8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-24 12:03:02 +01:00
firebird-mirror/extern/icu/source/test/cintltst/nucnvtst.c
2005-05-27 22:45:31 +00:00

5166 lines
186 KiB
C

/********************************************************************
* COPYRIGHT:
* Copyright (c) 1997-2004, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
/********************************************************************************
*
* File CCONVTST.C
*
* Modification History:
* Name Description
* Steven R. Loomis 7/8/1999 Adding input buffer test
*********************************************************************************
*/
#include <stdio.h>
#include "cstring.h"
#include "unicode/uloc.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_err.h"
#include "cintltst.h"
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/ucol.h"
#include "cmemory.h"
static void TestNextUChar(UConverter* cnv, const char* source, const char* limit, const int32_t results[], const char* message);
static void TestNextUCharError(UConverter* cnv, const char* source, const char* limit, UErrorCode expected, const char* message);
#if !UCONFIG_NO_COLLATION
static void TestJitterbug981(void);
#endif
static void TestJitterbug1293(void);
static void TestNewConvertWithBufferSizes(int32_t osize, int32_t isize) ;
static void TestConverterTypesAndStarters(void);
static void TestAmbiguous(void);
static void TestSignatureDetection(void);
static void TestUTF7(void);
static void TestIMAP(void);
static void TestUTF8(void);
static void TestCESU8(void);
static void TestUTF16(void);
static void TestUTF16BE(void);
static void TestUTF16LE(void);
static void TestUTF32(void);
static void TestUTF32BE(void);
static void TestUTF32LE(void);
static void TestLATIN1(void);
static void TestSBCS(void);
static void TestDBCS(void);
static void TestMBCS(void);
#ifdef U_ENABLE_GENERIC_ISO_2022
static void TestISO_2022(void);
#endif
static void TestISO_2022_JP(void);
static void TestISO_2022_JP_1(void);
static void TestISO_2022_JP_2(void);
static void TestISO_2022_KR(void);
static void TestISO_2022_KR_1(void);
static void TestISO_2022_CN(void);
static void TestISO_2022_CN_EXT(void);
static void TestJIS(void);
static void TestHZ(void);
static void TestSCSU(void);
static void TestEBCDIC_STATEFUL(void);
static void TestGB18030(void);
static void TestLMBCS(void);
static void TestJitterbug255(void);
static void TestEBCDICUS4XML(void);
static void TestJitterbug915(void);
static void TestISCII(void);
static void TestConv(const uint16_t in[],
int len,
const char* conv,
const char* lang,
char byteArr[],
int byteArrLen);
static void TestRoundTrippingAllUTF(void);
static void TestCoverageMBCS(void);
static void TestJitterbug2346(void);
static void TestJitterbug2411(void);
void addTestNewConvert(TestNode** root);
/* open a converter, using test data if it begins with '@' */
static UConverter *my_ucnv_open(const char *cnv, UErrorCode *err);
#define NEW_MAX_BUFFER 999
static int32_t gInBufferSize = NEW_MAX_BUFFER;
static int32_t gOutBufferSize = NEW_MAX_BUFFER;
static char gNuConvTestName[1024];
#define nct_min(x,y) ((x<y) ? x : y)
static UConverter *my_ucnv_open(const char *cnv, UErrorCode *err)
{
if(cnv && cnv[0] == '@') {
return ucnv_openPackage(loadTestData(err), cnv+1, err);
} else {
return ucnv_open(cnv, err);
}
}
static void printSeq(const unsigned char* a, int len)
{
int i=0;
log_verbose("{");
while (i<len)
log_verbose("0x%02x ", a[i++]);
log_verbose("}\n");
}
static void printUSeq(const UChar* a, int len)
{
int i=0;
log_verbose("{U+");
while (i<len) log_verbose("0x%04x ", a[i++]);
log_verbose("}\n");
}
static void printSeqErr(const unsigned char* a, int len)
{
int i=0;
fprintf(stderr, "{");
while (i<len)
fprintf(stderr, "0x%02x ", a[i++]);
fprintf(stderr, "}\n");
}
static void printUSeqErr(const UChar* a, int len)
{
int i=0;
fprintf(stderr, "{U+");
while (i<len)
fprintf(stderr, "0x%04x ", a[i++]);
fprintf(stderr,"}\n");
}
static void
TestNextUChar(UConverter* cnv, const char* source, const char* limit, const int32_t results[], const char* message)
{
const char* s0;
const char* s=(char*)source;
const int32_t *r=results;
UErrorCode errorCode=U_ZERO_ERROR;
UChar32 c;
while(s<limit) {
s0=s;
c=ucnv_getNextUChar(cnv, &s, limit, &errorCode);
if(errorCode==U_INDEX_OUTOFBOUNDS_ERROR) {
break; /* no more significant input */
} else if(U_FAILURE(errorCode)) {
log_err("%s ucnv_getNextUChar() failed: %s\n", message, u_errorName(errorCode));
break;
} else if(
/* test the expected number of input bytes only if >=0 */
(*r>=0 && (int32_t)(s-s0)!=*r) ||
c!=*(r+1)
) {
log_err("%s ucnv_getNextUChar() result %lx from %d bytes, should have been %lx from %d bytes.\n",
message, c, (s-s0), *(r+1), *r);
break;
}
r+=2;
}
}
static void
TestNextUCharError(UConverter* cnv, const char* source, const char* limit, UErrorCode expected, const char* message)
{
const char* s=(char*)source;
UErrorCode errorCode=U_ZERO_ERROR;
uint32_t c;
c=ucnv_getNextUChar(cnv, &s, limit, &errorCode);
if(errorCode != expected){
log_err("FAIL: Expected:%s when %s-----Got:%s\n", myErrorName(expected), message, myErrorName(errorCode));
}
if(c != 0xFFFD && c != 0xffff){
log_err("FAIL: Expected return value of 0xfffd or 0xffff when %s-----Got 0x%lx\n", message, c);
}
}
static void TestInBufSizes(void)
{
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,1);
#if 1
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,2);
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,3);
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,4);
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,5);
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,6);
TestNewConvertWithBufferSizes(1,1);
TestNewConvertWithBufferSizes(2,3);
TestNewConvertWithBufferSizes(3,2);
#endif
}
static void TestOutBufSizes(void)
{
#if 1
TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,NEW_MAX_BUFFER);
TestNewConvertWithBufferSizes(1,NEW_MAX_BUFFER);
TestNewConvertWithBufferSizes(2,NEW_MAX_BUFFER);
TestNewConvertWithBufferSizes(3,NEW_MAX_BUFFER);
TestNewConvertWithBufferSizes(4,NEW_MAX_BUFFER);
TestNewConvertWithBufferSizes(5,NEW_MAX_BUFFER);
#endif
}
void addTestNewConvert(TestNode** root)
{
addTest(root, &TestInBufSizes, "tsconv/nucnvtst/TestInBufSizes");
addTest(root, &TestOutBufSizes, "tsconv/nucnvtst/TestOutBufSizes");
addTest(root, &TestConverterTypesAndStarters, "tsconv/nucnvtst/TestConverterTypesAndStarters");
addTest(root, &TestAmbiguous, "tsconv/nucnvtst/TestAmbiguous");
addTest(root, &TestSignatureDetection, "tsconv/nucnvtst/TestSignatureDetection");
addTest(root, &TestUTF7, "tsconv/nucnvtst/TestUTF7");
addTest(root, &TestIMAP, "tsconv/nucnvtst/TestIMAP");
addTest(root, &TestUTF8, "tsconv/nucnvtst/TestUTF8");
/* test ucnv_getNextUChar() for charsets that encode single surrogates with complete byte sequences */
addTest(root, &TestCESU8, "tsconv/nucnvtst/TestCESU8");
addTest(root, &TestUTF16, "tsconv/nucnvtst/TestUTF16");
addTest(root, &TestUTF16BE, "tsconv/nucnvtst/TestUTF16BE");
addTest(root, &TestUTF16LE, "tsconv/nucnvtst/TestUTF16LE");
addTest(root, &TestUTF32, "tsconv/nucnvtst/TestUTF32");
addTest(root, &TestUTF32BE, "tsconv/nucnvtst/TestUTF32BE");
addTest(root, &TestUTF32LE, "tsconv/nucnvtst/TestUTF32LE");
addTest(root, &TestLMBCS, "tsconv/nucnvtst/TestLMBCS");
addTest(root, &TestLATIN1, "tsconv/nucnvtst/TestLATIN1");
addTest(root, &TestSBCS, "tsconv/nucnvtst/TestSBCS");
addTest(root, &TestDBCS, "tsconv/nucnvtst/TestDBCS");
addTest(root, &TestMBCS, "tsconv/nucnvtst/TestMBCS");
#ifdef U_ENABLE_GENERIC_ISO_2022
addTest(root, &TestISO_2022, "tsconv/nucnvtst/TestISO_2022");
#endif
addTest(root, &TestISO_2022_JP, "tsconv/nucnvtst/TestISO_2022_JP");
addTest(root, &TestJIS, "tsconv/nucnvtst/TestJIS");
addTest(root, &TestISO_2022_JP_1, "tsconv/nucnvtst/TestISO_2022_JP_1");
addTest(root, &TestISO_2022_JP_2, "tsconv/nucnvtst/TestISO_2022_JP_2");
addTest(root, &TestISO_2022_KR, "tsconv/nucnvtst/TestISO_2022_KR");
addTest(root, &TestISO_2022_KR_1, "tsconv/nucnvtst/TestISO_2022_KR_1");
addTest(root, &TestISO_2022_CN, "tsconv/nucnvtst/TestISO_2022_CN");
addTest(root, &TestISO_2022_CN_EXT, "tsconv/nucnvtst/TestISO_2022_CN_EXT");
addTest(root, &TestJitterbug915, "tsconv/nucnvtst/TestJitterbug915");
addTest(root, &TestHZ, "tsconv/nucnvtst/TestHZ");
addTest(root, &TestSCSU, "tsconv/nucnvtst/TestSCSU");
addTest(root, &TestEBCDIC_STATEFUL, "tsconv/nucnvtst/TestEBCDIC_STATEFUL");
addTest(root, &TestGB18030, "tsconv/nucnvtst/TestGB18030");
addTest(root, &TestJitterbug255, "tsconv/nucnvtst/TestJitterbug255");
addTest(root, &TestEBCDICUS4XML, "tsconv/nucnvtst/TestEBCDICUS4XML");
addTest(root, &TestISCII, "tsconv/nucnvtst/TestISCII");
#if !UCONFIG_NO_COLLATION
addTest(root, &TestJitterbug981, "tsconv/nucnvtst/TestJitterbug981");
#endif
addTest(root, &TestJitterbug1293, "tsconv/nucnvtst/TestJitterbug1293");
addTest(root, &TestCoverageMBCS, "tsconv/nucnvtst/TestCoverageMBCS");
addTest(root, &TestRoundTrippingAllUTF, "tsconv/nucnvtst/TestRoundTrippingAllUTF");
addTest(root, &TestJitterbug2346, "tsconv/nucnvtst/TestJitterbug2346");
addTest(root, &TestJitterbug2411, "tsconv/nucnvtst/TestJitterbug2411");
}
/* Note that this test already makes use of statics, so it's not really
multithread safe.
This convenience function lets us make the error messages actually useful.
*/
static void setNuConvTestName(const char *codepage, const char *direction)
{
sprintf(gNuConvTestName, "[Testing %s %s Unicode, InputBufSiz=%d, OutputBufSiz=%d]",
codepage,
direction,
(int)gInBufferSize,
(int)gOutBufferSize);
}
typedef enum
{
TC_OK = 0, /* test was OK */
TC_MISMATCH = 1, /* Match failed - err was printed */
TC_FAIL = 2 /* Test failed, don't print an err because it was already printed. */
} ETestConvertResult;
/* Note: This function uses global variables and it will not do offset
checking without gOutBufferSize and gInBufferSize set to NEW_MAX_BUFFER */
static ETestConvertResult testConvertFromU( const UChar *source, int sourceLen, const uint8_t *expect, int expectLen,
const char *codepage, const int32_t *expectOffsets , UBool useFallback)
{
UErrorCode status = U_ZERO_ERROR;
UConverter *conv = 0;
uint8_t junkout[NEW_MAX_BUFFER]; /* FIX */
int32_t junokout[NEW_MAX_BUFFER]; /* FIX */
uint8_t *p;
const UChar *src;
uint8_t *end;
uint8_t *targ;
int32_t *offs;
int i;
int32_t realBufferSize;
uint8_t *realBufferEnd;
const UChar *realSourceEnd;
const UChar *sourceLimit;
UBool checkOffsets = TRUE;
UBool doFlush;
for(i=0;i<NEW_MAX_BUFFER;i++)
junkout[i] = 0xF0;
for(i=0;i<NEW_MAX_BUFFER;i++)
junokout[i] = 0xFF;
setNuConvTestName(codepage, "FROM");
log_verbose("\n========= %s\n", gNuConvTestName);
conv = my_ucnv_open(codepage, &status);
if(U_FAILURE(status))
{
log_data_err("Couldn't open converter %s\n",codepage);
return TC_FAIL;
}
if(useFallback){
ucnv_setFallback(conv,useFallback);
}
log_verbose("Converter opened..\n");
src = source;
targ = junkout;
offs = junokout;
realBufferSize = (sizeof(junkout)/sizeof(junkout[0]));
realBufferEnd = junkout + realBufferSize;
realSourceEnd = source + sourceLen;
if ( gOutBufferSize != realBufferSize || gInBufferSize != NEW_MAX_BUFFER )
checkOffsets = FALSE;
do
{
end = nct_min(targ + gOutBufferSize, realBufferEnd);
sourceLimit = nct_min(src + gInBufferSize, realSourceEnd);
doFlush = (UBool)(sourceLimit == realSourceEnd);
if(targ == realBufferEnd) {
log_err("Error, overflowed the real buffer while about to call fromUnicode! targ=%08lx %s", targ, gNuConvTestName);
return TC_FAIL;
}
log_verbose("calling fromUnicode @ SOURCE:%08lx to %08lx TARGET: %08lx to %08lx, flush=%s\n", src,sourceLimit, targ,end, doFlush?"TRUE":"FALSE");
status = U_ZERO_ERROR;
ucnv_fromUnicode (conv,
(char **)&targ,
(const char*)end,
&src,
sourceLimit,
checkOffsets ? offs : NULL,
doFlush, /* flush if we're at the end of the input data */
&status);
} while ( (status == U_BUFFER_OVERFLOW_ERROR) || (U_SUCCESS(status) && sourceLimit < realSourceEnd) );
if(U_FAILURE(status)) {
log_err("Problem doing fromUnicode to %s, errcode %s %s\n", codepage, myErrorName(status), gNuConvTestName);
return TC_FAIL;
}
log_verbose("\nConversion done [%d uchars in -> %d chars out]. \nResult :",
sourceLen, targ-junkout);
if(VERBOSITY)
{
char junk[9999];
char offset_str[9999];
uint8_t *ptr;
junk[0] = 0;
offset_str[0] = 0;
for(ptr = junkout;ptr<targ;ptr++) {
sprintf(junk + strlen(junk), "0x%02x, ", (int)(0xFF & *ptr));
sprintf(offset_str + strlen(offset_str), "0x%02x, ", (int)(0xFF & junokout[ptr-junkout]));
}
log_verbose(junk);
printSeq((const uint8_t *)expect, expectLen);
if ( checkOffsets ) {
log_verbose("\nOffsets:");
log_verbose(offset_str);
}
log_verbose("\n");
}
ucnv_close(conv);
if(expectLen != targ-junkout) {
log_err("Expected %d chars out, got %d %s\n", expectLen, targ-junkout, gNuConvTestName);
log_verbose("Expected %d chars out, got %d %s\n", expectLen, targ-junkout, gNuConvTestName);
printf("\nGot:");
printSeqErr((const unsigned char*)junkout, targ-junkout);
printf("\nExpected:");
printSeqErr((const unsigned char*)expect, expectLen);
return TC_MISMATCH;
}
if (checkOffsets && (expectOffsets != 0) ) {
log_verbose("comparing %d offsets..\n", targ-junkout);
if(memcmp(junokout,expectOffsets,(targ-junkout) * sizeof(int32_t) )){
log_err("did not get the expected offsets. %s\n", gNuConvTestName);
printSeqErr((const unsigned char*)junkout, targ-junkout);
log_err("\n");
log_err("Got : ");
for(p=junkout;p<targ;p++) {
log_err("%d,", junokout[p-junkout]);
}
log_err("\n");
log_err("Expected: ");
for(i=0; i<(targ-junkout); i++) {
log_err("%d,", expectOffsets[i]);
}
log_err("\n");
}
}
log_verbose("comparing..\n");
if(!memcmp(junkout, expect, expectLen)) {
log_verbose("Matches!\n");
return TC_OK;
} else {
log_err("String does not match u->%s\n", gNuConvTestName);
printUSeqErr(source, sourceLen);
printf("\nGot:");
printSeqErr((const unsigned char *)junkout, expectLen);
printf("\nExpected:");
printSeqErr((const unsigned char *)expect, expectLen);
return TC_MISMATCH;
}
}
/* Note: This function uses global variables and it will not do offset
checking without gOutBufferSize and gInBufferSize set to NEW_MAX_BUFFER */
static ETestConvertResult testConvertToU( const uint8_t *source, int sourcelen, const UChar *expect, int expectlen,
const char *codepage, const int32_t *expectOffsets, UBool useFallback)
{
UErrorCode status = U_ZERO_ERROR;
UConverter *conv = 0;
UChar junkout[NEW_MAX_BUFFER]; /* FIX */
int32_t junokout[NEW_MAX_BUFFER]; /* FIX */
const uint8_t *src;
const uint8_t *realSourceEnd;
const uint8_t *srcLimit;
UChar *p;
UChar *targ;
UChar *end;
int32_t *offs;
int i;
UBool checkOffsets = TRUE;
int32_t realBufferSize;
UChar *realBufferEnd;
for(i=0;i<NEW_MAX_BUFFER;i++)
junkout[i] = 0xFFFE;
for(i=0;i<NEW_MAX_BUFFER;i++)
junokout[i] = -1;
setNuConvTestName(codepage, "TO");
log_verbose("\n========= %s\n", gNuConvTestName);
conv = my_ucnv_open(codepage, &status);
if(U_FAILURE(status))
{
log_data_err("Couldn't open converter %s\n",gNuConvTestName);
return TC_FAIL;
}
if(useFallback){
ucnv_setFallback(conv,useFallback);
}
log_verbose("Converter opened..\n");
src = source;
targ = junkout;
offs = junokout;
realBufferSize = (sizeof(junkout)/sizeof(junkout[0]));
realBufferEnd = junkout + realBufferSize;
realSourceEnd = src + sourcelen;
