType DegToRad(const ValueType & x, ErrorCode * err = 0) { ValueType result, temp; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = x; // it is better to make division first and then multiplication // the result is more accurate especially when x is: 90,180,270 or 360 temp = 180; c += result.Div(temp); temp.SetPi(); c += result.Mul(temp); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function converts radians to degrees it returns: x * 180 / pi */ template ValueType RadToDeg(const ValueType & x, ErrorCode * err = 0) { ValueType result, delimiter; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = 180; c += result.Mul(x); delimiter.SetPi(); c += result.Div(delimiter); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function converts degrees in the long format into one value long format: (degrees, minutes, seconds) minutes and seconds must be greater than or equal zero result: if d>=0 : result= d + ((s/60)+m)/60 if d<0 : result= d - ((s/60)+m)/60 ((s/60)+m)/60 = (s+60*m)/3600 (second version is faster because there's only one division) for example: DegToDeg(10, 30, 0) = 10.5 DegToDeg(10, 24, 35.6)=10.4098(8) */ template ValueType DegToDeg( const ValueType & d, const ValueType & m, const ValueType & s, ErrorCode * err = 0) { ValueType delimiter, multipler; uint c = 0; if( d.IsNan() || m.IsNan() || s.IsNan() || m.IsSign() || s.IsSign() ) { if( err ) *err = err_improper_argument; delimiter.SetZeroNan(); // not needed, only to get rid of GCC warning about an uninitialized variable return delimiter; } multipler = 60; delimiter = 3600; c += multipler.Mul(m); c += multipler.Add(s); c += multipler.Div(delimiter); if( d.IsSign() ) multipler.ChangeSign(); c += multipler.Add(d); if( err ) *err = c ? err_overflow : err_ok; return multipler; } /*! this function converts degrees in the long format to radians */ template ValueType DegToRad( const ValueType & d, const ValueType & m, const ValueType & s, ErrorCode * err = 0) { ValueType temp_deg = DegToDeg(d,m,s,err); if( err && *err!=err_ok ) return temp_deg; return DegToRad(temp_deg, err); } /*! this function converts gradians to radians it returns: x * pi / 200 */ template ValueType GradToRad(const ValueType & x, ErrorCode * err = 0) { ValueType result, temp; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = x; // it is better to make division first and then multiplication // the result is more accurate especially when x is: 100,200,300 or 400 temp = 200; c += result.Div(temp); temp.SetPi(); c += result.Mul(temp); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function converts radians to gradians it returns: x * 200 / pi */ template ValueType RadToGrad(const ValueType & x, ErrorCode * err = 0) { ValueType result, delimiter; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = 200; c += result.Mul(x); delimiter.SetPi(); c += result.Div(delimiter); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function converts degrees to gradians it returns: x * 200 / 180 */ template ValueType DegToGrad(const ValueType & x, ErrorCode * err = 0) { ValueType result, temp; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = x; temp = 200; c += result.Mul(temp); temp = 180; c += result.Div(temp); if( err ) *err = c ? err_overflow : err_ok; return result; } /*! this function converts degrees in the long format to gradians */ template ValueType DegToGrad( const ValueType & d, const ValueType & m, const ValueType & s, ErrorCode * err = 0) { ValueType temp_deg = DegToDeg(d,m,s,err); if( err && *err!