/* NIST Secure Hash Algorithm */ /* heavily modified by Uwe Hollerbach */ /* from Peter C. Gutmann's implementation as found in */ /* Applied Cryptography by Bruce Schneier */ /* This code is in the public domain */ // Adopted and added to firebird cvs tree - A.Peshkov, 2004 #ifndef SHA_H #define SHA_H #include #include #include "../jrd/sha.h" #include "../common/classes/array.h" #include "../jrd/os/guid.h" namespace { /* Useful defines & typedefs */ typedef unsigned char BYTE; /* 8-bit quantity */ typedef unsigned long LONG; /* 32-or-more-bit quantity */ #define SHA_BLOCKSIZE 64 #define SHA_DIGESTSIZE 20 typedef struct { LONG digest[5]; /* message digest */ LONG count_lo, count_hi; /* 64-bit bit count */ BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ int local; /* unprocessed amount in data */ } SHA_INFO; void sha_init(SHA_INFO *); void sha_update(SHA_INFO *, const BYTE *, int); void sha_final(unsigned char [SHA_DIGESTSIZE], SHA_INFO *); #define SHA_VERSION 1 #include "firebird.h" #ifdef WORDS_BIGENDIAN # if SIZEOF_LONG == 4 # define SHA_BYTE_ORDER 4321 # elif SIZEOF_LONG == 8 # define SHA_BYTE_ORDER 87654321 # endif #else # if SIZEOF_LONG == 4 # define SHA_BYTE_ORDER 1234 # elif SIZEOF_LONG == 8 # define SHA_BYTE_ORDER 12345678 # endif #endif #endif /* SHA_H */ /* (PD) 2001 The Bitzi Corporation * Please see file COPYING or http://bitzi.com/publicdomain * for more info. * * NIST Secure Hash Algorithm * heavily modified by Uwe Hollerbach * from Peter C. Gutmann's implementation as found in * Applied Cryptography by Bruce Schneier * Further modifications to include the "UNRAVEL" stuff, below * * This code is in the public domain * */ /* UNRAVEL should be fastest & biggest */ /* UNROLL_LOOPS should be just as big, but slightly slower */ /* both undefined should be smallest and slowest */ #define UNRAVEL /* #define UNROLL_LOOPS */ /* SHA f()-functions */ #define f1(x,y,z) ((x & y) | (~x & z)) #define f2(x,y,z) (x ^ y ^ z) #define f3(x,y,z) ((x & y) | (x & z) | (y & z)) #define f4(x,y,z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* truncate to 32 bits -- should be a null op on 32-bit machines */ #define T32(x) ((x) & 0xffffffffL) /* 32-bit rotate */ #define R32(x,n) T32(((x << n) | (x >> (32 - n)))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \ E = D; D = C; C = R32(B,30); B = A; A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30) #define FB(n) \ E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30) #define FC(n) \ D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30) #define FD(n) \ C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30) #define FE(n) \ B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30) #define FT(n) \ A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30) /* do SHA transformation */ static void sha_transform(SHA_INFO *sha_info) { int i; LONG T, W[80]; const BYTE* dp = sha_info->data; /* the following makes sure that at least one code block below is traversed or an error is reported, without the necessity for nested preprocessor if/else/endif blocks, which are a great pain in the nether regions of the anatomy... */ #undef SWAP_DONE #if (SHA_BYTE_ORDER == 1234) #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((LONG *) dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif /* SHA_BYTE_ORDER == 1234 */ #if (SHA_BYTE_ORDER == 4321) #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((LONG *) dp); dp += 4; W[i] = T32(T); } #endif /* SHA_BYTE_ORDER == 4321 */ #if (SHA_BYTE_ORDER == 12345678) #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((LONG *) dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif /* SHA_BYTE_ORDER == 12345678 */ #if (SHA_BYTE_ORDER == 87654321) #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((LONG *) dp); dp += 8; W[i] = T32(T >> 32); W[i + 1] = T32(T); } #endif /* SHA_BYTE_ORDER == 87654321 */ #ifndef SWAP_DONE #error Unknown byte order -- you need to add code here #endif /* SWAP_DONE */ for (i = 16; i < 80; ++i) { W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; #if (SHA_VERSION == 1) W[i] = R32(W[i], 1); #endif /* SHA_VERSION */ } LONG A = sha_info->digest[0]; LONG