if ( gOutBufferSize != realBufferSize || gInBufferSize != NEW_MAX_BUFFER )
checkOffsets = FALSE;
do
{
end = nct_min( targ + gOutBufferSize, realBufferEnd);
srcLimit = nct_min(realSourceEnd, src + gInBufferSize);
if(targ == realBufferEnd)
{
log_err("Error, the end would overflow the real output buffer while about to call toUnicode! tarjet=%08lx %s",targ,gNuConvTestName);
return TC_FAIL;
}
log_verbose("calling toUnicode @ %08lx to %08lx\n", targ,end);
/* oldTarg = targ; */
status = U_ZERO_ERROR;
ucnv_toUnicode (conv,
&targ,
end,
(const char **)&src,
(const char *)srcLimit,
checkOffsets ? offs : NULL,
(UBool)(srcLimit == realSourceEnd), /* flush if we're at the end of hte source data */
&status);
/* offs += (targ-oldTarg); */
} while ( (status == U_BUFFER_OVERFLOW_ERROR) || (U_SUCCESS(status) && (srcLimit < realSourceEnd)) ); /* while we just need another buffer */
if(U_FAILURE(status))
{
log_err("Problem doing %s toUnicode, errcode %s %s\n", codepage, myErrorName(status), gNuConvTestName);
return TC_FAIL;
}
log_verbose("\nConversion done. %d bytes -> %d chars.\nResult :",
sourcelen, targ-junkout);
if(VERBOSITY)
{
char junk[9999];
char offset_str[9999];
UChar *ptr;
junk[0] = 0;
offset_str[0] = 0;
for(ptr = junkout;ptr<targ;ptr++)
{
sprintf(junk + strlen(junk), "0x%04x, ", (0xFFFF) & (unsigned int)*ptr);
sprintf(offset_str + strlen(offset_str), "0x%04x, ", (0xFFFF) & (unsigned int)junokout[ptr-junkout]);
}
log_verbose(junk);
printUSeq(expect, expectlen);
if ( checkOffsets )
{
log_verbose("\nOffsets:");
log_verbose(offset_str);
}
log_verbose("\n");
}
ucnv_close(conv);
log_verbose("comparing %d uchars (%d bytes)..\n",expectlen,expectlen*2);
if (checkOffsets && (expectOffsets != 0))
{
if(memcmp(junokout,expectOffsets,(targ-junkout) * sizeof(int32_t))){
log_err("did not get the expected offsets. %s\n",gNuConvTestName);
log_err("Got: ");
for(p=junkout;p<targ;p++) {
log_err("%d,", junokout[p-junkout]);
}
log_err("\n");
log_err("Expected: ");
for(i=0; i<(targ-junkout); i++) {
log_err("%d,", expectOffsets[i]);
}
log_err("\n");
log_err("output: ");
for(i=0; i<(targ-junkout); i++) {
log_err("%X,", junkout[i]);
}
log_err("\n");
log_err("input: ");
for(i=0; i<(src-source); i++) {
log_err("%X,", (unsigned char)source[i]);
}
log_err("\n");
}
}
if(!memcmp(junkout, expect, expectlen*2))
{
log_verbose("Matches!\n");
return TC_OK;
}
else
{
log_err("String does not match. %s\n", gNuConvTestName);
log_verbose("String does not match. %s\n", gNuConvTestName);
printf("\nGot:");
printUSeqErr(junkout, expectlen);
printf("\nExpected:");
printUSeqErr(expect, expectlen);
return TC_MISMATCH;
}
}
static void TestNewConvertWithBufferSizes(int32_t outsize, int32_t insize )
{
/** test chars #1 */
/* 1 2 3 1Han 2Han 3Han . */
UChar sampleText[] =
{ 0x0031, 0x0032, 0x0033, 0x0000, 0x4e00, 0x4e8c, 0x4e09, 0x002E };
const uint8_t expectedUTF8[] =
{ 0x31, 0x32, 0x33, 0x00, 0xe4, 0xb8, 0x80, 0xe4, 0xba, 0x8c, 0xe4, 0xb8, 0x89, 0x2E };
int32_t toUTF8Offs[] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07};
int32_t fmUTF8Offs[] =
{ 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0007, 0x000a, 0x000d };
#ifdef U_ENABLE_GENERIC_ISO_2022
/* Same as UTF8, but with ^[%B preceeding */
const uint8_t expectedISO2022[] =
{ 0x1b, 0x25, 0x42, 0x31, 0x32, 0x33, 0x00, 0xe4, 0xb8, 0x80, 0xe4, 0xba, 0x8c, 0xe4, 0xb8, 0x89, 0x2E };
int32_t toISO2022Offs[] =
{ -1, -1, -1, 0x00, 0x01, 0x02, 0x03, 0x04, 0x04,
0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07 }; /* right? */
int32_t fmISO2022Offs[] =
{ 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x000a, 0x000d, 0x0010 }; /* is this right? */
#endif
/* 1 2 3 0, <SO> h1 h2 h3 <SI> . EBCDIC_STATEFUL */
const uint8_t expectedIBM930[] =
{ 0xF1, 0xF2, 0xF3, 0x00, 0x0E, 0x45, 0x41, 0x45, 0x42, 0x45, 0x43, 0x0F, 0x4B };
int32_t toIBM930Offs[] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, };
int32_t fmIBM930Offs[] =
{ 0x0000, 0x0001, 0x0002, 0x0003, 0x0005, 0x0007, 0x0009, 0x000c};
/* 1 2 3 0 h1 h2 h3 . MBCS*/
const uint8_t expectedIBM943[] =
{ 0x31, 0x32, 0x33, 0x00, 0x88, 0xea, 0x93, 0xf1, 0x8e, 0x4f, 0x2e };
int32_t toIBM943Offs [] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07 };
int32_t fmIBM943Offs[] =
{ 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0006, 0x0008, 0x000a};
/* 1 2 3 0 h1 h2 h3 . DBCS*/
const uint8_t expectedIBM9027[] =
{ 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0x4c, 0x41, 0x4c, 0x48, 0x4c, 0x55, 0xfe, 0xfe};
int32_t toIBM9027Offs [] =
{ 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07};
/* 1 2 3 0 <?> <?> <?> . SBCS*/
const uint8_t expectedIBM920[] =
{ 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2e };
int32_t toIBM920Offs [] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
/* 1 2 3 0 <?> <?> <?> . SBCS*/
const uint8_t expectedISO88593[] =
{ 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2E };
int32_t toISO88593Offs[] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
/* 1 2 3 0 <?> <?> <?> . LATIN_1*/
const uint8_t expectedLATIN1[] =
{ 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2E };
int32_t toLATIN1Offs[] =
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07};
/* etc */
const uint8_t expectedUTF16BE[] =
{ 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x00, 0x4e, 0x00, 0x4e, 0x8c, 0x4e, 0x09, 0x00, 0x2e };
int32_t toUTF16BEOffs[]=
{ 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07};
int32_t fmUTF16BEOffs[] =
{ 0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e };
const uint8_t expectedUTF16LE[] =
{ 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x8c, 0x4e, 0x09, 0x4e, 0x2e, 0x00 };
int32_t toUTF16LEOffs[]=
{ 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07};
int32_t fmUTF16LEOffs[] =
{ 0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e };
const uint8_t expectedUTF32BE[] =
{ 0x00, 0x00, 0x00, 0x31,
0x00, 0x00, 0x00, 0x32,
0x00, 0x00, 0x00, 0x33,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x4e, 0x00,
0x00, 0x00, 0x4e, 0x8c,
0x00, 0x00, 0x4e, 0x09,
0x00, 0x00, 0x00, 0x2e };
int32_t toUTF32BEOffs[]=
{ 0x00, 0x00, 0x00, 0x00,
0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02,
0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04,
0x05, 0x05, 0x05, 0x05,
0x06, 0x06, 0x06, 0x06,
0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08 };
int32_t fmUTF32BEOffs[] =
{ 0x0000, 0x0004, 0x0008, 0x000c, 0x0010, 0x0014, 0x0018, 0x001c };
const uint8_t expectedUTF32LE[] =
{ 0x31, 0x00, 0x00, 0x00,
0x32, 0x00, 0x00, 0x00,
0x33, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x4e, 0x00, 0x00,
0x8c, 0x4e, 0x00, 0x00,
0x09, 0x4e, 0x00, 0x00,
0x2e, 0x00, 0x00, 0x00 };
int32_t toUTF32LEOffs[]=
{ 0x00, 0x00, 0x00, 0x00,
0x01, 0x01, 0x01, 0x01,
0x02, 0x02, 0x02, 0x02,
0x03, 0x03, 0x03, 0x03,
0x04, 0x04, 0x04, 0x04,
0x05, 0x05, 0x05, 0x05,
0x06, 0x06, 0x06, 0x06,
0x07, 0x07, 0x07, 0x07,
0x08, 0x08, 0x08, 0x08 };
int32_t fmUTF32LEOffs[] =
{ 0x0000, 0x0004, 0x0008, 0x000c, 0x0010, 0x0014, 0x0018, 0x001c };
/** Test chars #2 **/
/* Sahha [health], slashed h's */
const UChar malteseUChars[] = { 0x0053, 0x0061, 0x0127, 0x0127, 0x0061 };
const uint8_t expectedMaltese913[] = { 0x53, 0x61, 0xB1, 0xB1, 0x61 };
/* LMBCS */
const UChar LMBCSUChars[] = { 0x0027, 0x010A, 0x0000, 0x0127, 0x2666, 0x0220 };
const uint8_t expectedLMBCS[] = { 0x27, 0x06, 0x04, 0x00, 0x01, 0x73, 0x01, 0x04, 0x14, 0x02, 0x20 };
int32_t toLMBCSOffs[] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x03, 0x04, 0x04 , 0x05, 0x05, 0x05 };
int32_t fmLMBCSOffs[] = { 0x0000, 0x0001, 0x0003, 0x0004, 0x0006, 0x0008};
/*********************************** START OF CODE finally *************/
gInBufferSize = insize;
gOutBufferSize = outsize;
log_verbose("\n\n\nTesting conversions with InputBufferSize = %d, OutputBufferSize = %d\n", gInBufferSize, gOutBufferSize);
#if 1
/*UTF-8*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedUTF8, sizeof(expectedUTF8), "UTF8", toUTF8Offs,FALSE );
log_verbose("Test surrogate behaviour for UTF8\n");
{
const UChar testinput[]={ 0x20ac, 0xd801, 0xdc01, 0xdc01 };
const uint8_t expectedUTF8test2[]= { 0xe2, 0x82, 0xac,
0xf0, 0x90, 0x90, 0x81,
0xef, 0xbf, 0xbd
};
int32_t offsets[]={ 0, 0, 0, 1, 1, 1, 1, 3, 3, 3 };
testConvertFromU(testinput, sizeof(testinput)/sizeof(testinput[0]),
expectedUTF8test2, sizeof(expectedUTF8test2), "UTF8", offsets,FALSE );
}
#ifdef U_ENABLE_GENERIC_ISO_2022
/*ISO-2022*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedISO2022, sizeof(expectedISO2022), "ISO_2022", toISO2022Offs,FALSE );
#endif
/*UTF16 LE*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedUTF16LE, sizeof(expectedUTF16LE), "utf-16le", toUTF16LEOffs,FALSE );
/*UTF16 BE*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedUTF16BE, sizeof(expectedUTF16BE), "utf-16be", toUTF16BEOffs,FALSE );
/*UTF32 LE*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedUTF32LE, sizeof(expectedUTF32LE), "utf-32le", toUTF32LEOffs,FALSE );
/*UTF32 BE*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedUTF32BE, sizeof(expectedUTF32BE), "utf-32be", toUTF32BEOffs,FALSE );
/*LATIN_1*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedLATIN1, sizeof(expectedLATIN1), "LATIN_1", toLATIN1Offs,FALSE );
/*EBCDIC_STATEFUL*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedIBM930, sizeof(expectedIBM930), "ibm-930", toIBM930Offs,FALSE );
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedISO88593, sizeof(expectedISO88593), "iso-8859-3", toISO88593Offs,FALSE );
/*MBCS*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedIBM943, sizeof(expectedIBM943), "ibm-943", toIBM943Offs,FALSE );
/*DBCS*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedIBM9027, sizeof(expectedIBM9027), "@ibm9027", toIBM9027Offs,FALSE );
/*SBCS*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedIBM920, sizeof(expectedIBM920), "ibm-920", toIBM920Offs,FALSE );
/*SBCS*/
testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]),
expectedISO88593, sizeof(expectedISO88593), "iso-8859-3", toISO88593Offs,FALSE );
/****/
#endif
#if 1
/*UTF-8*/
testConvertToU(expectedUTF8, sizeof(expectedUTF8),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf8", fmUTF8Offs,FALSE);
#ifdef U_ENABLE_GENERIC_ISO_2022
/*ISO-2022*/
testConvertToU(expectedISO2022, sizeof(expectedISO2022),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ISO_2022", fmISO2022Offs,FALSE);
#endif
/*UTF16 LE*/
testConvertToU(expectedUTF16LE, sizeof(expectedUTF16LE),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16le", fmUTF16LEOffs,FALSE);
/*UTF16 BE*/
testConvertToU(expectedUTF16BE, sizeof(expectedUTF16BE),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16be", fmUTF16BEOffs,FALSE);
/*UTF32 LE*/
testConvertToU(expectedUTF32LE, sizeof(expectedUTF32LE),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-32le", fmUTF32LEOffs,FALSE);
/*UTF32 BE*/
testConvertToU(expectedUTF32BE, sizeof(expectedUTF32BE),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-32be", fmUTF32BEOffs,FALSE);
/*EBCDIC_STATEFUL*/
testConvertToU(expectedIBM930, sizeof(expectedIBM930),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ibm-930", fmIBM930Offs,FALSE);
/*MBCS*/
testConvertToU(expectedIBM943, sizeof(expectedIBM943),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ibm-943", fmIBM943Offs,FALSE);
/* Try it again to make sure it still works */
testConvertToU(expectedUTF16LE, sizeof(expectedUTF16LE),
sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16le", fmUTF16LEOffs,FALSE);
testConvertToU(expectedMaltese913, sizeof(expectedMaltese913),
malteseUChars, sizeof(malteseUChars)/sizeof(malteseUChars[0]), "latin3", NULL,FALSE);
testConvertFromU(malteseUChars, sizeof(malteseUChars)/sizeof(malteseUChars[0]),
expectedMaltese913, sizeof(expectedMaltese913), "iso-8859-3", NULL,FALSE );
/*LMBCS*/
testConvertFromU(LMBCSUChars, sizeof(LMBCSUChars)/sizeof(LMBCSUChars[0]),
expectedLMBCS, sizeof(expectedLMBCS), "LMBCS-1", toLMBCSOffs,FALSE );
testConvertToU(expectedLMBCS, sizeof(expectedLMBCS),
LMBCSUChars, sizeof(LMBCSUChars)/sizeof(LMBCSUChars[0]), "LMBCS-1", fmLMBCSOffs,FALSE);
/* UTF-7 examples are mostly from http://www.imc.org/rfc2152 */
{
/* encode directly set D and set O */
static const uint8_t utf7[] = {
/*
Hi Mom -+Jjo--!
A+ImIDkQ.
+-
+ZeVnLIqe
*/
0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x2b, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21,
0x41, 0x2b, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2e,
0x2b, 0x2d,
0x2b, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65
};
static const UChar unicode[] = {
/*
Hi Mom -<WHITE SMILING FACE>-!
A<NOT IDENTICAL TO><ALPHA>.
+
[Japanese word "nihongo"]
*/
0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x263a, 0x2d, 0x21,
0x41, 0x2262, 0x0391, 0x2e,
0x2b,
0x65e5, 0x672c, 0x8a9e
};
static const int32_t toUnicodeOffsets[] = {
0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14,
15, 17, 19, 23,
24,
27, 29, 32
};
static const int32_t fromUnicodeOffsets[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10,
11, 12, 12, 12, 13, 13, 13, 13, 14,
15, 15,
16, 16, 16, 17, 17, 17, 18, 18, 18
};
/* same but escaping set O (the exclamation mark) */
static const uint8_t utf7Restricted[] = {
/*
Hi Mom -+Jjo--+ACE-
A+ImIDkQ.
+-
+ZeVnLIqe
*/
0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x2b, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x2b, 0x41, 0x43, 0x45, 0x2d,
0x41, 0x2b, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2e,
0x2b, 0x2d,
0x2b, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65
};
static const int32_t toUnicodeOffsetsR[] = {
0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 15,
19, 21, 23, 27,
28,
31, 33, 36
};
static const int32_t fromUnicodeOffsetsR[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10,
11, 12, 12, 12, 13, 13, 13, 13, 14,
15, 15,
16, 16, 16, 17, 17, 17, 18, 18, 18
};
testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, utf7, sizeof(utf7), "UTF-7", fromUnicodeOffsets,FALSE);
testConvertToU(utf7, sizeof(utf7), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "UTF-7", toUnicodeOffsets,FALSE);
testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, utf7Restricted, sizeof(utf7Restricted), "UTF-7,version=1", fromUnicodeOffsetsR,FALSE);
testConvertToU(utf7Restricted, sizeof(utf7Restricted), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "UTF-7,version=1", toUnicodeOffsetsR,FALSE);
}
/*
* IMAP-mailbox-name examples are mostly from http://www.imc.org/rfc2152,
* modified according to RFC 2060,
* and supplemented with the one example in RFC 2060 itself.
*/
{
static const uint8_t imap[] = {
/* Hi Mom -&Jjo--!
A&ImIDkQ-.
&-
&ZeVnLIqe-
\
~peter
/mail
/&ZeVnLIqe-
/&U,BTFw-
*/
0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x26, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21,
0x41, 0x26, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2d, 0x2e,
0x26, 0x2d,
0x26, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65, 0x2d,
0x5c,
0x7e, 0x70, 0x65, 0x74, 0x65, 0x72,
0x2f, 0x6d, 0x61, 0x69, 0x6c,
0x2f, 0x26, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65, 0x2d,
0x2f, 0x26, 0x55, 0x2c, 0x42, 0x54, 0x46, 0x77, 0x2d
};
static const UChar unicode[] = {
/* Hi Mom -<WHITE SMILING FACE>-!
A<NOT IDENTICAL TO><ALPHA>.