=err_ok ) return temp_deg; return DegToGrad(temp_deg, err); } /*! this function converts degrees to gradians it returns: x * 180 / 200 */ template ValueType GradToDeg(const ValueType & x, ErrorCode * err = 0) { ValueType result, temp; uint c = 0; if( x.IsNan() ) { if( err ) *err = err_improper_argument; return x; } result = x; temp = 180; c += result.Mul(temp); temp = 200; c += result.Div(temp); if( err ) *err = c ? err_overflow : err_ok; return result; } /* * * another functions * * */ /*! this function calculates the square root Sqrt(9) = 3 */ template ValueType Sqrt(ValueType x, ErrorCode * err = 0) { if( x.IsNan() || x.IsSign() ) { if( err ) *err = err_improper_argument; x.SetNan(); return x; } uint c = x.Sqrt(); if( err ) *err = c ? err_overflow : err_ok; return x; } namespace auxiliaryfunctions { template bool RootCheckIndexSign(ValueType & x, const ValueType & index, ErrorCode * err) { if( index.IsSign() ) { // index cannot be negative if( err ) *err = err_improper_argument; x.SetNan(); return true; } return false; } template bool RootCheckIndexZero(ValueType & x, const ValueType & index, ErrorCode * err) { if( index.IsZero() ) { if( x.IsZero() ) { // there isn't root(0;0) - we assume it's not defined if( err ) *err = err_improper_argument; x.SetNan(); return true; } // root(x;0) is 1 (if x!=0) x.SetOne(); if( err ) *err = err_ok; return true; } return false; } template bool RootCheckIndexOne(const ValueType & index, ErrorCode * err) { ValueType one; one.SetOne(); if( index == one ) { //root(x;1) is x // we do it because if we used the PowFrac function // we would lose the precision if( err ) *err = err_ok; return true; } return false; } template bool RootCheckIndexTwo(ValueType & x, const ValueType & index, ErrorCode * err) { if( index == 2 ) { x = Sqrt(x, err); return true; } return false; } template bool RootCheckIndexFrac(ValueType & x, const ValueType & index, ErrorCode * err) { if( !index.IsInteger() ) { // index must be integer if( err ) *err = err_improper_argument; x.SetNan(); return true; } return false; } template bool RootCheckXZero(ValueType & x, ErrorCode * err) { if( x.IsZero() ) { // root(0;index) is zero (if index!=0) // RootCheckIndexZero() must be called beforehand x.SetZero(); if( err ) *err = err_ok; return true; } return false; } template bool RootCheckIndex(ValueType & x, const ValueType & index, ErrorCode * err, bool * change_sign) { *change_sign = false; if( index.Mod2() ) { // index is odd (1,3,5...) if( x.IsSign() ) { *change_sign = true; x.Abs(); } } else { // index is even // x cannot be negative if( x.IsSign() ) { if( err ) *err = err_improper_argument; x.SetNan(); return true; } } return false; } template uint RootCorrectInteger(ValueType & old_x, ValueType & x, const ValueType & index) { if( !old_x.IsInteger() || x.IsInteger() || !index.exponent.IsSign() ) return 0; // old_x is integer, // x is not integer, // index is relatively small (index.exponent<0 or index.exponent<=0) // (because we're using a special powering algorithm Big::PowUInt()) uint c = 0; ValueType temp(x); c += temp.Round(); ValueType temp_round(temp); c += temp.PowUInt(index); if( temp == old_x ) x = temp_round; return (c==0)? 0 : 1; } } // namespace auxiliaryfunctions /*! indexth Root of x index must be integer and not negative <0;1;2;3....) if index==0 the result is one if x==0 the result is zero and we assume root(0;0) is not defined if index is even (2;4;6...) the result is x^(1/index) and x>0 if index is odd (1;2;3;...) the result is either -(abs(x)^(1/index)) if x<0 or x^(1/index)) if x>0 (for index==1 the result is equal x) */ template ValueType Root(ValueType x, const ValueType & index, ErrorCode * err = 0) { using namespace auxiliaryfunctions; if( x.IsNan() || index.IsNan() ) { if( err ) *err = err_improper_argument; x.SetNan(); return x; } if( RootCheckIndexSign(x, index, err) ) return x; if( RootCheckIndexZero(x, index, err) ) return x; if( RootCheckIndexOne ( index, err) ) return x; if( RootCheckIndexTwo (x, index, err) ) return x; if( RootCheckIndexFrac(x, index, err) ) return x; if( RootCheckXZero (x, err) ) return x; // index integer and index!=0 // x!