B = sha_info->digest[1]; LONG C = sha_info->digest[2]; LONG D = sha_info->digest[3]; LONG E = sha_info->digest[4]; const LONG* WP = W; #ifdef UNRAVEL FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); sha_info->digest[0] = T32(sha_info->digest[0] + E); sha_info->digest[1] = T32(sha_info->digest[1] + T); sha_info->digest[2] = T32(sha_info->digest[2] + A); sha_info->digest[3] = T32(sha_info->digest[3] + B); sha_info->digest[4] = T32(sha_info->digest[4] + C); #else /* !UNRAVEL */ #ifdef UNROLL_LOOPS FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); #else /* !UNROLL_LOOPS */ for (i = 0; i < 20; ++i) { FG(1); } for (i = 20; i < 40; ++i) { FG(2); } for (i = 40; i < 60; ++i) { FG(3); } for (i = 60; i < 80; ++i) { FG(4); } #endif /* !UNROLL_LOOPS */ sha_info->digest[0] = T32(sha_info->digest[0] + A); sha_info->digest[1] = T32(sha_info->digest[1] + B); sha_info->digest[2] = T32(sha_info->digest[2] + C); sha_info->digest[3] = T32(sha_info->digest[3] + D); sha_info->digest[4] = T32(sha_info->digest[4] + E); #endif /* !UNRAVEL */ } /* initialize the SHA digest */ void sha_init(SHA_INFO *sha_info) { sha_info->digest[0] = 0x67452301L; sha_info->digest[1] = 0xefcdab89L; sha_info->digest[2] = 0x98badcfeL; sha_info->digest[3] = 0x10325476L; sha_info->digest[4] = 0xc3d2e1f0L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; } /* update the SHA digest */ void sha_update(SHA_INFO *sha_info, const BYTE *buffer, int count) { const LONG clo = T32(sha_info->count_lo + ((LONG) count << 3)); if (clo < sha_info->count_lo) { ++sha_info->count_hi; } sha_info->count_lo = clo; sha_info->count_hi += (LONG) count >> 29; if (sha_info->local) { int i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(sha_info->data + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = count; } /* finish computing the SHA digest */ void sha_final(unsigned char digest[SHA_DIGESTSIZE], SHA_INFO *sha_info) { const LONG lo_bit_count = sha_info->count_lo; const LONG hi_bit_count = sha_info->count_hi; int count = (int) ((lo_bit_count >> 3) & 0x3f); sha_info->data[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(sha_info->data + count, 0, SHA_BLOCKSIZE - count); sha_transform(sha_info); memset(sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset(sha_info->data + count, 0, SHA_BLOCKSIZE - 8 - count); } sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff); sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff); sha_info->data[58] = (unsigned char) ((hi_bit_count >> 8) & 0xff); sha_info->data[59] = (unsigned char) ((hi_bit_count >> 0) & 0xff); sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff); sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff); sha_info->data[62] = (unsigned char) ((lo_bit_count >> 8) & 0xff); sha_info->data[63] = (unsigned char) ((lo_bit_count >> 0) & 0xff); sha_transform(sha_info); digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); } char conv_bin2ascii(ULONG l) { return "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"[l & 0x3f]; } typedef Firebird::HalfStaticArray BinHash; void base64(Firebird::string& b64, const BinHash& bin) { b64.erase(); const unsigned char* f = reinterpret_cast(bin.begin()); for (int i = bin.getCount(); i > 0; i -= 3, f += 3) { if (i >= 3) { const ULONG l = (ULONG(f[0]) << 16) | (ULONG(f[1]) << 8) | f[2]; b64 += conv_bin2ascii(l >> 18); b64 += conv_bin2ascii(l >> 12); b64 += conv_bin2ascii(l >> 6); b64 += conv_bin2ascii(l); } else { ULONG l = ULONG(f[0]) << 16; if (i == 2) l |= (ULONG(f[1]) << 8); b64 += conv_bin2ascii(l >> 18); b64 += conv_bin2ascii(l >> 12); b64 += (i == 1 ? '=' : conv_bin2ascii(l >> 6)); b64 += '='; } } } } // anon namespace void Jrd::CryptSupport::hash(Firebird::string& hashValue, const Firebird::string& data) { SHA_INFO si; sha_init(&si); sha_update(&si, reinterpret_cast(data.c_str()), data.length()); BinHash bh; sha_final(bh.getBuffer(SHA_DIGESTSIZE), &si); base64(hashValue, bh); } void Jrd::CryptSupport::random(Firebird::string& randomValue, size_t length) { BinHash binRand; GenerateRandomBytes(binRand.getBuffer(length), length); base64(randomValue, binRand); randomValue.resize(length, '$'); }