&
[Japanese word "nihongo"]
\
~peter
/mail
/<65e5, 672c, 8a9e>
/<53f0, 5317>
*/
0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x263a, 0x2d, 0x21,
0x41, 0x2262, 0x0391, 0x2e,
0x26,
0x65e5, 0x672c, 0x8a9e,
0x5c,
0x7e, 0x70, 0x65, 0x74, 0x65, 0x72,
0x2f, 0x6d, 0x61, 0x69, 0x6c,
0x2f, 0x65e5, 0x672c, 0x8a9e,
0x2f, 0x53f0, 0x5317
};
static const int32_t toUnicodeOffsets[] = {
0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14,
15, 17, 19, 24,
25,
28, 30, 33,
37,
38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48,
49, 51, 53, 56,
60, 62, 64
};
static const int32_t fromUnicodeOffsets[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10,
11, 12, 12, 12, 13, 13, 13, 13, 13, 14,
15, 15,
16, 16, 16, 17, 17, 17, 18, 18, 18, 18,
19,
20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 34,
35, 36, 36, 36, 37, 37, 37, 37, 37
};
testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, imap, sizeof(imap), "IMAP-mailbox-name", fromUnicodeOffsets,FALSE);
testConvertToU(imap, sizeof(imap), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "IMAP-mailbox-name", toUnicodeOffsets,FALSE);
}
/* Test UTF-8 bad data handling*/
{
static const uint8_t utf8[]={
0x61,
0xf7, 0xbf, 0xbf, 0xbf, /* > 10FFFF */
0x00,
0x62,
0xfb, 0xbf, 0xbf, 0xbf, 0xbf, /* > 10FFFF */
0xfb, 0xbf, 0xbf, 0xbf, 0xbf, /* > 10FFFF */
0xf4, 0x8f, 0xbf, 0xbf, /* 10FFFF */
0xdf, 0xbf, /* 7ff */
0xbf, /* truncated tail */
0xf4, 0x90, 0x80, 0x80, /* 11FFFF */
0x02
};
static const uint16_t utf8Expected[]={
0x0061,
0xfffd,
0x0000,
0x0062,
0xfffd,
0xfffd,
0xdbff, 0xdfff,
0x07ff,
0xfffd,
0xfffd,
0x0002
};
static const int32_t utf8Offsets[]={
0, 1, 5, 6, 7, 12, 17, 17, 21, 23, 24, 28
};
testConvertToU(utf8, sizeof(utf8),
utf8Expected, sizeof(utf8Expected)/sizeof(utf8Expected[0]), "utf-8", utf8Offsets ,FALSE);
}
/* Test UTF-32BE bad data handling*/
{
static const uint8_t utf32[]={
0x00, 0x00, 0x00, 0x61,
0x00, 0x11, 0x00, 0x00, /* 0x110000 out of range */
0x00, 0x10, 0xff, 0xff, /* 0x10FFFF in range */
0x00, 0x00, 0x00, 0x62,
0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */
0x7f, 0xff, 0xff, 0xff, /* 0x7fffffff out of range */
0x00, 0x00, 0x01, 0x62,
0x00, 0x00, 0x02, 0x62
};
static const uint16_t utf32Expected[]={
0x0061,
0xfffd, /* 0x110000 out of range */
0xDBFF, /* 0x10FFFF in range */
0xDFFF,
0x0062,
0xfffd, /* 0xffffffff out of range */
0xfffd, /* 0x7fffffff out of range */
0x0162,
0x0262
};
static const int32_t utf32Offsets[]={
0, 4, 8, 8, 12, 16, 20, 24, 28
};
testConvertToU(utf32, sizeof(utf32),
utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), "utf-32be", utf32Offsets ,FALSE);
}
/* Test UTF-32LE bad data handling*/
{
static const uint8_t utf32[]={
0x61, 0x00, 0x00, 0x00,
0x00, 0x00, 0x11, 0x00, /* 0x110000 out of range */
0xff, 0xff, 0x10, 0x00, /* 0x10FFFF in range */
0x62, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */
0xff, 0xff, 0xff, 0x7f, /* 0x7fffffff out of range */
0x62, 0x01, 0x00, 0x00,
0x62, 0x02, 0x00, 0x00,
};
static const uint16_t utf32Expected[]={
0x0061,
0xfffd, /* 0x110000 out of range */
0xDBFF, /* 0x10FFFF in range */
0xDFFF,
0x0062,
0xfffd, /* 0xffffffff out of range */
0xfffd, /* 0x7fffffff out of range */
0x0162,
0x0262
};
static const int32_t utf32Offsets[]={
0, 4, 8, 8, 12, 16, 20, 24, 28
};
testConvertToU(utf32, sizeof(utf32),
utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), "utf-32le", utf32Offsets,FALSE );
}
}
static void TestCoverageMBCS(){
#if 0
UErrorCode status = U_ZERO_ERROR;
const char *directory = loadTestData(&status);
char* tdpath = NULL;
char* saveDirectory = (char*)malloc(sizeof(char) *(strlen(u_getDataDirectory())+1));
int len = strlen(directory);
char* index=NULL;
tdpath = (char*) malloc(sizeof(char) * (len * 2));
uprv_strcpy(saveDirectory,u_getDataDirectory());
log_verbose("Retrieved data directory %s \n",saveDirectory);
uprv_strcpy(tdpath,directory);
index=strrchr(tdpath,(char)U_FILE_SEP_CHAR);
if((unsigned int)(index-tdpath) != (strlen(tdpath)-1)){
*(index+1)=0;
}
u_setDataDirectory(tdpath);
log_verbose("ICU data directory is set to: %s \n" ,tdpath);
#endif
/*some more test to increase the code coverage in MBCS. Create an test converter from test1.ucm
which is test file for MBCS conversion with single-byte codepage data.*/
{
/* MBCS with single byte codepage data test1.ucm*/
const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0xdbc4, 0xde34, 0x0003};
const uint8_t expectedtest1[] = { 0x00, 0x05, 0xff, 0x07, 0xff,};
int32_t totest1Offs[] = { 0, 1, 2, 3, 5, };
/*from Unicode*/
testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]),
expectedtest1, sizeof(expectedtest1), "@test1", totest1Offs,FALSE );
}
/*some more test to increase the code coverage in MBCS. Create an test converter from test3.ucm
which is test file for MBCS conversion with three-byte codepage data.*/
{
/* MBCS with three byte codepage data test3.ucm*/
const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0x000e};
const uint8_t expectedtest3[] = { 0x00, 0x05, 0xff, 0x01, 0x02, 0x0b, 0x07, 0x01, 0x02, 0x0a, 0xff,};
int32_t totest3Offs[] = { 0, 1, 2, 3, 3, 3, 4, 6, 6, 6, 8};
const uint8_t test3input[] = { 0x00, 0x05, 0x06, 0x01, 0x02, 0x0b, 0x07, 0x01, 0x02, 0x0a, 0x01, 0x02, 0x0c,};
const UChar expectedUnicode[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0xfffd};
int32_t fromtest3Offs[] = { 0, 1, 2, 3, 6, 6, 7, 7, 10 };
/*from Unicode*/
testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]),
expectedtest3, sizeof(expectedtest3), "@test3", totest3Offs,FALSE );
/*to Unicode*/
testConvertToU(test3input, sizeof(test3input),
expectedUnicode, sizeof(expectedUnicode)/sizeof(expectedUnicode[0]), "@test3", fromtest3Offs ,FALSE);
}
/*some more test to increase the code coverage in MBCS. Create an test converter from test4.ucm
which is test file for MBCS conversion with four-byte codepage data.*/
{
/* MBCS with three byte codepage data test4.ucm*/
static const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0x000e};
static const uint8_t expectedtest4[] = { 0x00, 0x05, 0xff, 0x01, 0x02, 0x03, 0x0b, 0x07, 0x01, 0x02, 0x03, 0x0a, 0xff,};
static const int32_t totest4Offs[] = { 0, 1, 2, 3, 3, 3, 3, 4, 6, 6, 6, 6, 8,};
static const uint8_t test4input[] = { 0x00, 0x05, 0x06, 0x01, 0x02, 0x03, 0x0b, 0x07, 0x01, 0x02, 0x03, 0x0a, 0x01, 0x02, 0x03, 0x0c,};
static const UChar expectedUnicode[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0xfffd};
static const int32_t fromtest4Offs[] = { 0, 1, 2, 3, 7, 7, 8, 8, 12,};
/*from Unicode*/
testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]),
expectedtest4, sizeof(expectedtest4), "@test4", totest4Offs,FALSE );
/*to Unicode*/
testConvertToU(test4input, sizeof(test4input),
expectedUnicode, sizeof(expectedUnicode)/sizeof(expectedUnicode[0]), "@test4", fromtest4Offs,FALSE );
}
#if 0
free(tdpath);
/* restore the original data directory */
log_verbose("Setting the data directory to %s \n", saveDirectory);
u_setDataDirectory(saveDirectory);
free(saveDirectory);
#endif
}
static void TestConverterType(const char *convName, UConverterType convType) {
UConverter* myConverter;
UErrorCode err = U_ZERO_ERROR;
myConverter = my_ucnv_open(convName, &err);
if (U_FAILURE(err)) {
log_data_err("Failed to create an %s converter\n", convName);
return;
}
else
{
if (ucnv_getType(myConverter)!=convType) {
log_err("ucnv_getType Failed for %s. Got enum value 0x%X\n",
convName, convType);
}
else {
log_verbose("ucnv_getType %s ok\n", convName);
}
}
ucnv_close(myConverter);
}
static void TestConverterTypesAndStarters()
{
UConverter* myConverter;
UErrorCode err = U_ZERO_ERROR;
UBool mystarters[256];
/* const UBool expectedKSCstarters[256] = {
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE, TRUE, TRUE, TRUE};*/
log_verbose("Testing KSC, ibm-930, ibm-878 for starters and their conversion types.");
myConverter = ucnv_open("ksc", &err);
if (U_FAILURE(err)) {
log_data_err("Failed to create an ibm-ksc converter\n");
return;
}
else
{
if (ucnv_getType(myConverter)!=UCNV_MBCS)
log_err("ucnv_getType Failed for ibm-949\n");
else
log_verbose("ucnv_getType ibm-949 ok\n");
if(myConverter!=NULL)
ucnv_getStarters(myConverter, mystarters, &err);
/*if (memcmp(expectedKSCstarters, mystarters, sizeof(expectedKSCstarters)))
log_err("Failed ucnv_getStarters for ksc\n");
else
log_verbose("ucnv_getStarters ok\n");*/
}
ucnv_close(myConverter);
TestConverterType("ibm-930", UCNV_EBCDIC_STATEFUL);
TestConverterType("ibm-878", UCNV_SBCS);
TestConverterType("iso-8859-1", UCNV_LATIN_1);
TestConverterType("ibm-1208", UCNV_UTF8);
TestConverterType("utf-8", UCNV_UTF8);
TestConverterType("UTF-16BE", UCNV_UTF16_BigEndian);
TestConverterType("UTF-16LE", UCNV_UTF16_LittleEndian);
TestConverterType("UTF-32BE", UCNV_UTF32_BigEndian);
TestConverterType("UTF-32LE", UCNV_UTF32_LittleEndian);
#ifdef U_ENABLE_GENERIC_ISO_2022
TestConverterType("iso-2022", UCNV_ISO_2022);
#endif
TestConverterType("hz", UCNV_HZ);
TestConverterType("scsu", UCNV_SCSU);
TestConverterType("x-iscii-de", UCNV_ISCII);
TestConverterType("ascii", UCNV_US_ASCII);
TestConverterType("utf-7", UCNV_UTF7);
TestConverterType("IMAP-mailbox-name", UCNV_IMAP_MAILBOX);
TestConverterType("bocu-1", UCNV_BOCU1);
}
static void
TestAmbiguousConverter(UConverter *cnv) {
static const char inBytes[2]={ 0x61, 0x5c };
UChar outUnicode[20]={ 0, 0, 0, 0 };
const char *s;
UChar *u;
UErrorCode errorCode;
UBool isAmbiguous;
/* try to convert an 'a' and a US-ASCII backslash */
errorCode=U_ZERO_ERROR;
s=inBytes;
u=outUnicode;
ucnv_toUnicode(cnv, &u, u+20, &s, s+2, NULL, TRUE, &errorCode);
if(U_FAILURE(errorCode)) {
/* we do not care about general failures in this test; the input may just not be mappable */
return;
}
if(outUnicode[0]!=0x61 || outUnicode[1]==0xfffd) {
/* not an ASCII-family encoding, or 0x5c is unassigned/illegal: this test is not applicable */
return;
}
isAmbiguous=ucnv_isAmbiguous(cnv);
/* check that outUnicode[1]!=0x5c is exactly the same as ucnv_isAmbiguous() */
if((outUnicode[1]!=0x5c)!=isAmbiguous) {
log_err("error: converter \"%s\" needs a backslash fix: %d but ucnv_isAmbiguous()==%d\n",
ucnv_getName(cnv, &errorCode), outUnicode[1]!=0x5c, isAmbiguous);
return;
}
if(outUnicode[1]!=0x5c) {
/* needs fixup, fix it */
ucnv_fixFileSeparator(cnv, outUnicode, (int32_t)(u-outUnicode));
if(outUnicode[1]!=0x5c) {
/* the fix failed */
log_err("error: ucnv_fixFileSeparator(%s) failed\n", ucnv_getName(cnv, &errorCode));
return;
}
}
}
static void TestAmbiguous()
{
UErrorCode status = U_ZERO_ERROR;
UConverter *ascii_cnv = 0, *sjis_cnv = 0, *cnv;
const char target[] = {
/* "\\usr\\local\\share\\data\\icutest.txt" */
0x5c, 0x75, 0x73, 0x72,
0x5c, 0x6c, 0x6f, 0x63, 0x61, 0x6c,
0x5c, 0x73, 0x68, 0x61, 0x72, 0x65,
0x5c, 0x64, 0x61, 0x74, 0x61,
0x5c, 0x69, 0x63, 0x75, 0x74, 0x65, 0x73, 0x74, 0x2e, 0x74, 0x78, 0x74,
0
};
UChar asciiResult[200], sjisResult[200];
int32_t asciiLength = 0, sjisLength = 0, i;
const char *name;
/* enumerate all converters */
status=U_ZERO_ERROR;
for(i=0; (name=ucnv_getAvailableName(i))!=NULL; ++i) {
cnv=ucnv_open(name, &status);
if(U_SUCCESS(status)) {
TestAmbiguousConverter(cnv);
ucnv_close(cnv);
} else {
log_err("error: unable to open available converter \"%s\"\n", name);
status=U_ZERO_ERROR;
}
}
sjis_cnv = ucnv_open("ibm-943", &status);
if (U_FAILURE(status))
{
log_data_err("Failed to create a SJIS converter\n");
return;
}
ascii_cnv = ucnv_open("LATIN-1", &status);
if (U_FAILURE(status))
{
log_data_err("Failed to create a LATIN-1 converter\n");
ucnv_close(sjis_cnv);
return;
}
/* convert target from SJIS to Unicode */
sjisLength = ucnv_toUChars(sjis_cnv, sjisResult, sizeof(sjisResult)/U_SIZEOF_UCHAR, target, strlen(target), &status);
if (U_FAILURE(status))
{
log_err("Failed to convert the SJIS string.\n");
ucnv_close(sjis_cnv);
ucnv_close(ascii_cnv);
return;
}
/* convert target from Latin-1 to Unicode */
asciiLength = ucnv_toUChars(ascii_cnv, asciiResult, sizeof(asciiResult)/U_SIZEOF_UCHAR, target, strlen(target), &status);
if (U_FAILURE(status))
{
log_err("Failed to convert the Latin-1 string.\n");
free(sjisResult);
ucnv_close(sjis_cnv);
ucnv_close(ascii_cnv);
return;
}
if (!ucnv_isAmbiguous(sjis_cnv))
{
log_err("SJIS converter should contain ambiguous character mappings.\n");
free(sjisResult);
free(asciiResult);
ucnv_close(sjis_cnv);
ucnv_close(ascii_cnv);
return;
}
if (u_strcmp(sjisResult, asciiResult) == 0)
{
log_err("File separators for SJIS don't need to be fixed.\n");
}
ucnv_fixFileSeparator(sjis_cnv, sjisResult, sjisLength);
if (u_strcmp(sjisResult, asciiResult) != 0)
{
log_err("Fixing file separator for SJIS failed.\n");
}
ucnv_close(sjis_cnv);
ucnv_close(ascii_cnv);
}
static void
TestSignatureDetection(){
/* with null terminated strings */
{
static const char* data[] = {
"\xFE\xFF\x00\x00", /* UTF-16BE */
"\xFF\xFE\x00\x00", /* UTF-16LE */
"\xEF\xBB\xBF\x00", /* UTF-8 */
"\x0E\xFE\xFF\x00", /* SCSU */
"\xFE\xFF", /* UTF-16BE */
"\xFF\xFE", /* UTF-16LE */
"\xEF\xBB\xBF", /* UTF-8 */
"\x0E\xFE\xFF", /* SCSU */
"\xFE\xFF\x41\x42", /* UTF-16BE */
"\xFF\xFE\x41\x41", /* UTF-16LE */
"\xEF\xBB\xBF\x41", /* UTF-8 */
"\x0E\xFE\xFF\x41", /* SCSU */
"\x2B\x2F\x76\x38\x2D", /* UTF-7 */
"\x2B\x2F\x76\x38\x41", /* UTF-7 */
"\x2B\x2F\x76\x39\x41", /* UTF-7 */
"\x2B\x2F\x76\x2B\x41", /* UTF-7 */
"\x2B\x2F\x76\x2F\x41" /* UTF-7 */
};
static const char* expected[] = {
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-7",
"UTF-7",
"UTF-7",
"UTF-7",
"UTF-7"
};
static const int32_t expectedLength[] ={
2,
2,
3,
3,
2,
2,
3,
3,
2,
2,
3,
3,
5,
4,
4,
4,
4
};
int i=0;
UErrorCode err;
int32_t signatureLength = -1;
const char* source = NULL;
const char* enc = NULL;
for( ; i<sizeof(data)/sizeof(char*); i++){
err = U_ZERO_ERROR;
source = data[i];
enc = ucnv_detectUnicodeSignature(source, -1 , &signatureLength, &err);
if(U_FAILURE(err)){
log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i. Error: %s\n", source,i,u_errorName(err));
continue;
}
if(enc == NULL || strcmp(enc,expected[i]) !=0){
log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i. Expected: %s. Got: %s\n",source,i,expected[i],enc);
continue;
}
if(signatureLength != expectedLength[i]){
log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i.Expected Length: %i. Got length: %i\n",source,i,signatureLength,expectedLength[i]);
}
}
}
{
static const char* data[] = {
"\xFE\xFF\x00", /* UTF-16BE */
"\xFF\xFE\x00", /* UTF-16LE */
"\xEF\xBB\xBF\x00", /* UTF-8 */
"\x0E\xFE\xFF\x00", /* SCSU */
"\x00\x00\xFE\xFF", /* UTF-32BE */
"\xFF\xFE\x00\x00", /* UTF-32LE */
"\xFE\xFF", /* UTF-16BE */
"\xFF\xFE", /* UTF-16LE */
"\xEF\xBB\xBF", /* UTF-8 */
"\x0E\xFE\xFF", /* SCSU */
"\x00\x00\xFE\xFF", /* UTF-32BE */
"\xFF\xFE\x00\x00", /* UTF-32LE */
"\xFE\xFF\x41\x42", /* UTF-16BE */
"\xFF\xFE\x41\x41", /* UTF-16LE */
"\xEF\xBB\xBF\x41", /* UTF-8 */
"\x0E\xFE\xFF\x41", /* SCSU */
"\x00\x00\xFE\xFF\x41", /* UTF-32BE */
"\xFF\xFE\x00\x00\x42", /* UTF-32LE */
"\xFB\xEE\x28", /* BOCU-1 */
"\xFF\x41\x42" /* NULL */
};
static const int len[] = {
3,
3,
4,
4,
4,
4,
2,
2,
3,
3,
4,
4,
4,
4,
4,
4,
5,
5,
3,
3
};
static const char* expected[] = {
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-32BE",
"UTF-32LE",
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-32BE",
"UTF-32LE",
"UTF-16BE",
"UTF-16LE",
"UTF-8",
"SCSU",
"UTF-32BE",
"UTF-32LE",
"BOCU-1",
NULL
};
static const int32_t expectedLength[] ={
2,
2,
3,
3,
4,
4,
2,
2,
3,
3,
4,
4,
2,
2,
3,
3,
4,
4,
3,
0
};
int i=0;
UErrorCode err;
int32_t signatureLength = -1;
int32_t sourceLength=-1;
const char* source = NULL;
const char* enc = NULL;
for( ; i<sizeof(data)/sizeof(char*); i++){
err = U_ZERO_ERROR;
source = data[i];
sourceLength = len[i];
enc = ucnv_detectUnicodeSignature(source, sourceLength , &signatureLength, &err);
if(U_FAILURE(err)){
log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i. Error: %s\n", source,i,u_errorName(err));
continue;
}
if(enc == NULL || strcmp(enc,expected[i]) !=0){
if(expected[i] !=NULL){
log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i. Expected: %s. Got: %s\n",source,i,expected[i],enc);
continue;
}
}
if(signatureLength != expectedLength[i]){
log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i.Expected Length: %i. Got length: %i\n",source,i,signatureLength,expectedLength[i]);
}
}
}
}
void
static TestUTF7() {
/* test input */
static const uint8_t in[]={
/* H - +Jjo- - ! +- +2AHcAQ */
0x48,
0x2d,
0x2b, 0x4a, 0x6a, 0x6f,
0x2d, 0x2d,
0x21,
0x2b, 0x2d,
0x2b, 0x32, 0x41, 0x48, 0x63, 0x41, 0x51
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x48,
1, 0x2d,
4, 0x263a, /* <WHITE SMILING FACE> */
2, 0x2d,
1, 0x21,
2, 0x2b,
7, 0x10401
};
const char *cnvName;
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-7", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-7 converter: %s\n", u_errorName(errorCode)); /* sholdn't be a data err */
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-7");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
cnvName = ucnv_getName(cnv, &errorCode);
if (U_FAILURE(errorCode) || uprv_strcmp(cnvName, "UTF-7") != 0) {
log_err("UTF-7 converter is called %s: %s\n", cnvName, u_errorName(errorCode));
}
ucnv_close(cnv);
}
void
static TestIMAP() {
/* test input */
static const uint8_t in[]={
/* H - &Jjo- - ! &- &2AHcAQ- \ */
0x48,
0x2d,
0x26, 0x4a, 0x6a, 0x6f,
0x2d, 0x2d,
0x21,
0x26, 0x2d,
0x26, 0x32, 0x41, 0x48, 0x63, 0x41, 0x51, 0x2d
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x48,
1, 0x2d,
4, 0x263a, /* <WHITE SMILING FACE> */
2, 0x2d,
1, 0x21,
2, 0x26,
7, 0x10401
};
const char *cnvName;
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("IMAP-mailbox-name", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a IMAP-mailbox-name converter: %s\n", u_errorName(errorCode)); /* sholdn't be a data err */
return;
}
TestNextUChar(cnv, source, limit, results, "IMAP-mailbox-name");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
cnvName = ucnv_getName(cnv, &errorCode);
if (U_FAILURE(errorCode) || uprv_strcmp(cnvName, "IMAP-mailbox-name") != 0) {
log_err("IMAP-mailbox-name converter is called %s: %s\n", cnvName, u_errorName(errorCode));
}
ucnv_close(cnv);
}
void
static TestUTF8() {
/* test input */
static const uint8_t in[]={
0x61,
0xc2, 0x80,
0xe0, 0xa0, 0x80,
0xf0, 0x90, 0x80, 0x80,
0xf4, 0x84, 0x8c, 0xa1,
0xf0, 0x90, 0x90, 0x81
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x61,
2, 0x80,
3, 0x800,
4, 0x10000,
4, 0x104321,
4, 0x10401
};
/* error test input */
static const uint8_t in2[]={
0x61,
0xc0, 0x80, /* illegal non-shortest form */
0xe0, 0x80, 0x80, /* illegal non-shortest form */
0xf0, 0x80, 0x80, 0x80, /* illegal non-shortest form */
0xc0, 0xc0, /* illegal trail byte */
0xf4, 0x90, 0x80, 0x80, /* 0x110000 out of range */
0xf8, 0x80, 0x80, 0x80, 0x80, /* too long */
0xfe, /* illegal byte altogether */
0x62
};
/* expected error test results */
static const int32_t results2[]={
/* number of bytes read, code point */
1, 0x61,
22, 0x62
};
UConverterToUCallback cb;
const void *p;
const char *source=(const char *)in,*limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-8", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-8 converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-8");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/* test error behavior with a skip callback */
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode);
source=(const char *)in2;
limit=(const char *)(in2+sizeof(in2));
TestNextUChar(cnv, source, limit, results2, "UTF-8");
ucnv_close(cnv);
}
void
static TestCESU8() {
/* test input */
static const uint8_t in[]={
0x61,
0xc2, 0x80,
0xe0, 0xa0, 0x80,
0xed, 0xa0, 0x80, 0xed, 0xb0, 0x80,
0xed, 0xb0, 0x81, 0xed, 0xa0, 0x82,
0xed, 0xaf, 0xbf, 0xed, 0xbf, 0xbf,
0xef, 0xbf, 0xbc
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x61,
2, 0x80,
3, 0x800,
6, 0x10000,
3, 0xdc01,
-1,0xd802, /* may read 3 or 6 bytes */
-1,0x10ffff,/* may read 0 or 3 bytes */
3, 0xfffc
};
/* error test input */
static const uint8_t in2[]={
0x61,
0xc0, 0x80, /* illegal non-shortest form */
0xe0, 0x80, 0x80, /* illegal non-shortest form */
0xf0, 0x80, 0x80, 0x80, /* illegal non-shortest form */
0xc0, 0xc0, /* illegal trail byte */
0xf0, 0x90, 0x80, 0x80, /* illegal 4-byte supplementary code point */
0xf4, 0x84, 0x8c, 0xa1, /* illegal 4-byte supplementary code point */
0xf0, 0x90, 0x90, 0x81, /* illegal 4-byte supplementary code point */
0xf4, 0x90, 0x80, 0x80, /* 0x110000 out of range */
0xf8, 0x80, 0x80, 0x80, 0x80, /* too long */
0xfe, /* illegal byte altogether */
0x62
};
/* expected error test results */
static const int32_t results2[]={
/* number of bytes read, code point */
1, 0x61,
34, 0x62
};
UConverterToUCallback cb;
const void *p;
const char *source=(const char *)in,*limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("CESU-8", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a CESU-8 converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "CESU-8");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/* test error behavior with a skip callback */
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode);
source=(const char *)in2;
limit=(const char *)(in2+sizeof(in2));
TestNextUChar(cnv, source, limit, results2, "CESU-8");
ucnv_close(cnv);
}
void
static TestUTF16() {
/* test input */
static const uint8_t in1[]={
0xfe, 0xff, 0x4e, 0x00, 0xfe, 0xff
};
static const uint8_t in2[]={
0xff, 0xfe, 0x4e, 0x00, 0xfe, 0xff
};
static const uint8_t in3[]={
0xfe, 0xfe, 0x4e, 0x00, 0xfe, 0xff, 0xd8, 0x40, 0xdc, 0x01
};
/* expected test results */
static const int32_t results1[]={
/* number of bytes read, code point */
4, 0x4e00,
2, 0xfeff
};
static const int32_t results2[]={
/* number of bytes read, code point */
4, 0x004e,
2, 0xfffe
};
static const int32_t results3[]={
/* number of bytes read, code point */
2, 0xfefe,
2, 0x4e00,
2, 0xfeff,
4, 0x20001
};
const char *source, *limit;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-16", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-16 converter: %s\n", u_errorName(errorCode));
return;
}
source=(const char *)in1, limit=(const char *)in1+sizeof(in1);
TestNextUChar(cnv, source, limit, results1, "UTF-16");
source=(const char *)in2, limit=(const char *)in2+sizeof(in2);
ucnv_resetToUnicode(cnv);
TestNextUChar(cnv, source, limit, results2, "UTF-16");
source=(const char *)in3, limit=(const char *)in3+sizeof(in3);
ucnv_resetToUnicode(cnv);
TestNextUChar(cnv, source, limit, results3, "UTF-16");
/* Test the condition when source >= sourceLimit */
ucnv_resetToUnicode(cnv);
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
ucnv_close(cnv);
}
void
static TestUTF16BE() {
/* test input */
static const uint8_t in[]={
0x00, 0x61,
0x00, 0xc0,
0x00, 0x31,
0x00, 0xf4,
0xce, 0xfe,
0xd8, 0x01, 0xdc, 0x01
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
2, 0x61,
2, 0xc0,
2, 0x31,
2, 0xf4,
2, 0xcefe,
4, 0x10401
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("utf-16be", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF16-BE converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-16BE");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for the condition where there is an invalid character*/
{
static const uint8_t source2[]={0x61};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an invalid character");
}
#if 0
/*
* Test disabled because currently the UTF-16BE/LE converters are supposed
* to not set errors for unpaired surrogates.