=0 ValueType old_x(x); bool change_sign; if( RootCheckIndex(x, index, err, &change_sign ) ) return x; ValueType temp; uint c = 0; // we're using the formula: root(x ; n) = exp( ln(x) / n ) c += temp.Ln(x); c += temp.Div(index); c += x.Exp(temp); if( change_sign ) { // x is different from zero x.SetSign(); } c += RootCorrectInteger(old_x, x, index); if( err ) *err = c ? err_overflow : err_ok; return x; } /*! absolute value of x e.g. -2 = 2 2 = 2 */ template ValueType Abs(const ValueType & x) { ValueType result( x ); result.Abs(); return result; } /*! it returns the sign of the value e.g. -2 = -1 0 = 0 10 = 1 */ template ValueType Sgn(ValueType x) { x.Sgn(); return x; } /*! the remainder from a division e.g. mod( 12.6 ; 3) = 0.6 because 12.6 = 3*4 + 0.6 mod(-12.6 ; 3) = -0.6 bacause -12.6 = 3*(-4) + (-0.6) mod( 12.6 ; -3) = 0.6 mod(-12.6 ; -3) = -0.6 */ template ValueType Mod(ValueType a, const ValueType & b, ErrorCode * err = 0) { if( a.IsNan() || b.IsNan() ) { if( err ) *err = err_improper_argument; a.SetNan(); return a; } uint c = a.Mod(b); if( err ) *err = c ? err_overflow : err_ok; return a; } namespace auxiliaryfunctions { /*! this function is used to store factorials in a given container 'more' means how many values should be added at the end e.g. std::vector fact; SetFactorialSequence(fact, 3); // now the container has three values: 1 1 2 SetFactorialSequence(fact, 2); // now the container has five values: 1 1 2 6 24 */ template void SetFactorialSequence(std::vector & fact, uint more = 20) { if( more == 0 ) more = 1; uint start = static_cast(fact.size()); fact.resize(fact.size() + more); if( start == 0 ) { fact[0] = 1; ++start; } for(uint i=start ; i ValueType SetBernoulliNumbersSum(CGamma & cgamma, const ValueType & n_, uint m, const volatile StopCalculating * stop = 0) { ValueType k_, temp, temp2, temp3, sum; sum.SetZero(); for(uint k=0 ; kWasStopSignal() ) return ValueType(); // NaN if( k>1 && (k & 1) == 1 ) // for that k the Bernoulli number is zero continue; k_ = k; temp = n_; // n_ is equal 2 temp.Pow(k_); // temp = 2^k temp2 = cgamma.fact[m]; temp3 = cgamma.fact[k]; temp3.Mul(cgamma.fact[m-k]); temp2.Div(temp3); // temp2 = (m k) = m! / ( k! * (m-k)! ) temp.Mul(temp2); temp.Mul(cgamma.bern[k]); sum.Add(temp); // sum += 2^k * (m k) * B(k) if( sum.IsNan() ) break; } return sum; } /*! an auxiliary function used to calculate Bernoulli numbers start is >= 2 we use the recurrence formula: B(m) = 1 / (2*(1 - 2^m)) * sum(m) where sum(m) is calculated by SetBernoulliNumbersSum() */ template bool SetBernoulliNumbersMore(CGamma & cgamma, uint start, const volatile StopCalculating * stop = 0) { ValueType denominator, temp, temp2, temp3, m_, sum, sum2, n_, k_; const uint n = 2; n_ = n; // start is >= 2 for(uint m=start ; mWasStopSignal() ) { cgamma.bern.resize(m); // valid numbers are in [0, m-1] return false; } cgamma.bern[m].Div(denominator); } } return true; } /*! this function is used to calculate Bernoulli numbers, returns false if there was a stop signal, 'more' means how many values should be added at the end e.g. typedef Big<1,2> MyBig; CGamma cgamma; SetBernoulliNumbers(cgamma, 3); // now we have three first Bernoulli numbers: 1 -0.5 0.16667 SetBernoulliNumbers(cgamma, 4); // now we have 7 Bernoulli numbers: 1 -0.5 0.16667 0 -0.0333 0 0.0238 */ template bool SetBernoulliNumbers(CGamma & cgamma, uint more = 20, const volatile StopCalculating * stop = 0) { if( more == 0 ) more = 1; uint start = static_cast(cgamma.bern.size()); cgamma.bern.resize(cgamma.bern.size() + more); if( start == 0 ) { cgamma.bern[0].SetOne(); ++start; } if( cgamma.bern.size() == 1 ) return true; if( start == 1 ) { cgamma.bern[1].Set05(); cgamma.bern[1].ChangeSign(); ++start; } // we should have sufficient factorials in cgamma.fact if( cgamma.fact.size() < cgamma.bern.size() ) SetFactorialSequence(cgamma.fact, static_cast(cgamma.bern.size() - cgamma.fact.size())); return SetBernoulliNumbersMore(cgamma, start, stop); } /*! an auxiliary function used to calculate the Gamma() function we calculate a sum: sum(n) = sum_{m=2} { B(m) / ( (m^2 - m) * n^(m-1) ) } = 1/(12*n) - 1/(360*n^3) + 1/(1260*n^5) + ... B(m) means a mth Bernoulli number the sum starts from m=2, we calculate as long as the value will not change after adding a next part */ template ValueType GammaFactorialHighSum(const ValueType & n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { ValueType temp, temp2, denominator, sum, oldsum; sum.SetZero(); for(uint m=2 ; mWasStopSignal() ) { err = err_interrupt; return ValueType(); // NaN } temp = (m-1); denominator = n; denominator.Pow(temp); // denominator = n ^ (m-1) temp = m; temp2 = temp; temp.Mul(temp2); temp.Sub(temp2); // temp = m^2 - m denominator.Mul(temp); // denominator = (m^2 - m) * n ^ (m-1) if( m >= cgamma.bern.size() ) { if( !SetBernoulliNumbers(cgamma, m - cgamma.bern.size() + 1 + 3, stop) ) // 3 more than needed { // there was the stop signal err = err_interrupt; return ValueType(); // NaN } } temp = cgamma.bern[m]; temp.Div(denominator); oldsum = sum; sum.Add(temp); if( sum.IsNan() || oldsum==sum ) break; } return sum; } /*! an auxiliary function used to calculate the Gamma() function we calculate a helper function GammaFactorialHigh() by using Stirling's series: n! = (n/e)^n * sqrt(2*pi*n) * exp( sum(n) ) where n is a real number (not only an integer) and is sufficient large (greater than TTMATH_GAMMA_BOUNDARY) and sum(n) is calculated by GammaFactorialHighSum() */ template ValueType GammaFactorialHigh(const ValueType & n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { ValueType temp, temp2, temp3, denominator, sum; temp.Set2Pi(); temp.Mul(n); temp2 = Sqrt(temp); // temp2 = sqrt(2*pi*n) temp = n; temp3.SetE(); temp.Div(temp3); temp.Pow(n); // temp = (n/e)^n sum = GammaFactorialHighSum(n, cgamma, err, stop); temp3.Exp(sum); // temp3 = exp(sum) temp.Mul(temp2); temp.Mul(temp3); return temp; } /*! an auxiliary function used to calculate the Gamma() function Gamma(x) = GammaFactorialHigh(x-1) */ template ValueType GammaPlusHigh(ValueType n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { ValueType one; one.SetOne(); n.Sub(one); return GammaFactorialHigh(n, cgamma, err, stop); } /*! an auxiliary function used to calculate the Gamma() function we use this function when n is integer and a small value (from 0 to TTMATH_GAMMA_BOUNDARY] we use the formula: gamma(n) = (n-1)! = 1 * 2 * 3 * ... * (n-1) */ template ValueType GammaPlusLowIntegerInt(uint n, CGamma & cgamma) { TTMATH_ASSERT( n > 0 ) if( n - 1 < static_cast(cgamma.fact.size()) ) return cgamma.fact[n - 1]; ValueType res; uint start = 2; if( cgamma.fact.size() < 2 ) { res.SetOne(); } else { start = static_cast(cgamma.fact.size()); res = cgamma.fact[start-1]; } for(uint i=start ; i ValueType GammaPlusLowInteger(const ValueType & n, CGamma & cgamma) { sint n_; n.ToInt(n_); return GammaPlusLowIntegerInt(n_, cgamma); } /*! an auxiliary function used to calculate the Gamma() function we use this function when n is a small value (from 0 to TTMATH_GAMMA_BOUNDARY] we use a recurrence formula: gamma(z+1) = z * gamma(z) then: gamma(z) = gamma(z+1) / z e.g. gamma(3.89) = gamma(2001.89) / ( 3.89 * 4.89 * 5.89 * ... * 1999.89 * 2000.89 ) */ template ValueType GammaPlusLow(ValueType n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { ValueType one, denominator, temp, boundary; if( n.IsInteger() ) return GammaPlusLowInteger(n, cgamma); one.SetOne(); denominator = n; boundary = TTMATH_GAMMA_BOUNDARY; while( n < boundary ) { n.Add(one); denominator.Mul(n); } n.Add(one); // now n is sufficient big temp = GammaPlusHigh(n, cgamma, err, stop); temp.Div(denominator); return temp; } /*! an auxiliary function used to calculate the Gamma() function */ template ValueType GammaPlus(const ValueType & n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { if( n > TTMATH_GAMMA_BOUNDARY ) return GammaPlusHigh(n, cgamma, err, stop); return GammaPlusLow(n, cgamma, err, stop); } /*! an auxiliary function used to calculate the Gamma() function this function is used when n is negative we use the reflection formula: gamma(1-z) * gamma(z) = pi / sin(pi*z) then: gamma(z) = pi / (sin(pi*z) * gamma(1-z)) */ template ValueType GammaMinus(const ValueType & n, CGamma & cgamma, ErrorCode & err, const volatile StopCalculating * stop) { ValueType pi, denominator, temp, temp2; if( n.IsInteger() ) { // gamma function is not defined when n is negative and integer err = err_improper_argument; return temp; // NaN } pi.SetPi(); temp = pi; temp.Mul(n); temp2 = Sin(temp); // temp2 = sin(pi * n) temp.SetOne(); temp.Sub(n); temp = GammaPlus(temp, cgamma, err, stop); // temp = gamma(1 - n) temp.Mul(temp2); pi.Div(temp); return pi; } } // namespace auxiliaryfunctions /*! this function calculates the Gamma