* This may change with
* Jitterbug 1838 - forbid converting surrogate code points in UTF-16/32
*/
/*Test for the condition where there is a surrogate pair*/
{
const uint8_t source2[]={0xd8, 0x01};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an truncated surrogate character");
}
#endif
ucnv_close(cnv);
}
static void
TestUTF16LE() {
/* test input */
static const uint8_t in[]={
0x61, 0x00,
0x31, 0x00,
0x4e, 0x2e,
0x4e, 0x00,
0x01, 0xd8, 0x01, 0xdc
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
2, 0x61,
2, 0x31,
2, 0x2e4e,
2, 0x4e,
4, 0x10401
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("utf-16le", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF16-LE converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-16LE");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for the condition where there is an invalid character*/
{
static const uint8_t source2[]={0x61};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an invalid character");
}
#if 0
/*
* Test disabled because currently the UTF-16BE/LE converters are supposed
* to not set errors for unpaired surrogates.
* This may change with
* Jitterbug 1838 - forbid converting surrogate code points in UTF-16/32
*/
/*Test for the condition where there is a surrogate character*/
{
static const uint8_t source2[]={0x01, 0xd8};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an truncated surrogate character");
}
#endif
ucnv_close(cnv);
}
void
static TestUTF32() {
/* test input */
static const uint8_t in1[]={
0x00, 0x00, 0xfe, 0xff, 0x00, 0x10, 0x0f, 0x00, 0x00, 0x00, 0xfe, 0xff
};
static const uint8_t in2[]={
0xff, 0xfe, 0x00, 0x00, 0x00, 0x10, 0x0f, 0x00, 0xfe, 0xff, 0x00, 0x00
};
static const uint8_t in3[]={
0x00, 0x00, 0xfe, 0xfe, 0x00, 0x10, 0x0f, 0x00, 0x00, 0x00, 0xd8, 0x40, 0x00, 0x00, 0xdc, 0x01
};
/* expected test results */
static const int32_t results1[]={
/* number of bytes read, code point */
8, 0x100f00,
4, 0xfeff
};
static const int32_t results2[]={
/* number of bytes read, code point */
8, 0x0f1000,
4, 0xfffe
};
static const int32_t results3[]={
/* number of bytes read, code point */
4, 0xfefe,
4, 0x100f00,
4, 0xfffd, /* unmatched surrogate */
4, 0xfffd /* unmatched surrogate */
};
const char *source, *limit;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-32", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-32 converter: %s\n", u_errorName(errorCode));
return;
}
source=(const char *)in1, limit=(const char *)in1+sizeof(in1);
TestNextUChar(cnv, source, limit, results1, "UTF-32");
source=(const char *)in2, limit=(const char *)in2+sizeof(in2);
ucnv_resetToUnicode(cnv);
TestNextUChar(cnv, source, limit, results2, "UTF-32");
source=(const char *)in3, limit=(const char *)in3+sizeof(in3);
ucnv_resetToUnicode(cnv);
TestNextUChar(cnv, source, limit, results3, "UTF-32");
/* Test the condition when source >= sourceLimit */
ucnv_resetToUnicode(cnv);
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
ucnv_close(cnv);
}
static void
TestUTF32BE() {
/* test input */
static const uint8_t in[]={
0x00, 0x00, 0x00, 0x61,
0x00, 0x00, 0x30, 0x61,
0x00, 0x00, 0xdc, 0x00,
0x00, 0x00, 0xd8, 0x00,
0x00, 0x00, 0xdf, 0xff,
0x00, 0x00, 0xff, 0xfe,
0x00, 0x10, 0xab, 0xcd,
0x00, 0x10, 0xff, 0xff
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
4, 0x61,
4, 0x3061,
4, 0xfffd,
4, 0xfffd,
4, 0xfffd,
4, 0xfffe,
4, 0x10abcd,
4, 0x10ffff
};
/* error test input */
static const uint8_t in2[]={
0x00, 0x00, 0x00, 0x61,
0x00, 0x11, 0x00, 0x00, /* 0x110000 out of range */
0x00, 0x00, 0x00, 0x62,
0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */
0x7f, 0xff, 0xff, 0xff, /* 0x7fffffff out of range */
0x00, 0x00, 0x01, 0x62,
0x00, 0x00, 0x02, 0x62
};
/* expected error test results */
static const int32_t results2[]={
/* number of bytes read, code point */
4, 0x61,
8, 0x62,
12, 0x162,
4, 0x262
};
UConverterToUCallback cb;
const void *p;
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-32BE", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-32BE converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-32BE");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/* test error behavior with a skip callback */
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode);
source=(const char *)in2;
limit=(const char *)(in2+sizeof(in2));
TestNextUChar(cnv, source, limit, results2, "UTF-32BE");
ucnv_close(cnv);
}
static void
TestUTF32LE() {
/* test input */
static const uint8_t in[]={
0x61, 0x00, 0x00, 0x00,
0x61, 0x30, 0x00, 0x00,
0x00, 0xdc, 0x00, 0x00,
0x00, 0xd8, 0x00, 0x00,
0xff, 0xdf, 0x00, 0x00,
0xfe, 0xff, 0x00, 0x00,
0xcd, 0xab, 0x10, 0x00,
0xff, 0xff, 0x10, 0x00
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
4, 0x61,
4, 0x3061,
4, 0xfffd,
4, 0xfffd,
4, 0xfffd,
4, 0xfffe,
4, 0x10abcd,
4, 0x10ffff
};
/* error test input */
static const uint8_t in2[]={
0x61, 0x00, 0x00, 0x00,
0x00, 0x00, 0x11, 0x00, /* 0x110000 out of range */
0x62, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */
0xff, 0xff, 0xff, 0x7f, /* 0x7fffffff out of range */
0x62, 0x01, 0x00, 0x00,
0x62, 0x02, 0x00, 0x00,
};
/* expected error test results */
static const int32_t results2[]={
/* number of bytes read, code point */
4, 0x61,
8, 0x62,
12, 0x162,
4, 0x262,
};
UConverterToUCallback cb;
const void *p;
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("UTF-32LE", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a UTF-32LE converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "UTF-32LE");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/* test error behavior with a skip callback */
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode);
source=(const char *)in2;
limit=(const char *)(in2+sizeof(in2));
TestNextUChar(cnv, source, limit, results2, "UTF-32LE");
ucnv_close(cnv);
}
static void
TestLATIN1() {
/* test input */
static const uint8_t in[]={
0x61,
0x31,
0x32,
0xc0,
0xf0,
0xf4,
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x61,
1, 0x31,
1, 0x32,
1, 0xc0,
1, 0xf0,
1, 0xf4,
};
static const uint16_t in1[] = {
0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84,
0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f,
0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c,
0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d,
0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e,
0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e,
0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d,
0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa,
0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08,
0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d,
0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06,
0xcb, 0x82
};
static const uint8_t out1[] = {
0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84,
0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f,
0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c,
0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d,
0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e,
0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e,
0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d,
0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa,
0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08,
0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d,
0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06,
0xcb, 0x82
};
static const uint16_t in2[]={
0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23,
0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23,
0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A,
0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F,
0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21,
0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E,
0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x0F, 0x2F, 0x2A, 0x70,
0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A,
0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F,
0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47,
0x1B, 0x4F, 0x22, 0x48, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61,
0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B,
0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21,
0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B,
0x4F, 0x22, 0x6C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50,
0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F,
0x22, 0x5C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C,
0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F,
0x23, 0x71, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65,
0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B,
0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B,
0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23,
0x6F, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20,
0x37, 0x20, 0x2A, 0x2F,
};
static const unsigned char out2[]={
0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23,
0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23,
0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A,
0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F,
0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21,
0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E,
0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x0F, 0x2F, 0x2A, 0x70,
0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A,
0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F,
0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47,
0x1B, 0x4F, 0x22, 0x48, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61,
0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B,
0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21,
0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B,
0x4F, 0x22, 0x6C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50,
0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F,
0x22, 0x5C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C,
0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F,
0x23, 0x71, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65,
0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B,
0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B,
0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23,
0x6F, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20,
0x37, 0x20, 0x2A, 0x2F,
};
const char *source=(const char *)in;
const char *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("LATIN_1", &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a LATIN_1 converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "LATIN_1");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
TestConv((uint16_t*)in1,sizeof(in1)/2,"LATIN_1","LATIN-1",(char*)out1,sizeof(out1));
TestConv((uint16_t*)in2,sizeof(in2)/2,"ASCII","ASCII",(char*)out2,sizeof(out2));
ucnv_close(cnv);
}
static void
TestSBCS() {
/* test input */
static const uint8_t in[]={ 0x61, 0xc0, 0x80, 0xe0, 0xf0, 0xf4};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x61,
1, 0xbf,
1, 0xc4,
1, 0x2021,
1, 0xf8ff,
1, 0x00d9
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("x-mac-turkish", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a SBCS(x-mac-turkish) converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "SBCS(x-mac-turkish)");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for Illegal character */ /*
{
static const uint8_t input1[]={ 0xA1 };
const char* illegalsource=(const char*)input1;
TestNextUCharError(cnv, illegalsource, illegalsource+sizeof(illegalsource), U_INVALID_CHAR_FOUND, "source has a illegal characte");
}
*/
ucnv_close(cnv);
}
static void
TestDBCS() {
/* test input */
static const uint8_t in[]={
0x44, 0x6a,
0xc4, 0x9c,
0x7a, 0x74,
0x46, 0xab,
0x42, 0x5b,
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
2, 0x00a7,
2, 0xe1d2,
2, 0x6962,
2, 0xf842,
2, 0xffe5,
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=my_ucnv_open("@ibm9027", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a DBCS(@ibm9027) converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "DBCS(@ibm9027)");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for the condition where there is an invalid character*/
{
static const uint8_t source2[]={0x1a, 0x1b};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character");
}
/*Test for the condition where we have a truncated char*/
{
static const uint8_t source1[]={0xc4};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated");
}
ucnv_close(cnv);
}
static void
TestMBCS() {
/* test input */
static const uint8_t in[]={
0x01,
0xa6, 0xa3,
0x00,
0xa6, 0xa1,
0x08,
0xc2, 0x76,
0xc2, 0x78,
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x0001,
2, 0x250c,
1, 0x0000,
2, 0x2500,
1, 0x0008,
2, 0xd60c,
2, 0xd60e,
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("ibm-1363", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a MBCS(ibm-1363) converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "MBCS(ibm-1363)");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for the condition where there is an invalid character*/
{
static const uint8_t source2[]={0xa1, 0x01};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character");
}
/*Test for the condition where we have a truncated char*/
{
static const uint8_t source1[]={0xc4};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated");
}
ucnv_close(cnv);
}
#ifdef U_ENABLE_GENERIC_ISO_2022
static void
TestISO_2022() {
/* test input */
static const uint8_t in[]={
0x1b, 0x25, 0x42,
0x31,
0x32,
0x61,
0xc2, 0x80,
0xe0, 0xa0, 0x80,
0xf0, 0x90, 0x80, 0x80
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
4, 0x0031, /* 4 bytes including the escape sequence */
1, 0x0032,
1, 0x61,
2, 0x80,
3, 0x800,
4, 0x10000
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
cnv=ucnv_open("ISO_2022", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "ISO_2022");
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source-1, U_ILLEGAL_ARGUMENT_ERROR, "sourceLimit < source");
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
/*Test for the condition where we have a truncated char*/
{
static const uint8_t source1[]={0xc4};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated");
}
/*Test for the condition where there is an invalid character*/
{
static const uint8_t source2[]={0xa1, 0x01};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_CHAR_FOUND, "an invalid character");
}
ucnv_close(cnv);
}
#endif
static void
TestSmallTargetBuffer(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
int len=0;
int i=2;
UErrorCode errorCode=U_ZERO_ERROR;
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 10);
ucnv_reset(cnv);
for(;--i>0; ){
uSource = (UChar*) source;
uSourceLimit=(const UChar*)sourceLimit;
cTarget = cBuf;
uTarget = uBuf;
cSource = cBuf;
cTargetLimit = cBuf;
uTargetLimit = uBuf;
do{
cTargetLimit = cTargetLimit+ i;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,FALSE, &errorCode);
if(errorCode==U_BUFFER_OVERFLOW_ERROR){
errorCode=U_ZERO_ERROR;
continue;
}
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
}while (uSource<uSourceLimit);
cSourceLimit =cTarget;
do{
uTargetLimit=uTargetLimit+i;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,FALSE,&errorCode);
if(errorCode==U_BUFFER_OVERFLOW_ERROR){
errorCode=U_ZERO_ERROR;
continue;
}
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
}while(cSource<cSourceLimit);
uSource = source;
test =uBuf;
for(len=0;len<(int)(source - sourceLimit);len++){
if(uBuf[len]!=uSource[len]){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",uSource[len],(int)uBuf[len]) ;
}
}
}
free(uBuf);
free(cBuf);
}
/* Test for Jitterbug 778 */
static void TestToAndFromUChars(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
int numCharsInTarget=0;
UErrorCode errorCode=U_ZERO_ERROR;
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = source;
uSourceLimit=sourceLimit;
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_reset(cnv);
numCharsInTarget=ucnv_fromUChars( cnv , cTarget, (cTargetLimit-cTarget),uSource,(uSourceLimit-uSource), &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
test =uBuf;
ucnv_toUChars(cnv,uTarget,(uTargetLimit-uTarget),cSource,numCharsInTarget,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUChars conversion failed, reason %s\n", u_errorName(errorCode));
return;
}
uSource = source;
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
free(uBuf);
free(cBuf);
}
static void TestSmallSourceBuffer(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
int len=0;
int i=2;
const UChar *temp = sourceLimit;
UErrorCode errorCode=U_ZERO_ERROR;
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 10);
ucnv_reset(cnv);
for(;--i>0;){
uSource = (UChar*) source;
cTarget = cBuf;
uTarget = uBuf;
cSource = cBuf;
cTargetLimit = cBuf;
uTargetLimit = uBuf+uBufSize*5;
cTargetLimit = cTargetLimit+uBufSize*10;
uSourceLimit=uSource;
do{
if (uSourceLimit < sourceLimit) {
uSourceLimit = uSourceLimit+1;
}
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,FALSE, &errorCode);
if(errorCode==U_BUFFER_OVERFLOW_ERROR){
errorCode=U_ZERO_ERROR;
continue;
}
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
}while (uSource<temp);
cSourceLimit =cBuf;
do{
if (cSourceLimit < cBuf + (cTarget - cBuf)) {
cSourceLimit = cSourceLimit+1;
}
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,FALSE,&errorCode);
if(errorCode==U_BUFFER_OVERFLOW_ERROR){
errorCode=U_ZERO_ERROR;
continue;
}
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
}while(cSource<cTarget);
uSource = source;
test =uBuf;
for(;len<(int)(source - sourceLimit);len++){
if(uBuf[len]!=uSource[len]){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",uSource[len],(int)uBuf[len]) ;
}
}
}
free(uBuf);
free(cBuf);
}
static void
TestGetNextUChar2022(UConverter* cnv, const char* source, const char* limit,
const uint16_t results[], const char* message){
const char* s0;
const char* s=(char*)source;
const uint16_t *r=results;
UErrorCode errorCode=U_ZERO_ERROR;
uint32_t c,exC;
ucnv_reset(cnv);
while(s<limit) {
s0=s;
c=ucnv_getNextUChar(cnv, &s, limit, &errorCode);
if(errorCode==U_INDEX_OUTOFBOUNDS_ERROR) {
break; /* no more significant input */
} else if(U_FAILURE(errorCode)) {
log_err("%s ucnv_getNextUChar() failed: %s\n", message, u_errorName(errorCode));
break;
} else {
if(UTF_IS_FIRST_SURROGATE(*r)){
int i =0, len = 2;
UTF_NEXT_CHAR_SAFE(r, i, len, exC, FALSE);
r++;
}else{
exC = *r;
}
if(c!=(uint32_t)(exC))
log_err("%s ucnv_getNextUChar() Expected: \\u%04X Got: \\u%04X \n",message,(uint32_t) (*r),c);
}
r++;
}
}
static int TestJitterbug930(const char* enc){
UErrorCode err = U_ZERO_ERROR;
UConverter*converter;
char out[80];
char*target = out;
UChar in[4];
const UChar*source = in;
int32_t off[80];
int32_t* offsets = off;
int numOffWritten=0;
UBool flush = 0;
converter = my_ucnv_open(enc, &err);
in[0] = 0x41; /* 0x4E00;*/
in[1] = 0x4E01;
in[2] = 0x4E02;
in[3] = 0x4E03;
memset(off, '*', sizeof(off));
ucnv_fromUnicode (converter,
&target,
target+2,
&source,
source+3,
offsets,
flush,
&err);
/* writes three bytes into the output buffer: 41 1B 24
* but offsets contains 0 1 1
*/
while(*offsets< off[10]){
numOffWritten++;
offsets++;
}
log_verbose("Testing Jitterbug 930 for encoding %s",enc);
if(numOffWritten!= (int)(target-out)){
log_err("Jitterbug 930 test for enc: %s failed. Expected: %i Got: %i",enc, (int)(target-out),numOffWritten);
}
err = U_ZERO_ERROR;
memset(off,'*' , sizeof(off));
flush = 1;
offsets=off;
ucnv_fromUnicode (converter,
&target,
target+4,
&source,
source,
offsets,
flush,
&err);
numOffWritten=0;
while(*offsets< off[10]){
numOffWritten++;
if(*offsets!= -1){
log_err("Jitterbug 930 test for enc: %s failed. Expected: %i Got: %i",enc,-1,*offsets) ;
}
offsets++;
}
/* writes 42 43 7A into output buffer,
* offsets contains -1 -1 -1
*/
ucnv_close(converter);
return 0;
}
static void
TestHZ() {
/* test input */
static const uint16_t in[]={
0x3000, 0x3001, 0x3002, 0x00B7, 0x02C9, 0x02C7, 0x00A8, 0x3003, 0x3005, 0x2014,
0xFF5E, 0x2016, 0x2026, 0x007E, 0x997C, 0x70B3, 0x75C5, 0x5E76, 0x73BB, 0x83E0,
0x64AD, 0x62E8, 0x94B5, 0x000A, 0x6CE2, 0x535A, 0x52C3, 0x640F, 0x94C2, 0x7B94,
0x4F2F, 0x5E1B, 0x8236, 0x000A, 0x8116, 0x818A, 0x6E24, 0x6CCA, 0x9A73, 0x6355,
0x535C, 0x54FA, 0x8865, 0x000A, 0x57E0, 0x4E0D, 0x5E03, 0x6B65, 0x7C3F, 0x90E8,
0x6016, 0x248F, 0x2490, 0x000A, 0x2491, 0x2492, 0x2493, 0x2494, 0x2495, 0x2496,
0x2497, 0x2498, 0x2499, 0x000A, 0x249A, 0x249B, 0x2474, 0x2475, 0x2476, 0x2477,
0x2478, 0x2479, 0x247A, 0x000A, 0x247B, 0x247C, 0x247D, 0x247E, 0x247F, 0x2480,
0x2481, 0x2482, 0x2483, 0x000A, 0x0041, 0x0043, 0x0044, 0x0045, 0x0046, 0x007E,
0x0048, 0x0049, 0x004A, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050,
0x0051, 0x0052, 0x0053, 0x000A, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059,
0x005A, 0x005B, 0x005C, 0x000A
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("HZ", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open HZ converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
TestGetNextUChar2022(cnv, cBuf, cTarget, in, "HZ encoding");
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestJitterbug930("csISO2022JP");
ucnv_close(cnv);
free(offsets);
free(uBuf);
free(cBuf);
}
static void
TestISCII(){
/* test input */
static const uint16_t in[]={
/* test full range of Devanagari */
0x0901,0x0902,0x0903,0x0905,0x0906,0x0907,0x0908,0x0909,0x090A,
0x090B,0x090E,0x090F,0x0910,0x090D,0x0912,0x0913,0x0914,0x0911,
0x0915,0x0916,0x0917,0x0918,0x0919,0x091A,0x091B,0x091C,0x091D,
0x091E,0x091F,0x0920,0x0921,0x0922,0x0923,0x0924,0x0925,0x0926,
0x0927,0x0928,0x0929,0x092A,0x092B,0x092C,0x092D,0x092E,0x092F,
0x095F,0x0930,0x0931,0x0932,0x0933,0x0934,0x0935,0x0936,0x0937,
0x0938,0x0939,0x200D,0x093E,0x093F,0x0940,0x0941,0x0942,0x0943,
0x0946,0x0947,0x0948,0x0945,0x094A,0x094B,0x094C,0x0949,0x094D,
0x093d,0x0966,0x0967,0x0968,0x0969,0x096A,0x096B,0x096C,
0x096D,0x096E,0x096F,
/* test Soft halant*/
0x0915,0x094d, 0x200D,
/* test explicit halant */
0x0915,0x094d, 0x200c,
/* test double danda */
0x965,
/* test ASCII */
0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23,
0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23,
0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A,
/* tests from Lotus */
0x0061,0x0915,0x000D,0x000A,0x0996,0x0043,
0x0930,0x094D,0x200D,
0x0901,0x000D,0x000A,0x0905,0x0985,0x0043,
0x0915,0x0921,0x002B,0x095F,
/* tamil range */
0x0B86, 0xB87, 0xB88,
/* telugu range */
0x0C05, 0x0C02, 0x0C03,0x0c31,
/* kannada range */
0x0C85, 0xC82, 0x0C83,
/* test Abbr sign and Anudatta */
0x0970, 0x952,
/* 0x0958,
0x0959,
0x095A,
0x095B,
0x095C,
0x095D,
0x095E,
0x095F,*/
0x0960 /* Vocallic RRI 0xAB, 0xE9*/,
0x0944 /* Vowel Sign Vocallic RRI 0xDF, 0xE9 */,
0x090C ,
0x0962,
0x0961 /* Vocallic LL 0xa6, 0xE9 */,
0x0963 /* Vowel Sign Vocallic LL 0xdb, 0xE9, */,
0x0950 /* OM Symbol 0xa1, 0xE9,*/,
0x093D /* Avagraha 0xEA, 0xE9*/,
0x0958,
0x0959,
0x095A,
0x095B,
0x095C,
0x095D,
0x095E,
0x0020, 0x094D, 0x0930, 0x0000, 0x00A0
};
static const unsigned char byteArr[]={
0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,
0xaa,0xab,0xac,0xad,0xae,0xaf,0xb0,0xb1,0xb2,
0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,
0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4,
0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,
0xce,0xcf,0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,
0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,
0xea,0xe9,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,
0xf8,0xf9,0xfa,
/* test soft halant */
0xb3, 0xE8, 0xE9,
/* test explicit halant */
0xb3, 0xE8, 0xE8,
/* test double danda */
0xea, 0xea,
/* test ASCII */
0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23,
0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23,
0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A,
/* test ATR code */
/* tests from Lotus */
0x61,0xEF,0x42,0xEF,0x30,0xB3,0x0D,0x0A,0xEF,0x43,0xB4,0x43,
0xEF,0x42,0xCF,0xE8,0xD9,
0xEF,0x42,0xA1,0x0D,0x0A,0xEF,0x42,0xA4,0xEF,0x43,0xA4,0x43,
0xEF,0x42,0xB3,0xBF,0x2B,0xEF,0x42,0xCE,
/* tamil range */
0xEF, 0x44, 0xa5, 0xa6, 0xa7,
/* telugu range */
0xEF, 0x45,0xa4, 0xa2, 0xa3,0xd0,
/* kannada range */
0xEF, 0x48,0xa4, 0xa2, 0xa3,
/* anudatta and abbreviation sign */
0xEF, 0x42, 0xF0, 0xBF, 0xF0, 0xB8,
0xAA, 0xE9,/* RI + NUKTA 0x0960*/
0xDF, 0xE9,/* Vowel sign RI + NUKTA 0x0944*/
0xa6, 0xE9,/* Vowel I + NUKTA 0x090C*/
0xdb, 0xE9,/* Vowel sign I + Nukta 0x0962*/
0xa7, 0xE9,/* Vowel II + NUKTA 0x0961*/
0xdc, 0xE9,/* Vowel sign II + Nukta 0x0963*/
0xa1, 0xE9,/* chandrabindu + Nukta 0x0950*/
0xEA, 0xE9, /* Danda + Nukta 0x093D*/
0xB3, 0xE9, /* Ka + NUKTA */
0xB4, 0xE9, /* Kha + NUKTA */
0xB5, 0xE9, /* Ga + NUKTA */
0xBA, 0xE9,
0xBF, 0xE9,
0xC0, 0xE9,
0xC9, 0xE9,
/* INV halant RA */
0xD9, 0xE8, 0xCF,
0x00, 0x00A0,
/* just consume unhandled codepoints */
0xEF, 0x30,
};
testConvertToU(byteArr,(sizeof(byteArr)),in,(sizeof(in)/U_SIZEOF_UCHAR),"x-iscii-de",NULL,TRUE);
TestConv(in,(sizeof(in)/2),"ISCII,version=0","hindi", (char *)byteArr,sizeof(byteArr));
}
static void
TestISO_2022_JP() {
/* test input */
static const uint16_t in[]={
0x0041,/*0x00E9,*/0x3000, 0x3001, 0x3002, 0x0020, 0x000D, 0x000A,
0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A,
0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A,
0x3005, 0x3006, 0x3007, 0x30FC, 0x2015, 0x2010, 0xFF0F, 0x005C, 0x000D, 0x000A,
0x301C, 0x2016, 0x2026, 0x2025, 0x2018, 0x2019, 0x201C, 0x000D, 0x000A,
0x201D, 0x3014, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ISO_2022_JP_1", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open an ISO_2022_JP_1 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-JP encoding");
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestJitterbug930("csISO2022JP");
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void TestConv(const uint16_t in[],int len, const char* conv, const char* lang, char byteArr[],int byteArrLen){
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120*10;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) );
int32_t* myOff= offsets;
cnv=my_ucnv_open(conv, &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a %s converter: %s\n", conv, u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar));
cBuf =(char*)malloc(uBufSize * sizeof(char));
uSource = (const UChar*)&in[0];
uSourceLimit=uSource+len;
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
/*log_verbose("length of compressed string for language %s using %s:%i \n",conv,lang,(cTarget-cBuf));*/
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed, reason: %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("for codepage %s : Expected : \\u%04X \t Got: \\u%04X\n",conv,*uSource,(int)*test) ;
}
uSource++;
test++;
}
TestSmallTargetBuffer(&in[0],(const UChar*)&in[len],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[len],cnv);
TestGetNextUChar2022(cnv, cBuf, cTarget, in, conv);
if(byteArr && byteArrLen!=0){
TestGetNextUChar2022(cnv, byteArr, (byteArr+byteArrLen), in, lang);
TestToAndFromUChars(&in[0],(const UChar*)&in[len],cnv);
{
cSource = byteArr;
cSourceLimit = cSource+byteArrLen;
test=uBuf;
myOff = offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
}
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static UChar U_CALLCONV
_charAt(int32_t offset, void *context) {
return ((char*)context)[offset];
}
static int32_t
unescape(UChar* dst, int32_t dstLen,const char* src,int32_t srcLen,UErrorCode *status){
int32_t srcIndex=0;
int32_t dstIndex=0;
if(U_FAILURE(*status)){
return 0;
}
if((dst==NULL && dstLen>0) || (src==NULL ) || dstLen < -1 || srcLen <-1 ){
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if(srcLen==-1){
srcLen = uprv_strlen(src);
}
for (; srcIndex<srcLen; ) {
UChar32 c = src[srcIndex++];
if (c == 0x005C /*'\\'*/) {
c = u_unescapeAt(_charAt,&srcIndex,srcLen,(void*)src); /* advances i*/
if (c == (UChar32)0xFFFFFFFF) {
*status=U_INVALID_CHAR_FOUND; /* return empty string */
break; /* invalid escape sequence */
}
}
if(dstIndex < dstLen){
if(c>0xFFFF){
dst[dstIndex++] = UTF16_LEAD(c);
if(dstIndex<dstLen){
dst[dstIndex]=UTF16_TRAIL(c);
}else{
*status=U_BUFFER_OVERFLOW_ERROR;
}
}else{
dst[dstIndex]=(UChar)c;
}
}else{
*status = U_BUFFER_OVERFLOW_ERROR;
}
dstIndex++; /* for preflighting */
}
return dstIndex;
}
static void
TestFullRoundtrip(const char* cp){
UChar usource[10] ={0};
UChar nsrc[10] = {0};
uint32_t i=1;
int len=0, ulen;
nsrc[0]=0x0061;
/* Test codepoint 0 */
TestConv(usource,1,cp,"",NULL,0);
TestConv(usource,2,cp,"",NULL,0);
nsrc[2]=0x5555;
TestConv(nsrc,3,cp,"",NULL,0);
for(;i<=0x10FFFF;i++){
if(i==0xD800){
i=0xDFFF;
continue;
}
if(i<=0xFFFF){
usource[0] =(UChar) i;
len=1;
}else{
usource[0]=UTF16_LEAD(i);
usource[1]=UTF16_TRAIL(i);
len=2;
}
ulen=len;
if(i==0x80) {
usource[2]=0;
}
/* Test only single code points */
TestConv(usource,ulen,cp,"",NULL,0);
/* Test codepoint repeated twice */
usource[ulen]=usource[0];
usource[ulen+1]=usource[1];
ulen+=len;
TestConv(usource,ulen,cp,"",NULL,0);
/* Test codepoint repeated 3 times */
usource[ulen]=usource[0];
usource[ulen+1]=usource[1];
ulen+=len;
TestConv(usource,ulen,cp,"",NULL,0);
/* Test codepoint in between 2 codepoints */
nsrc[1]=usource[0];
nsrc[2]=usource[1];
nsrc[len+1]=0x5555;
TestConv(nsrc,len+2,cp,"",NULL,0);
uprv_memset(usource,0,sizeof(UChar)*10);
}
}
static void
TestRoundTrippingAllUTF(void){
if(!QUICK){
log_verbose("Running exhaustive round trip test for BOCU-1\n");
TestFullRoundtrip("BOCU-1");
log_verbose("Running exhaustive round trip test for SCSU\n");
TestFullRoundtrip("SCSU");
log_verbose("Running exhaustive round trip test for UTF-8\n");
TestFullRoundtrip("UTF-8");
log_verbose("Running exhaustive round trip test for CESU-8\n");
TestFullRoundtrip("CESU-8");
log_verbose("Running exhaustive round trip test for UTF-16BE\n");
TestFullRoundtrip("UTF-16BE");
log_verbose("Running exhaustive round trip test for UTF-16LE\n");
TestFullRoundtrip("UTF-16LE");
log_verbose("Running exhaustive round trip test for UTF-16\n");
TestFullRoundtrip("UTF-16");
log_verbose("Running exhaustive round trip test for UTF-32BE\n");
TestFullRoundtrip("UTF-32BE");
log_verbose("Running exhaustive round trip test for UTF-32LE\n");
TestFullRoundtrip("UTF-32LE");
log_verbose("Running exhaustive round trip test for UTF-32\n");
TestFullRoundtrip("UTF-32");
log_verbose("Running exhaustive round trip test for UTF-7\n");
TestFullRoundtrip("UTF-7");
log_verbose("Running exhaustive round trip test for UTF-7\n");
TestFullRoundtrip("UTF-7,version=1");
log_verbose("Running exhaustive round trip test for IMAP-mailbox-name\n");