function it's multithread safe, you should create a CGamma<> object and use it whenever you call the Gamma() e.g. typedef Big<1,2> MyBig; MyBig x=234, y=345.53; CGamma cgamma; std::cout << Gamma(x, cgamma) << std::endl; std::cout << Gamma(y, cgamma) << std::endl; in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers), and they will be reused in next calls to the function each thread should have its own CGamma<> object, and you can use these objects with Factorial() function too */ template ValueType Gamma(const ValueType & n, CGamma & cgamma, ErrorCode * err = 0, const volatile StopCalculating * stop = 0) { using namespace auxiliaryfunctions; ValueType result; ErrorCode err_tmp; if( n.IsNan() ) { if( err ) *err = err_improper_argument; return n; } if( cgamma.history.Get(n, result, err_tmp) ) { if( err ) *err = err_tmp; return result; } err_tmp = err_ok; if( n.IsSign() ) { result = GammaMinus(n, cgamma, err_tmp, stop); } else if( n.IsZero() ) { err_tmp = err_improper_argument; result.SetNan(); } else { result = GammaPlus(n, cgamma, err_tmp, stop); } if( result.IsNan() && err_tmp==err_ok ) err_tmp = err_overflow; if( err ) *err = err_tmp; if( stop && !stop->WasStopSignal() ) cgamma.history.Add(n, result, err_tmp); return result; } /*! this function calculates the Gamma function note: this function should be used only in a single-thread environment */ template ValueType Gamma(const ValueType & n, ErrorCode * err = 0) { // warning: this static object is not thread safe static CGamma cgamma; return Gamma(n, cgamma, err); } namespace auxiliaryfunctions { /*! an auxiliary function for calculating the factorial function we use the formula: x! = gamma(x+1) */ template ValueType Factorial2(ValueType x, CGamma * cgamma = 0, ErrorCode * err = 0, const volatile StopCalculating * stop = 0) { ValueType result, one; if( x.IsNan() || x.IsSign() || !x.IsInteger() ) { if( err ) *err = err_improper_argument; x.SetNan(); return x; } one.SetOne(); x.Add(one); if( cgamma ) return Gamma(x, *cgamma, err, stop); return Gamma(x, err); } } // namespace auxiliaryfunctions /*! the factorial from given 'x' e.g. Factorial(4) = 4! = 1*2*3*4 it's multithread safe, you should create a CGamma<> object and use it whenever you call the Factorial() e.g. typedef Big<1,2> MyBig; MyBig x=234, y=54345; CGamma cgamma; std::cout << Factorial(x, cgamma) << std::endl; std::cout << Factorial(y, cgamma) << std::endl; in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers), and they will be reused in next calls to the function each thread should have its own CGamma<> object, and you can use these objects with Gamma() function too */ template ValueType Factorial(const ValueType & x, CGamma & cgamma, ErrorCode * err = 0, const volatile StopCalculating * stop = 0) { return auxiliaryfunctions::Factorial2(x, &cgamma, err, stop); } /*! the factorial from given 'x' e.g. Factorial(4) = 4! = 1*2*3*4 note: this function should be used only in a single-thread environment */ template ValueType Factorial(const ValueType & x, ErrorCode * err = 0) { return auxiliaryfunctions::Factorial2(x, (CGamma*)0, err, 0); } /*! this method prepares some coefficients: factorials and Bernoulli numbers stored in 'fact' and 'bern' objects we're defining the method here because we're using Gamma() function which is not available in ttmathobjects.h read the doc info in ttmathobjects.h file where CGamma<> struct is declared */ template void CGamma::InitAll() { ValueType x = TTMATH_GAMMA_BOUNDARY + 1; // history.Remove(x) removes only one object // we must be sure that there are not others objects with the key 'x' while( history.Remove(x) ) { } // the simplest way to initialize is to call the Gamma function with (TTMATH_GAMMA_BOUNDARY + 1) // when x is larger then fewer coefficients we need Gamma(x, *this); } } // namespace #ifdef _MSC_VER //warning C4127: conditional expression is constant #pragma warning( default: 4127 ) //warning C4702: unreachable code #pragma warning( default: 4702 ) //warning C4800: forcing value to bool 'true' or 'false' (performance warning) #pragma warning( default: 4800 ) #endif #endif