TestFullRoundtrip("IMAP-mailbox-name");
log_verbose("Running exhaustive round trip test for GB18030\n");
TestFullRoundtrip("GB18030");
}
}
static void
TestSCSU() {
static const uint16_t germanUTF16[]={
0x00d6, 0x006c, 0x0020, 0x0066, 0x006c, 0x0069, 0x0065, 0x00df, 0x0074
};
static const uint8_t germanSCSU[]={
0xd6, 0x6c, 0x20, 0x66, 0x6c, 0x69, 0x65, 0xdf, 0x74
};
static const uint16_t russianUTF16[]={
0x041c, 0x043e, 0x0441, 0x043a, 0x0432, 0x0430
};
static const uint8_t russianSCSU[]={
0x12, 0x9c, 0xbe, 0xc1, 0xba, 0xb2, 0xb0
};
static const uint16_t japaneseUTF16[]={
0x3000, 0x266a, 0x30ea, 0x30f3, 0x30b4, 0x53ef, 0x611b,
0x3044, 0x3084, 0x53ef, 0x611b, 0x3044, 0x3084, 0x30ea, 0x30f3,
0x30b4, 0x3002, 0x534a, 0x4e16, 0x7d00, 0x3082, 0x524d, 0x306b,
0x6d41, 0x884c, 0x3057, 0x305f, 0x300c, 0x30ea, 0x30f3, 0x30b4,
0x306e, 0x6b4c, 0x300d, 0x304c, 0x3074, 0x3063, 0x305f, 0x308a,
0x3059, 0x308b, 0x304b, 0x3082, 0x3057, 0x308c, 0x306a, 0x3044,
0x3002, 0x7c73, 0x30a2, 0x30c3, 0x30d7, 0x30eb, 0x30b3, 0x30f3,
0x30d4, 0x30e5, 0x30fc, 0x30bf, 0x793e, 0x306e, 0x30d1, 0x30bd,
0x30b3, 0x30f3, 0x300c, 0x30de, 0x30c3, 0x30af, 0xff08, 0x30de,
0x30c3, 0x30ad, 0x30f3, 0x30c8, 0x30c3, 0x30b7, 0x30e5, 0xff09,
0x300d, 0x3092, 0x3001, 0x3053, 0x3088, 0x306a, 0x304f, 0x611b,
0x3059, 0x308b, 0x4eba, 0x305f, 0x3061, 0x306e, 0x3053, 0x3068,
0x3060, 0x3002, 0x300c, 0x30a2, 0x30c3, 0x30d7, 0x30eb, 0x4fe1,
0x8005, 0x300d, 0x306a, 0x3093, 0x3066, 0x8a00, 0x3044, 0x65b9,
0x307e, 0x3067, 0x3042, 0x308b, 0x3002
};
/* SCSUEncoder produces a slightly longer result (179B vs. 178B) because of one different choice:
it uses an SQn once where a longer look-ahead could have shown that SCn is more efficient */
static const uint8_t japaneseSCSU[]={
0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84,
0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f,
0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c,
0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d,
0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e,
0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e,
0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d,
0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa,
0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08,
0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d,
0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06,
0xcb, 0x82
};
static const uint16_t allFeaturesUTF16[]={
0x0041, 0x00df, 0x0401, 0x015f, 0x00df, 0x01df, 0xf000, 0xdbff,
0xdfff, 0x000d, 0x000a, 0x0041, 0x00df, 0x0401, 0x015f, 0x00df,
0x01df, 0xf000, 0xdbff, 0xdfff
};
/* see comment at japaneseSCSU: the same kind of different choice yields a slightly shorter
* result here (34B vs. 35B)
*/
static const uint8_t allFeaturesSCSU[]={
0x41, 0xdf, 0x12, 0x81, 0x03, 0x5f, 0x10, 0xdf, 0x1b, 0x03,
0xdf, 0x1c, 0x88, 0x80, 0x0b, 0xbf, 0xff, 0xff, 0x0d, 0x0a,
0x41, 0x10, 0xdf, 0x12, 0x81, 0x03, 0x5f, 0x10, 0xdf, 0x13,
0xdf, 0x14, 0x80, 0x15, 0xff
};
static const uint16_t monkeyIn[]={
0x00A8, 0x3003, 0x3005, 0x2015, 0xFF5E, 0x2016, 0x2026, 0x2018, 0x000D, 0x000A,
0x2019, 0x201C, 0x201D, 0x3014, 0x3015, 0x3008, 0x3009, 0x300A, 0x000D, 0x000A,
0x300B, 0x300C, 0x300D, 0x300E, 0x300F, 0x3016, 0x3017, 0x3010, 0x000D, 0x000A,
0x3011, 0x00B1, 0x00D7, 0x00F7, 0x2236, 0x2227, 0x7FC1, 0x8956, 0x000D, 0x000A,
0x9D2C, 0x9D0E, 0x9EC4, 0x5CA1, 0x6C96, 0x837B, 0x5104, 0x5C4B, 0x000D, 0x000A,
0x61B6, 0x81C6, 0x6876, 0x7261, 0x4E59, 0x4FFA, 0x5378, 0x57F7, 0x000D, 0x000A,
0x57F4, 0x57F9, 0x57FA, 0x57FC, 0x5800, 0x5802, 0x5805, 0x5806, 0x000D, 0x000A,
0x580A, 0x581E, 0x6BB5, 0x6BB7, 0x6BBA, 0x6BBC, 0x9CE2, 0x977C, 0x000D, 0x000A,
0x6BBF, 0x6BC1, 0x6BC5, 0x6BC6, 0x6BCB, 0x6BCD, 0x6BCF, 0x6BD2, 0x000D, 0x000A,
0x6BD3, 0x6BD4, 0x6BD6, 0x6BD7, 0x6BD8, 0x6BDB, 0x6BEB, 0x6BEC, 0x000D, 0x000A,
0x6C05, 0x6C08, 0x6C0F, 0x6C11, 0x6C13, 0x6C23, 0x6C34, 0x0041, 0x000D, 0x000A,
0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A,
0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
0x005B, 0x9792, 0x9CCC, 0x9CCD, 0x9CCE, 0x9CCF, 0x9CD0, 0x9CD3, 0x000D, 0x000A,
0x9CD4, 0x9CD5, 0x9CD7, 0x9CD8, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A,
0x9785, 0x9791, 0x00BD, 0x0390, 0x0385, 0x0386, 0x0388, 0x0389, 0x000D, 0x000A,
0x038E, 0x038F, 0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x000D, 0x000A,
0x0396, 0x0397, 0x0398, 0x0399, 0x039A, 0x038A, 0x038C, 0x039C, 0x000D, 0x000A,
/* test non-BMP code points */
0xD869, 0xDE99, 0xD869, 0xDE9C, 0xD869, 0xDE9D, 0xD869, 0xDE9E, 0xD869, 0xDE9F,
0xD869, 0xDEA0, 0xD869, 0xDEA5, 0xD869, 0xDEA6, 0xD869, 0xDEA7, 0xD869, 0xDEA8,
0xD869, 0xDEAB, 0xD869, 0xDEAC, 0xD869, 0xDEAD, 0xD869, 0xDEAE, 0xD869, 0xDEAF,
0xD869, 0xDEB0, 0xD869, 0xDEB1, 0xD869, 0xDEB3, 0xD869, 0xDEB5, 0xD869, 0xDEB6,
0xD869, 0xDEB7, 0xD869, 0xDEB8, 0xD869, 0xDEB9, 0xD869, 0xDEBA, 0xD869, 0xDEBB,
0xD869, 0xDEBC, 0xD869, 0xDEBD, 0xD869, 0xDEBE, 0xD869, 0xDEBF, 0xD869, 0xDEC0,
0xD869, 0xDEC1, 0xD869, 0xDEC2, 0xD869, 0xDEC3, 0xD869, 0xDEC4, 0xD869, 0xDEC8,
0xD869, 0xDECA, 0xD869, 0xDECB, 0xD869, 0xDECD, 0xD869, 0xDECE, 0xD869, 0xDECF,
0xD869, 0xDED0, 0xD869, 0xDED1, 0xD869, 0xDED2, 0xD869, 0xDED3, 0xD869, 0xDED4,
0xD869, 0xDED5, 0xD800, 0xDC00, 0xD800, 0xDC00, 0xD800, 0xDC00, 0xDBFF, 0xDFFF,
0xDBFF, 0xDFFF, 0xDBFF, 0xDFFF,
0x4DB3, 0x4DB4, 0x4DB5, 0x4E00, 0x4E00, 0x4E01, 0x4E02, 0x4E03, 0x000D, 0x000A,
0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x33E0, 0x33E6, 0x000D, 0x000A,
0x4E05, 0x4E07, 0x4E04, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x000D, 0x000A,
0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A,
0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A,
};
static const char *fTestCases [] = {
"\\ud800\\udc00", /* smallest surrogate*/
"\\ud8ff\\udcff",
"\\udBff\\udFff", /* largest surrogate pair*/
"\\ud834\\udc00",
"\\U0010FFFF",
"Hello \\u9292 \\u9192 World!",
"Hell\\u0429o \\u9292 \\u9192 W\\u00e4rld!",
"Hell\\u0429o \\u9292 \\u9292W\\u00e4rld!",
"\\u0648\\u06c8", /* catch missing reset*/
"\\u0648\\u06c8",
"\\u4444\\uE001", /* lowest quotable*/
"\\u4444\\uf2FF", /* highest quotable*/
"\\u4444\\uf188\\u4444",
"\\u4444\\uf188\\uf288",
"\\u4444\\uf188abc\\u0429\\uf288",
"\\u9292\\u2222",
"Hell\\u0429\\u04230o \\u9292 \\u9292W\\u00e4\\u0192rld!",
"Hell\\u0429o \\u9292 \\u9292W\\u00e4rld!",
"Hello World!123456",
"Hello W\\u0081\\u011f\\u0082!", /* Latin 1 run*/
"abc\\u0301\\u0302", /* uses SQn for u301 u302*/
"abc\\u4411d", /* uses SQU*/
"abc\\u4411\\u4412d",/* uses SCU*/
"abc\\u0401\\u0402\\u047f\\u00a5\\u0405", /* uses SQn for ua5*/
"\\u9191\\u9191\\u3041\\u9191\\u3041\\u3041\\u3000", /* SJIS like data*/
"\\u9292\\u2222",
"\\u9191\\u9191\\u3041\\u9191\\u3041\\u3041\\u3000",
"\\u9999\\u3051\\u300c\\u9999\\u9999\\u3060\\u9999\\u3065\\u3065\\u3065\\u300c",
"\\u3000\\u266a\\u30ea\\u30f3\\u30b4\\u53ef\\u611b\\u3044\\u3084\\u53ef\\u611b\\u3044\\u3084\\u30ea\\u30f3\\u30b4\\u3002",
"", /* empty input*/
"\\u0000", /* smallest BMP character*/
"\\uFFFF", /* largest BMP character*/
/* regression tests*/
"\\u6441\\ub413\\ua733\\uf8fe\\ueedb\\u587f\\u195f\\u4899\\uf23d\\u49fd\\u0aac\\u5792\\ufc22\\ufc3c\\ufc46\\u00aa",
"\\u00df\\u01df\\uf000\\udbff\\udfff\\u000d\n\\u0041\\u00df\\u0401\\u015f\\u00df\\u01df\\uf000\\udbff\\udfff",
"\\u30f9\\u8321\\u05e5\\u181c\\ud72b\\u2019\\u99c9\\u2f2f\\uc10c\\u82e1\\u2c4d\\u1ebc\\u6013\\u66dc\\ubbde\\u94a5\\u4726\\u74af\\u3083\\u55b9\\u000c",
"\\u0041\\u00df\\u0401\\u015f",
"\\u9066\\u2123abc",
"\\ud266\\u43d7\\u\\ue386\\uc9c0\\u4a6b\\u9222\\u901f\\u7410\\ua63f\\u539b\\u9596\\u482e\\u9d47\\ucfe4\\u7b71\\uc280\\uf26a\\u982f\\u862a\\u4edd\\uf513\\ufda6\\u869d\\u2ee0\\ua216\\u3ff6\\u3c70\\u89c0\\u9576\\ud5ec\\ubfda\\u6cca\\u5bb3\\ubcea\\u554c\\u914e\\ufa4a\\uede3\\u2990\\ud2f5\\u2729\\u5141\\u0f26\\uccd8\\u5413\\ud196\\ubbe2\\u51b9\\u9b48\\u0dc8\\u2195\\u21a2\\u21e9\\u00e4\\u9d92\\u0bc0\\u06c5",
"\\uf95b\\u2458\\u2468\\u0e20\\uf51b\\ue36e\\ubfc1\\u0080\\u02dd\\uf1b5\\u0cf3\\u6059\\u7489",
};
int i=0;
for(;i<sizeof(fTestCases)/sizeof(*fTestCases);i++){
const char* cSrc = fTestCases[i];
UErrorCode status = U_ZERO_ERROR;
int32_t cSrcLen,srcLen;
UChar* src;
/* UConverter* cnv = ucnv_open("SCSU",&status); */
cSrcLen= srcLen = uprv_strlen(fTestCases[i]);
src = (UChar*) malloc((sizeof(UChar) * srcLen) + sizeof(UChar));
srcLen=unescape(src,srcLen,cSrc,cSrcLen,&status);
log_verbose("Testing roundtrip for src: %s at index :%d\n",cSrc,i);
TestConv(src,srcLen,"SCSU","Coverage",NULL,0);
free(src);
}
TestConv(allFeaturesUTF16,(sizeof(allFeaturesUTF16)/2),"SCSU","all features", (char *)allFeaturesSCSU,sizeof(allFeaturesSCSU));
TestConv(allFeaturesUTF16,(sizeof(allFeaturesUTF16)/2),"SCSU","all features",(char *)allFeaturesSCSU,sizeof(allFeaturesSCSU));
TestConv(japaneseUTF16,(sizeof(japaneseUTF16)/2),"SCSU","japaneese",(char *)japaneseSCSU,sizeof(japaneseSCSU));
TestConv(japaneseUTF16,(sizeof(japaneseUTF16)/2),"SCSU,locale=ja","japaneese",(char *)japaneseSCSU,sizeof(japaneseSCSU));
TestConv(germanUTF16,(sizeof(germanUTF16)/2),"SCSU","german",(char *)germanSCSU,sizeof(germanSCSU));
TestConv(russianUTF16,(sizeof(russianUTF16)/2), "SCSU","russian",(char *)russianSCSU,sizeof(russianSCSU));
TestConv(monkeyIn,(sizeof(monkeyIn)/2),"SCSU","monkey",NULL,0);
}
static void TestJitterbug2346(){
char source[] = { 0x1b,0x24,0x42,0x3d,0x45,0x1b,0x28,0x4a,0x0d,0x0a,
0x1b,0x24,0x42,0x3d,0x45,0x1b,0x28,0x4a,0x0d,0x0a};
uint16_t expected[] = {0x91CD,0x000D,0x000A,0x91CD,0x000D,0x000A};
UChar uTarget[500]={'\0'};
UChar* utarget=uTarget;
UChar* utargetLimit=uTarget+sizeof(uTarget)/2;
char cTarget[500]={'\0'};
char* ctarget=cTarget;
char* ctargetLimit=cTarget+sizeof(cTarget);
const char* csource=source;
UChar* temp = expected;
UErrorCode err=U_ZERO_ERROR;
UConverter* conv =ucnv_open("ISO_2022_JP",&err);
if(U_FAILURE(err)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(err));
return;
}
ucnv_toUnicode(conv,&utarget,utargetLimit,&csource,csource+sizeof(source),NULL,TRUE,&err);
if(U_FAILURE(err)) {
log_err("ISO_2022_JP to Unicode conversion failed: %s\n", u_errorName(err));
return;
}
utargetLimit=utarget;
utarget = uTarget;
while(utarget<utargetLimit){
if(*temp!=*utarget){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*utarget,(int)*temp) ;
}
utarget++;
temp++;
}
ucnv_fromUnicode(conv,&ctarget,ctargetLimit,(const UChar**)&utarget,utargetLimit,NULL,TRUE,&err);
if(U_FAILURE(err)) {
log_err("ISO_2022_JP from Unicode conversion failed: %s\n", u_errorName(err));
return;
}
ctargetLimit=ctarget;
ctarget =cTarget;
ucnv_close(conv);
}
static void
TestISO_2022_JP_1() {
/* test input */
static const uint16_t in[]={
0x3000, 0x3001, 0x3002, 0x0020, 0xFF0E, 0x30FB, 0xFF1A, 0xFF1B, 0x000D, 0x000A,
0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A,
0x52C8, 0x52CC, 0x52CF, 0x52D1, 0x52D4, 0x52D6, 0x52DB, 0x52DC, 0x000D, 0x000A,
0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A,
0x3005, 0x3006, 0x3007, 0x30FC, 0x2015, 0x2010, 0xFF0F, 0x005C, 0x000D, 0x000A,
0x301C, 0x2016, 0x2026, 0x2025, 0x2018, 0x2019, 0x201C, 0x000D, 0x000A,
0x201D, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
0x4F94, 0x4F97, 0x52BA, 0x52BB, 0x52BD, 0x52C0, 0x52C4, 0x52C6, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
0x4F78, 0x4F79, 0x4F7A, 0x4F7D, 0x4F7E, 0x4F81, 0x4F82, 0x4F84, 0x000D, 0x000A,
0x4F85, 0x4F89, 0x4F8A, 0x4F8C, 0x4F8E, 0x4F90, 0x4F92, 0x4F93, 0x000D, 0x000A,
0x52E1, 0x52E5, 0x52E8, 0x52E9, 0x000D, 0x000A
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
cnv=ucnv_open("ISO_2022_JP_1", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
/*ucnv_close(cnv);
cnv=ucnv_open("ISO_2022,locale=jp,version=1", &errorCode);*/
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x0e,0x24,0x053};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-JP-1]");
}
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
ucnv_close(cnv);
free(uBuf);
free(cBuf);
}
static void
TestISO_2022_JP_2() {
/* test input */
static const uint16_t in[]={
0x00A8, 0x3003, 0x3005, 0x2015, 0xFF5E, 0x2016, 0x2026, 0x2018, 0x000D, 0x000A,
0x2019, 0x201C, 0x201D, 0x3014, 0x3015, 0x3008, 0x3009, 0x300A, 0x000D, 0x000A,
0x300B, 0x300C, 0x300D, 0x300E, 0x300F, 0x3016, 0x3017, 0x3010, 0x000D, 0x000A,
0x3011, 0x00B1, 0x00D7, 0x00F7, 0x2236, 0x2227, 0x7FC1, 0x8956, 0x000D, 0x000A,
0x9D2C, 0x9D0E, 0x9EC4, 0x5CA1, 0x6C96, 0x837B, 0x5104, 0x5C4B, 0x000D, 0x000A,
0x61B6, 0x81C6, 0x6876, 0x7261, 0x4E59, 0x4FFA, 0x5378, 0x57F7, 0x000D, 0x000A,
0x57F4, 0x57F9, 0x57FA, 0x57FC, 0x5800, 0x5802, 0x5805, 0x5806, 0x000D, 0x000A,
0x580A, 0x581E, 0x6BB5, 0x6BB7, 0x6BBA, 0x6BBC, 0x9CE2, 0x977C, 0x000D, 0x000A,
0x6BBF, 0x6BC1, 0x6BC5, 0x6BC6, 0x6BCB, 0x6BCD, 0x6BCF, 0x6BD2, 0x000D, 0x000A,
0x6BD3, 0x6BD4, 0x6BD6, 0x6BD7, 0x6BD8, 0x6BDB, 0x6BEB, 0x6BEC, 0x000D, 0x000A,
0x6C05, 0x6C08, 0x6C0F, 0x6C11, 0x6C13, 0x6C23, 0x6C34, 0x0041, 0x000D, 0x000A,
0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A,
0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A,
0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A,
0x005B, 0x9792, 0x9CCC, 0x9CCD, 0x9CCE, 0x9CCF, 0x9CD0, 0x9CD3, 0x000D, 0x000A,
0x9CD4, 0x9CD5, 0x9CD7, 0x9CD8, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A,
0x9785, 0x9791, 0x00BD, 0x0390, 0x0385, 0x0386, 0x0388, 0x0389, 0x000D, 0x000A,
0x038E, 0x038F, 0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x000D, 0x000A,
0x0396, 0x0397, 0x0398, 0x0399, 0x039A, 0x038A, 0x038C, 0x039C, 0x000D, 0x000A
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ISO_2022_JP_2", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
uSource++;
test++;
}
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x0e,0x24,0x053};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-JP-2]");
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void
TestISO_2022_KR() {
/* test input */
static const uint16_t in[]={
0x9F4B,0x9F4E,0x9F52,0x9F5F,0x9F61,0x9F66,0x9F67,0x9F6A,0x000A,0x000D
,0x9F6C,0x9F77,0x9F8D,0x9F90,0x9F95,0x9F9C,0xAC00,0xAC01,0xAC02,0xAC04
,0xAC07,0xAC08,0xAC09,0x0025,0x0026,0x0027,0x000A,0x000D,0x0028,0x0029
,0x002A,0x002B,0x002C,0x002D,0x002E,0x53C3,0x53C8,0x53C9,0x53CA,0x53CB
,0x53CD,0x53D4,0x53D6,0x53D7,0x53DB,0x000A,0x000D,0x53DF,0x53E1,0x53E2
,0x53E3,0x53E4,0x000A,0x000D};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ISO_2022,locale=kr", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,*test) ;
}
uSource++;
test++;
}
TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-KR encoding");
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestJitterbug930("csISO2022KR");
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x1b,0x24,0x053};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_ESCAPE_SEQUENCE, "an invalid character [ISO-2022-KR]");
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void
TestISO_2022_KR_1() {
/* test input */
static const uint16_t in[]={
0x9F4B,0x9F4E,0x9F52,0x9F5F,0x9F61,0x9F67,0x9F6A,0x000A,0x000D
,0x9F6C,0x9F77,0x9F8D,0x9F90,0x9F95,0x9F9C,0xAC00,0xAC01,0xAC04
,0xAC07,0xAC08,0xAC09,0x0025,0x0026,0x0027,0x000A,0x000D,0x0028,0x0029
,0x002A,0x002B,0x002C,0x002D,0x002E,0x53C3,0x53C8,0x53C9,0x53CA,0x53CB
,0x53CD,0x53D4,0x53D6,0x53D7,0x53DB,0x000A,0x000D,0x53E1,0x53E2
,0x53E3,0x53E4,0x000A,0x000D};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 120;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ibm-25546", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 5);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,*test) ;
}
uSource++;
test++;
}
ucnv_reset(cnv);
TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-KR encoding");
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
ucnv_reset(cnv);
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x1b,0x24,0x053};
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_ESCAPE_SEQUENCE, "an invalid character [ISO-2022-KR]");
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void TestJitterbug2411(){
const char* source = "\x1b\x24\x29\x43\x6b\x6b\x6e\x6e\x6a\x68\x70\x6f\x69\x75\x79\x71\x77\x65\x68\x67\x0A"
"\x1b\x24\x29\x43\x6a\x61\x73\x64\x66\x6a\x61\x73\x64\x66\x68\x6f\x69\x75\x79\x1b\x24\x29\x43";
UConverter* kr=NULL, *kr1=NULL;
UErrorCode errorCode = U_ZERO_ERROR;
UChar tgt[100]={'\0'};
UChar* target = tgt;
UChar* targetLimit = target+100;
kr=ucnv_open("iso-2022-kr", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022-kr converter: %s\n", u_errorName(errorCode));
return;
}
ucnv_toUnicode(kr,&target,targetLimit,&source,source+uprv_strlen(source),NULL,TRUE,&errorCode);
if(U_FAILURE(errorCode)) {
log_err("iso-2022-kr cannot handle multiple escape sequences : %s\n", u_errorName(errorCode));
return;
}
kr1 = ucnv_open("ibm-25546", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022-kr_1 converter: %s\n", u_errorName(errorCode));
return;
}
target = tgt;
targetLimit = target+100;
ucnv_toUnicode(kr,&target,targetLimit,&source,source+uprv_strlen(source),NULL,TRUE,&errorCode);
if(U_FAILURE(errorCode)) {
log_err("iso-2022-kr_1 cannot handle multiple escape sequences : %s\n", u_errorName(errorCode));
return;
}
ucnv_close(kr);
ucnv_close(kr1);
}
static void
TestJIS(){
/* From Unicode moved to testdata/conversion.txt */
/*To Unicode*/
{
const uint8_t sampleTextJIS[] = {
0x1b,0x28,0x48,0x41,0x42, /*jis-Roman*/
0x1b,0x28,0x49,0x41,0x42, /*Katakana Set*/
0x1b,0x26,0x40,0x1b,0x24,0x42,0x21,0x21 /*recognize and ignore <esc>&@*/
};
const uint16_t expectedISO2022JIS[] = {
0x0041, 0x0042,
0xFF81, 0xFF82,
0x3000
};
int32_t toISO2022JISOffs[]={
3,4,
8,9,
16
};
const uint8_t sampleTextJIS7[] = {
0x1b,0x28,0x48,0x41,0x42, /*JIS7-Roman*/
0x1b,0x28,0x49,0x41,0x42, /*Katakana Set*/
0x1b,0x24,0x42,0x21,0x21,
0x0e,0x41,0x42,0x0f, /*Test Katakana set with SI and SO */
0x21,0x22,
0x1b,0x26,0x40,0x1b,0x24,0x42,0x21,0x21 /*recognize and ignore <esc>&@*/
};
const uint16_t expectedISO2022JIS7[] = {
0x0041, 0x0042,
0xFF81, 0xFF82,
0x3000,
0xFF81, 0xFF82,
0x3001,
0x3000
};
int32_t toISO2022JIS7Offs[]={
3,4,
8,9,
13,16,
17,
19,27
};
const uint8_t sampleTextJIS8[] = {
0x1b,0x28,0x48,0x41,0x42, /*JIS8-Roman*/
0xa1,0xc8,0xd9,/*Katakana Set*/
0x1b,0x28,0x42,
0x41,0x42,
0xb1,0xc3, /*Katakana Set*/
0x1b,0x24,0x42,0x21,0x21
};
const uint16_t expectedISO2022JIS8[] = {
0x0041, 0x0042,
0xff61, 0xff88, 0xff99,
0x0041, 0x0042,
0xff71, 0xff83,
0x3000
};
int32_t toISO2022JIS8Offs[]={
3, 4, 5, 6,
7, 11, 12, 13,
14, 18,
};
testConvertToU(sampleTextJIS,sizeof(sampleTextJIS),expectedISO2022JIS,
sizeof(expectedISO2022JIS)/sizeof(expectedISO2022JIS[0]),"JIS", toISO2022JISOffs,TRUE);
testConvertToU(sampleTextJIS7,sizeof(sampleTextJIS7),expectedISO2022JIS7,
sizeof(expectedISO2022JIS7)/sizeof(expectedISO2022JIS7[0]),"JIS7", toISO2022JIS7Offs,TRUE);
testConvertToU(sampleTextJIS8,sizeof(sampleTextJIS8),expectedISO2022JIS8,
sizeof(expectedISO2022JIS8)/sizeof(expectedISO2022JIS8[0]),"JIS8", toISO2022JIS8Offs,TRUE);
}
}
static void TestJitterbug915(){
/* tests for roundtripping of the below sequence
\x1b$)G\x0E#!#"###$#%#&#'#(#)#*#+ / *plane 1 * /
\x1b$*H\x1bN"!\x1bN""\x1bN"#\x1bN"$\x1bN"% / *plane 2 * /
\x1b$+I\x1bO"D\x1bO"E\x1bO"F\x1bO"G\x1bO"H / *plane 3 * /
\x1b$+J\x1bO!D\x1bO!E\x1bO"j\x1bO"k\x1bO"l / *plane 4 * /
\x1b$+K\x1bO!t\x1bO"P\x1bO"Q\x1bO#7\x1bO"\ / *plane 5 * /
\x1b$+L\x1bO!#\x1bO",\x1bO#N\x1bO!n\x1bO#q / *plane 6 * /
\x1b$+M\x1bO"q\x1bO!N\x1bO!j\x1bO#:\x1bO#o / *plane 7 * /
*/
static char cSource[]={
0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23,
0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23,
0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A,
0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F,
0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21,
0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E,
0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x2F, 0x2A, 0x70,
0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A,
0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F,
0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47,
0x1B, 0x4F, 0x22, 0x48, 0x2F, 0x2A, 0x70, 0x6C, 0x61,
0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B,
0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21,
0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B,
0x4F, 0x22, 0x6C, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50,
0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F,
0x22, 0x5C, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E,
0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24,
0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C,
0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F,
0x23, 0x71, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65,
0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B,
0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B,
0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23,
0x6F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20,
0x37, 0x20, 0x2A, 0x2F
};
UChar uTarget[500]={'\0'};
UChar* utarget=uTarget;
UChar* utargetLimit=uTarget+sizeof(uTarget)/2;
char cTarget[500]={'\0'};
char* ctarget=cTarget;
char* ctargetLimit=cTarget+sizeof(cTarget);
const char* csource=cSource;
char* tempSrc = cSource;
UErrorCode err=U_ZERO_ERROR;
UConverter* conv =ucnv_open("ISO_2022_CN_EXT",&err);
if(U_FAILURE(err)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(err));
return;
}
ucnv_toUnicode(conv,&utarget,utargetLimit,&csource,csource+sizeof(cSource),NULL,TRUE,&err);
if(U_FAILURE(err)) {
log_err("iso-2022-CN to Unicode conversion failed: %s\n", u_errorName(err));
return;
}
utargetLimit=utarget;
utarget = uTarget;
ucnv_fromUnicode(conv,&ctarget,ctargetLimit,(const UChar**)&utarget,utargetLimit,NULL,TRUE,&err);
if(U_FAILURE(err)) {
log_err("iso-2022-CN from Unicode conversion failed: %s\n", u_errorName(err));
return;
}
ctargetLimit=ctarget;
ctarget =cTarget;
while(ctarget<ctargetLimit){
if(*ctarget != *tempSrc){
log_err("j915[%d] Expected : \\x%02X \t Got: \\x%02X\n", (int)(ctarget-cTarget), *ctarget,(int)*tempSrc) ;
}
++ctarget;
++tempSrc;
}
ucnv_close(conv);
}
static void
TestISO_2022_CN_EXT() {
/* test input */
static const uint16_t in[]={
/* test Non-BMP code points */
0xD869, 0xDE99, 0xD869, 0xDE9C, 0xD869, 0xDE9D, 0xD869, 0xDE9E, 0xD869, 0xDE9F,
0xD869, 0xDEA0, 0xD869, 0xDEA5, 0xD869, 0xDEA6, 0xD869, 0xDEA7, 0xD869, 0xDEA8,
0xD869, 0xDEAB, 0xD869, 0xDEAC, 0xD869, 0xDEAD, 0xD869, 0xDEAE, 0xD869, 0xDEAF,
0xD869, 0xDEB0, 0xD869, 0xDEB1, 0xD869, 0xDEB3, 0xD869, 0xDEB5, 0xD869, 0xDEB6,
0xD869, 0xDEB7, 0xD869, 0xDEB8, 0xD869, 0xDEB9, 0xD869, 0xDEBA, 0xD869, 0xDEBB,
0xD869, 0xDEBC, 0xD869, 0xDEBD, 0xD869, 0xDEBE, 0xD869, 0xDEBF, 0xD869, 0xDEC0,
0xD869, 0xDEC1, 0xD869, 0xDEC2, 0xD869, 0xDEC3, 0xD869, 0xDEC4, 0xD869, 0xDEC8,
0xD869, 0xDECA, 0xD869, 0xDECB, 0xD869, 0xDECD, 0xD869, 0xDECE, 0xD869, 0xDECF,
0xD869, 0xDED0, 0xD869, 0xDED1, 0xD869, 0xDED2, 0xD869, 0xDED3, 0xD869, 0xDED4,
0xD869, 0xDED5,
0x4DB3, 0x4DB4, 0x4DB5, 0x4E00, 0x4E00, 0x4E01, 0x4E02, 0x4E03, 0x000D, 0x000A,
0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x33E0, 0x33E6, 0x000D, 0x000A,
0x4E05, 0x4E07, 0x4E04, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x000D, 0x000A,
0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A,
0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A,
0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, 0x6332, 0x63B0, 0x643F, 0x000D, 0x000A,
0x64D8, 0x8004, 0x6BEA, 0x6BF3, 0x6BFD, 0x6BF5, 0x6BF9, 0x6C05, 0x000D, 0x000A,
0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x000D, 0x000A,
0x6C07, 0x6C06, 0x6C0D, 0x6C15, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A,
0x9CE2, 0x977C, 0x9785, 0x9791, 0x9792, 0x9794, 0x97AF, 0x97AB, 0x000D, 0x000A,
0x97A3, 0x97B2, 0x97B4, 0x9AB1, 0x9AB0, 0x9AB7, 0x9E58, 0x9AB6, 0x000D, 0x000A,
0x9ABA, 0x9ABC, 0x9AC1, 0x9AC0, 0x9AC5, 0x9AC2, 0x9ACB, 0x9ACC, 0x000D, 0x000A,
0x9AD1, 0x9B45, 0x9B43, 0x9B47, 0x9B49, 0x9B48, 0x9B4D, 0x9B51, 0x000D, 0x000A,
0x98E8, 0x990D, 0x992E, 0x9955, 0x9954, 0x9ADF, 0x3443, 0x3444, 0x000D, 0x000A,
0x3445, 0x3449, 0x344A, 0x344B, 0x60F2, 0x60F3, 0x60F4, 0x60F5, 0x000D, 0x000A,
0x60F6, 0x60F7, 0x60F8, 0x60F9, 0x60FA, 0x60FB, 0x60FC, 0x60FD, 0x000D, 0x000A,
0x60FE, 0x60FF, 0x6100, 0x6101, 0x6102, 0x0041, 0x0042, 0x0043, 0x000D, 0x000A,
0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x004B, 0x000D, 0x000A,
0x33E7, 0x33E8, 0x33E9, 0x33EA, 0x000D, 0x000A
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 180;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ISO_2022,locale=cn,version=1", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 10);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
else{
log_verbose(" Got: \\u%04X\n",(int)*test) ;
}
uSource++;
test++;
}
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x0e,0x24,0x053};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-CN-EXT]");
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void
TestISO_2022_CN() {
/* test input */
static const uint16_t in[]={
/* jitterbug 951 */
0xFF2D, 0xFF49, 0xFF58, 0xFF45, 0xFF44, 0x0020, 0xFF43, 0xFF48, 0xFF41, 0xFF52,
0x0020, 0xFF06, 0x0020, 0xFF11, 0xFF12, 0xFF13, 0xFF14, 0xFF15, 0xFF16, 0xFF17,
0xFF18, 0xFF19, 0xFF10, 0x0020, 0xFF4E, 0xFF55, 0xFF4D, 0xFF42, 0xFF45, 0xFF52,
0x0020, 0xFF54, 0xFF45, 0xFF53, 0xFF54, 0x0020, 0xFF4C, 0xFF49, 0xFF4E, 0xFF45,
0x0020, 0x0045, 0x004e, 0x0044,
/**/
0x4E00, 0x4E00, 0x4E01, 0x4E03, 0x60F6, 0x60F7, 0x60F8, 0x60FB, 0x000D, 0x000A,
0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x60FB, 0x60FC, 0x000D, 0x000A,
0x4E07, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x0042, 0x0043, 0x000D, 0x000A,
0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A,
0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A,
0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, 0x6332, 0x63B0, 0x643F, 0x000D, 0x000A,
0x64D8, 0x8004, 0x6BEA, 0x6BF3, 0x6BFD, 0x6BF5, 0x6BF9, 0x6C05, 0x000D, 0x000A,
0x6C07, 0x6C06, 0x6C0D, 0x6C15, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A,
0x9CE2, 0x977C, 0x9785, 0x9791, 0x9792, 0x9794, 0x97AF, 0x97AB, 0x000D, 0x000A,
0x97A3, 0x97B2, 0x97B4, 0x9AB1, 0x9AB0, 0x9AB7, 0x9E58, 0x9AB6, 0x000D, 0x000A,
0x9ABA, 0x9ABC, 0x9AC1, 0x9AC0, 0x9AC5, 0x9AC2, 0x9ACB, 0x9ACC, 0x000D, 0x000A,
0x9AD1, 0x9B45, 0x9B43, 0x9B47, 0x9B49, 0x9B48, 0x9B4D, 0x9B51, 0x000D, 0x000A,
0x98E8, 0x990D, 0x992E, 0x9955, 0x9954, 0x9ADF, 0x60FE, 0x60FF, 0x000D, 0x000A,
0x60F2, 0x60F3, 0x60F4, 0x60F5, 0x000D, 0x000A, 0x60F9, 0x60FA, 0x000D, 0x000A,
0x6100, 0x6101, 0x0041, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x000D, 0x000A,
0x247D, 0x247E, 0x247F, 0x2480, 0x2481, 0x2482, 0x2483, 0x2484, 0x2485, 0x2486,
0x2487, 0x2460, 0x2461, 0xFF20, 0xFF21, 0xFF22, 0x0049, 0x004A, 0x000D, 0x000A,
};
const UChar* uSource;
const UChar* uSourceLimit;
const char* cSource;
const char* cSourceLimit;
UChar *uTargetLimit =NULL;
UChar *uTarget;
char *cTarget;
const char *cTargetLimit;
char *cBuf;
UChar *uBuf,*test;
int32_t uBufSize = 180;
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv;
int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5);
int32_t* myOff= offsets;
cnv=ucnv_open("ISO_2022,locale=cn,version=0", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode));
return;
}
uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5);
cBuf =(char*)malloc(uBufSize * sizeof(char) * 10);
uSource = (const UChar*)&in[0];
uSourceLimit=(const UChar*)&in[sizeof(in)/2];
cTarget = cBuf;
cTargetLimit = cBuf +uBufSize*5;
uTarget = uBuf;
uTargetLimit = uBuf+ uBufSize*5;
ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
cSource = cBuf;
cSourceLimit =cTarget;
test =uBuf;
myOff=offsets;
ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode);
if(U_FAILURE(errorCode)){
log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode));
return;
}
uSource = (const UChar*)&in[0];
while(uSource<uSourceLimit){
if(*test!=*uSource){
log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ;
}
else{
log_verbose(" Got: \\u%04X\n",(int)*test) ;
}
uSource++;
test++;
}
TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-CN encoding");
TestSmallTargetBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestSmallSourceBuffer(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestToAndFromUChars(&in[0],(const UChar*)&in[sizeof(in)/2],cnv);
TestJitterbug930("csISO2022CN");
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x0e,0x24,0x053};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-CN]");
}
ucnv_close(cnv);
free(uBuf);
free(cBuf);
free(offsets);
}
static void
TestEBCDIC_STATEFUL() {
/* test input */
static const uint8_t in[]={
0x61,
0x1a,
0x0f, 0x4b,
0x42,
0x40,
0x36,
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x002f,
1, 0x0092,
2, 0x002e,
1, 0xff62,
1, 0x0020,
1, 0x0096,
};
static const uint8_t in2[]={
0x0f,
0xa1,
0x01
};
/* expected test results */
static const int32_t results2[]={
/* number of bytes read, code point */
2, 0x203E,
1, 0x0001,
};
const char *source=(const char *)in, *limit=(const char *)in+sizeof(in);
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("ibm-930", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a EBCDIC_STATEFUL(ibm-930) converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, source, limit, results, "EBCDIC_STATEFUL(ibm-930)");
ucnv_reset(cnv);
/* Test the condition when source >= sourceLimit */
TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source");
ucnv_reset(cnv);
/*Test for the condition where source > sourcelimit after consuming the shift chracter */
{
static const uint8_t source1[]={0x0f};
TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_INDEX_OUTOFBOUNDS_ERROR, "a character is truncated");
}
/*Test for the condition where there is an invalid character*/
ucnv_reset(cnv);
{
static const uint8_t source2[]={0x0e, 0x7F, 0xFF};
TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [EBCDIC STATEFUL]");
}
ucnv_reset(cnv);
source=(const char*)in2;
limit=(const char*)in2+sizeof(in2);
TestNextUChar(cnv,source,limit,results2,"EBCDIC_STATEFUL(ibm-930),seq#2");
ucnv_close(cnv);
}
static void
TestGB18030() {
/* test input */
static const uint8_t in[]={
0x24,
0x7f,
0x81, 0x30, 0x81, 0x30,
0xa8, 0xbf,
0xa2, 0xe3,
0xd2, 0xbb,
0x82, 0x35, 0x8f, 0x33,
0x84, 0x31, 0xa4, 0x39,
0x90, 0x30, 0x81, 0x30,
0xe3, 0x32, 0x9a, 0x35
#if 0
/*
* Feature removed markus 2000-oct-26
* Only some codepages must match surrogate pairs into supplementary code points -
* see javadoc for ucnv_getNextUChar() and implementation notes in ucnvmbcs.c .
* GB 18030 provides direct encodings for supplementary code points, therefore
* it must not combine two single-encoded surrogates into one code point.
*/
0x83, 0x36, 0xc8, 0x30, 0x83, 0x37, 0xb0, 0x34 /* separately encoded surrogates */
#endif
};
/* expected test results */
static const int32_t results[]={
/* number of bytes read, code point */
1, 0x24,
1, 0x7f,
4, 0x80,
2, 0x1f9,
2, 0x20ac,
2, 0x4e00,
4, 0x9fa6,
4, 0xffff,
4, 0x10000,
4, 0x10ffff
#if 0
/* Feature removed. See comment above. */
8, 0x10000
#endif
};
/* const char *source=(const char *)in,*limit=(const char *)in+sizeof(in); */
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv=ucnv_open("gb18030", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a gb18030 converter: %s\n", u_errorName(errorCode));
return;
}
TestNextUChar(cnv, (const char *)in, (const char *)in+sizeof(in), results, "gb18030");
ucnv_close(cnv);
}
static void
TestLMBCS() {
/* LMBCS-1 string */
static const uint8_t pszLMBCS[]={
0x61,
0x01, 0x29,
0x81,
0xA0,
0x0F, 0x27,
0x0F, 0x91,
0x14, 0x0a, 0x74,
0x14, 0xF6, 0x02,
0x14, 0xd8, 0x4d, 0x14, 0xdc, 0x56, /* UTF-16 surrogate pair */
0x10, 0x88, 0xA0,
};
/* Unicode UChar32 equivalents */
static const UChar32 pszUnicode32[]={
/* code point */
0x00000061,
0x00002013,
0x000000FC,
0x000000E1,
0x00000007,
0x00000091,
0x00000a74,
0x00000200,
0x00023456, /* code point for surrogate pair */
0x00005516
};
/* Unicode UChar equivalents */
static const UChar pszUnicode[]={
/* code point */
0x0061,
0x2013,
0x00FC,
0x00E1,
0x0007,
0x0091,
0x0a74,
0x0200,
0xD84D, /* low surrogate */
0xDC56, /* high surrogate */
0x5516
};
/* expected test results */
static const int offsets32[]={
/* number of bytes read, code point */
0,
1,
3,
4,
5,
7,
9,
12,
15,
21,
24
};
/* expected test results */
static const int offsets[]={
/* number of bytes read, code point */
0,
1,
3,
4,
5,
7,
9,
12,
15,
18,
21,
24
};
UConverter *cnv;
#define NAME_LMBCS_1 "LMBCS-1"
#define NAME_LMBCS_2 "LMBCS-2"
/* Some basic open/close/property tests on some LMBCS converters */
{
char expected_subchars[] = {0x3F}; /* ANSI Question Mark */
char new_subchars [] = {0x7F}; /* subst char used by SmartSuite..*/
char get_subchars [1];
const char * get_name;
UConverter *cnv1;
UConverter *cnv2;
int8_t len = sizeof(get_subchars);
UErrorCode errorCode=U_ZERO_ERROR;
/* Open */
cnv1=ucnv_open(NAME_LMBCS_1, &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode));
return;
}
cnv2=ucnv_open(NAME_LMBCS_2, &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a LMBCS-2 converter: %s\n", u_errorName(errorCode));
return;
}
/* Name */
get_name = ucnv_getName (cnv1, &errorCode);
if (strcmp(NAME_LMBCS_1,get_name)){
log_err("Unexpected converter name: %s\n", get_name);
}
get_name = ucnv_getName (cnv2, &errorCode);
if (strcmp(NAME_LMBCS_2,get_name)){
log_err("Unexpected converter name: %s\n", get_name);
}
/* substitution chars */
ucnv_getSubstChars (cnv1, get_subchars, &len, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Failure on get subst chars: %s\n", u_errorName(errorCode));
}
if (len!=1){
log_err("Unexpected length of sub chars\n");
}
if (get_subchars[0] != expected_subchars[0]){
log_err("Unexpected value of sub chars\n");
}
ucnv_setSubstChars (cnv2,new_subchars, len, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Failure on set subst chars: %s\n", u_errorName(errorCode));
}
ucnv_getSubstChars (cnv2, get_subchars, &len, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Failure on get subst chars: %s\n", u_errorName(errorCode));
}
if (len!=1){
log_err("Unexpected length of sub chars\n");
}
if (get_subchars[0] != new_subchars[0]){
log_err("Unexpected value of sub chars\n");
}
ucnv_close(cnv1);
ucnv_close(cnv2);
}
/* LMBCS to Unicode - offsets */
{
UErrorCode errorCode=U_ZERO_ERROR;
const uint8_t * pSource = pszLMBCS;
const uint8_t * sourceLimit = pszLMBCS + sizeof(pszLMBCS);
UChar Out [sizeof(pszUnicode) + 1];
UChar * pOut = Out;
UChar * OutLimit = Out + sizeof(pszUnicode)/sizeof(UChar);
int32_t off [sizeof(offsets)];
/* last 'offset' in expected results is just the final size.
(Makes other tests easier). Compensate here: */
off[(sizeof(offsets)/sizeof(offsets[0]))-1] = sizeof(pszLMBCS);
cnv=ucnv_open("lmbcs", &errorCode); /* use generic name for LMBCS-1 */
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a LMBCS converter: %s\n", u_errorName(errorCode));
return;
}
ucnv_toUnicode (cnv,
&pOut,
OutLimit,
(const char **)&pSource,
(const char *)sourceLimit,
off,
TRUE,
&errorCode);
if (memcmp(off,offsets,sizeof(offsets)))
{
log_err("LMBCS->Uni: Calculated offsets do not match expected results\n");
}
if (memcmp(Out,pszUnicode,sizeof(pszUnicode)))
{
log_err("LMBCS->Uni: Calculated codepoints do not match expected results\n");
}
ucnv_close(cnv);
}
{
/* LMBCS to Unicode - getNextUChar */
const char * sourceStart;
const char *source=(const char *)pszLMBCS;
const char *limit=(const char *)pszLMBCS+sizeof(pszLMBCS);
const UChar32 *results= pszUnicode32;
const int *off = offsets32;
UErrorCode errorCode=U_ZERO_ERROR;
UChar32 uniChar;
cnv=ucnv_open("LMBCS-1", &errorCode);
if(U_FAILURE(errorCode)) {
log_data_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode));
return;
}
else
{
while(source<limit) {
sourceStart=source;
uniChar=ucnv_getNextUChar(cnv, &source, source + (off[1] - off[0]), &errorCode);
if(U_FAILURE(errorCode)) {
log_err("LMBCS-1 ucnv_getNextUChar() failed: %s\n", u_errorName(errorCode));
break;
} else if(source-sourceStart != off[1] - off[0] || uniChar != *results) {
log_err("LMBCS-1 ucnv_getNextUChar() result %lx from %d bytes, should have been %lx from %d bytes.\n",
uniChar, (source-sourceStart), *results, *off);
break;
}
results++;
off++;
}
}
ucnv_close(cnv);
}
{ /* test locale & optimization group operations: Unicode to LMBCS */
UErrorCode errorCode=U_ZERO_ERROR;
UConverter *cnv16he = ucnv_open("LMBCS-16,locale=he", &errorCode);
UConverter *cnv16jp = ucnv_open("LMBCS-16,locale=ja_JP", &errorCode);
UConverter *cnv01us = ucnv_open("LMBCS-1,locale=us_EN", &errorCode);
UChar uniString [] = {0x0192}; /* Latin Small letter f with hook */
const UChar * pUniOut = uniString;
UChar * pUniIn = uniString;
uint8_t lmbcsString [4];
const uint8_t * pLMBCSOut = lmbcsString;
uint8_t * pLMBCSIn = lmbcsString;
/* 0192 (hook) converts to both group 3 & group 1. input locale should differentiate */
ucnv_fromUnicode (cnv16he,
(char **)&pLMBCSIn, (const char *)(pLMBCSIn + sizeof(lmbcsString)/sizeof(lmbcsString[0])),
&pUniOut, pUniOut + sizeof(uniString)/sizeof(uniString[0]),
NULL, 1, &errorCode);
if (lmbcsString[0] != 0x3 || lmbcsString[1] != 0x83)
{
log_err("LMBCS-16,locale=he gives unexpected translation\n");
}
pLMBCSIn=lmbcsString;
pUniOut = uniString;
ucnv_fromUnicode (cnv01us,
(char **)&pLMBCSIn, (const char *)(lmbcsString + sizeof(lmbcsString)/sizeof(lmbcsString[0])),
&pUniOut, pUniOut + sizeof(uniString)/sizeof(uniString[0]),
NULL, 1, &errorCode);
if (lmbcsString[0] != 0x9F)
{
log_err("LMBCS-1,locale=US gives unexpected translation\n");
}
/* single byte char from mbcs char set */
lmbcsString[0] = 0xAE; /* 1/2 width katakana letter small Yo */
pLMBCSOut = lmbcsString;
pUniIn = uniString;
ucnv_toUnicode (cnv16jp,
&pUniIn, pUniIn + 1,
(const char **)&pLMBCSOut, (const char *)(pLMBCSOut + 1),
NULL, 1, &errorCode);
if (U_FAILURE(errorCode) || pLMBCSOut != lmbcsString+1 || pUniIn != uniString+1 || uniString[0] != 0xFF6E)
{
log_err("Unexpected results from LMBCS-16 single byte char\n");
}
/* convert to group 1: should be 3 bytes */
pLMBCSIn = lmbcsString;
pUniOut = uniString;
ucnv_fromUnicode (cnv01us,
(char **)&pLMBCSIn, (const char *)(pLMBCSIn + 3),
&pUniOut, pUniOut + 1,
NULL, 1, &errorCode);
if (U_FAILURE(errorCode) || pLMBCSIn != lmbcsString+3 || pUniOut != uniString+1
|| lmbcsString[0] != 0x10 || lmbcsString[1] != 0x10 || lmbcsString[2] != 0xAE)
{
log_err("Unexpected results to LMBCS-1 single byte mbcs char\n");
}
pLMBCSOut = lmbcsString;
pUniIn = uniString;
ucnv_toUnicode (cnv01us,
&pUniIn, pUniIn + 1,
(const char **)&pLMBCSOut, (const char *)(pLMBCSOut + 3),
NULL, 1, &errorCode);
if (U_FAILURE(errorCode) || pLMBCSOut != lmbcsString+3 || pUniIn != uniString+1 || uniString[0] != 0xFF6E)
{
log_err("Unexpected results from LMBCS-1 single byte mbcs char\n");
}
pLMBCSIn = lmbcsString;
pUniOut = uniString;
ucnv_fromUnicode (cnv16jp,
(char **)&pLMBCSIn, (const char *)(pLMBCSIn + 1),
&pUniOut, pUniOut + 1,
NULL, 1, &errorCode);
if (U_FAILURE(errorCode) || pLMBCSIn != lmbcsString+1 || pUniOut != uniString+1 || lmbcsString[0] != 0xAE)
{
log_err("Unexpected results to LMBCS-16 single byte mbcs char\n");
}
ucnv_close(cnv16he);
ucnv_close(cnv16jp);
ucnv_close(cnv01us);
}
{
/* Small source buffer testing, LMBCS -> Unicode */
UErrorCode errorCode=U_ZERO_ERROR;
const uint8_t * pSource = pszLMBCS;
const uint8_t * sourceLimit = pszLMBCS + sizeof(pszLMBCS);
int codepointCount = 0;
UChar Out [sizeof(pszUnicode) + 1];
UChar * pOut = Out;
UChar * OutLimit = Out + sizeof(pszUnicode)/sizeof(UChar);
cnv = ucnv_open(NAME_LMBCS_1, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode));
return;
}
while ((pSource < sourceLimit) && U_SUCCESS (errorCode))
{
ucnv_toUnicode (cnv,
&pOut,
OutLimit,
(const char **)&pSource,
(const char *)(pSource+1), /* claim that this is a 1- byte buffer */
NULL,
FALSE, /* FALSE means there might be more chars in the next buffer */
&errorCode);
if (U_SUCCESS (errorCode))
{
if ((pSource - (const uint8_t *)pszLMBCS) == offsets [codepointCount+1])
{
/* we are on to the next code point: check value */
if (Out[0] != pszUnicode[codepointCount]){
log_err("LMBCS->Uni result %lx should have been %lx \n",
Out[0], pszUnicode[codepointCount]);
}
pOut = Out; /* reset for accumulating next code point */
codepointCount++;
}
}
else
{
log_err("Unexpected Error on toUnicode: %s\n", u_errorName(errorCode));
}
}
{
/* limits & surrogate error testing */
uint8_t LIn [sizeof(pszLMBCS)];
const uint8_t * pLIn = LIn;
char LOut [sizeof(pszLMBCS)];
char * pLOut = LOut;
UChar UOut [sizeof(pszUnicode)];
UChar * pUOut = UOut;
UChar UIn [sizeof(pszUnicode)];
const UChar * pUIn = UIn;
int32_t off [sizeof(offsets)];
UChar32 uniChar;
errorCode=U_ZERO_ERROR;
/* negative source request should always return U_ILLEGAL_ARGUMENT_ERROR */
ucnv_fromUnicode(cnv, &pLOut,pLOut+1,&pUIn,pUIn-1,off,FALSE, &errorCode);
if (errorCode != U_ILLEGAL_ARGUMENT_ERROR)
{
log_err("Unexpected Error on negative source request to ucnv_fromUnicode: %s\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
ucnv_toUnicode(cnv, &pUOut,pUOut+1,(const char **)&pLIn,(const char *)(pLIn-1),off,FALSE, &errorCode);
if (errorCode != U_ILLEGAL_ARGUMENT_ERROR)
{
log_err("Unexpected Error on negative source request to ucnv_toUnicode: %s\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
uniChar = ucnv_getNextUChar(cnv, (const char **)&pLIn, (const char *)(pLIn-1), &errorCode);
if (errorCode != U_ILLEGAL_ARGUMENT_ERROR)
{
log_err("Unexpected Error on negative source request to ucnv_getNextUChar: %s\n", u_errorName(errorCode));
}
errorCode=U_ZERO_ERROR;
/* 0 byte source request - no error, no pointer movement */
ucnv_toUnicode(cnv, &pUOut,pUOut+1,(const char **)&pLIn,(const char *)pLIn,off,FALSE, &errorCode);
ucnv_fromUnicode(cnv, &pLOut,pLOut+1,&pUIn,pUIn,off,FALSE, &errorCode);
if(U_FAILURE(errorCode)) {
log_err("0 byte source request: unexpected error: %s\n", u_errorName(errorCode));
}
if ((pUOut != UOut) || (pUIn != UIn) || (pLOut != LOut) || (pLIn != LIn))
{
log_err("Unexpected pointer move in 0 byte source request \n");
}
/*0 byte source request - GetNextUChar : error & value == fffe or ffff */
uniChar = ucnv_getNextUChar(cnv, (const char **)&pLIn, (const char *)pLIn, &errorCode);
if (errorCode != U_INDEX_OUTOFBOUNDS_ERROR)
{
log_err("Unexpected Error on 0-byte source request to ucnv_getnextUChar: %s\n", u_errorName(errorCode));
}
if (((uint32_t)uniChar - 0xfffe) > 1) /* not 0xfffe<=uniChar<=0xffff */
{
log_err("Unexpected value on 0-byte source request to ucnv_getnextUChar \n");
}
errorCode = U_ZERO_ERROR;
/* running out of target room : U_BUFFER_OVERFLOW_ERROR */
pUIn = pszUnicode;
ucnv_fromUnicode(cnv, &pLOut,pLOut+offsets[4],&pUIn,pUIn+sizeof(pszUnicode)/sizeof(UChar),off,FALSE, &errorCode);
if (errorCode != U_BUFFER_OVERFLOW_ERROR || pLOut != LOut + offsets[4] || pUIn != pszUnicode+4 )
{
log_err("Unexpected results on out of target room to ucnv_fromUnicode\n");
}
errorCode = U_ZERO_ERROR;
pLIn = pszLMBCS;
ucnv_toUnicode(cnv, &pUOut,pUOut+4,(const char **)&pLIn,(const char *)(pLIn+sizeof(pszLMBCS)),off,FALSE, &errorCode);
if (errorCode != U_BUFFER_OVERFLOW_ERROR || pUOut != UOut + 4 || pLIn != (const uint8_t *)pszLMBCS+offsets[4])
{
log_err("Unexpected results on out of target room to ucnv_toUnicode\n");
}
/* unpaired or chopped LMBCS surrogates */
/* OK high surrogate, Low surrogate is chopped */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
LIn [3] = 0x14;
LIn [4] = 0xDC;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode);
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 5)
{
log_err("Unexpected results on chopped low surrogate\n");
}
/* chopped at surrogate boundary */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+3),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || U_FAILURE(errorCode) || pUOut != UOut + 1 || pLIn != LIn + 3)
{
log_err("Unexpected results on chopped at surrogate boundary \n");
}
/* unpaired surrogate plus valid Unichar */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
LIn [3] = 0x14;
LIn [4] = 0xC9;
LIn [5] = 0xD0;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+6),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || UOut[1] != 0xC9D0 || U_FAILURE(errorCode) || pUOut != UOut + 2 || pLIn != LIn + 6)
{
log_err("Unexpected results after unpaired surrogate plus valid Unichar \n");
}
/* unpaired surrogate plus chopped Unichar */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
LIn [3] = 0x14;
LIn [4] = 0xC9;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 5)
{
log_err("Unexpected results after unpaired surrogate plus chopped Unichar \n");
}
/* unpaired surrogate plus valid non-Unichar */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
LIn [3] = 0x0F;
LIn [4] = 0x3B;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || UOut[1] != 0x1B || U_FAILURE(errorCode) || pUOut != UOut + 2 || pLIn != LIn + 5)
{
log_err("Unexpected results after unpaired surrogate plus valid non-Unichar\n");
}
/* unpaired surrogate plus chopped non-Unichar */
LIn [0] = 0x14;
LIn [1] = 0xD8;
LIn [2] = 0x01;
LIn [3] = 0x0F;
pLIn = LIn;
errorCode = U_ZERO_ERROR;
pUOut = UOut;
ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+4),off,TRUE, &errorCode);
if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 4)
{
log_err("Unexpected results after unpaired surrogate plus chopped non-Unichar\n");
}
}
}
ucnv_close(cnv); /* final cleanup */
}
static void TestJitterbug255()
{
const uint8_t testBytes[] = { 0x95, 0xcf, 0x8a, 0xb7, 0x0d, 0x0a, 0x00 };
const uint8_t *testBuffer = testBytes;
const uint8_t *testEnd = testBytes + sizeof(testBytes);
UErrorCode status = U_ZERO_ERROR;
UChar32 result;
UConverter *cnv = 0;
cnv = ucnv_open("shift-jis", &status);
if (U_FAILURE(status) || cnv == 0) {
log_data_err("Failed to open the converter for SJIS.\n");
return;
}
while (testBuffer != testEnd)
{
result = ucnv_getNextUChar (cnv, (const char **)&testBuffer, (const char *)testEnd , &status);
if (U_FAILURE(status))
{
log_err("Failed to convert the next UChar for SJIS.\n");
break;
}
}
ucnv_close(cnv);
}
static void TestEBCDICUS4XML()
{
UChar unicodes_x[] = {0x0000, 0x0000, 0x0000, 0x0000};
static const UChar toUnicodeMaps_x[] = {0x000A, 0x000A, 0x000D, 0x0000};
static const char fromUnicodeMaps_x[] = {0x25, 0x25, 0x0D, 0x00};
static const char newLines_x[] = {0x25, 0x15, 0x0D, 0x00};
char target_x[] = {0x00, 0x00, 0x00, 0x00};
UChar *unicodes = unicodes_x;
const UChar *toUnicodeMaps = toUnicodeMaps_x;
char *target = target_x;
const char* fromUnicodeMaps = fromUnicodeMaps_x, *newLines = newLines_x;
UErrorCode status = U_ZERO_ERROR;
UConverter *cnv = 0;
cnv = ucnv_open("ebcdic-xml-us", &status);
if (U_FAILURE(status) || cnv == 0) {
log_data_err("Failed to open the converter for EBCDIC-XML-US.\n");
return;
}
ucnv_toUnicode(cnv, &unicodes, unicodes+3, (const char**)&newLines, newLines+3, NULL, TRUE, &status);
if (U_FAILURE(status) || memcmp(unicodes_x, toUnicodeMaps, sizeof(UChar)*3) != 0) {
log_err("To Unicode conversion failed in EBCDICUS4XML test. %s\n",
u_errorName(status));
printUSeqErr(unicodes_x, 3);
printUSeqErr(toUnicodeMaps, 3);
}
status = U_ZERO_ERROR;
ucnv_fromUnicode(cnv, &target, target+3, (const UChar**)&toUnicodeMaps, toUnicodeMaps+3, NULL, TRUE, &status);
if (U_FAILURE(status) || memcmp(target_x, fromUnicodeMaps, sizeof(char)*3) != 0) {
log_err("From Unicode conversion failed in EBCDICUS4XML test. %s\n",
u_errorName(status));
printSeqErr((const unsigned char*)target_x, 3);
printSeqErr((const unsigned char*)fromUnicodeMaps, 3);
}
ucnv_close(cnv);
}
#if !UCONFIG_NO_COLLATION
static void TestJitterbug981(){
const UChar* rules;
int32_t rules_length, target_cap, bytes_needed;
UErrorCode status = U_ZERO_ERROR;
UConverter *utf8cnv;
UCollator* myCollator;
char buff[50000];
int numNeeded=0;
utf8cnv = ucnv_open ("utf8", &status);
if(U_FAILURE(status)){
log_err("Could not open UTF-8 converter. Error: %s", u_errorName(status));
return;
}
myCollator = ucol_open("zh", &status);
if(U_FAILURE(status)){
log_err("Could not open collator for zh locale. Error: %s", u_errorName(status));
return;
}
rules = ucol_getRules(myCollator, &rules_length);
target_cap = 0;
do {
ucnv_reset(utf8cnv);
status = U_ZERO_ERROR;
bytes_needed = ucnv_fromUChars(utf8cnv, buff, target_cap,
rules, rules_length, &status);
target_cap = (bytes_needed > target_cap) ? bytes_needed : target_cap +1;
if(numNeeded!=0 && numNeeded!= bytes_needed){
log_err("ucnv_fromUChars returns different values for required capacity in pre-flight and conversion modes");
}
numNeeded = bytes_needed;
} while (status == U_BUFFER_OVERFLOW_ERROR);
ucol_close(myCollator);
ucnv_close(utf8cnv);
}
#endif
static void TestJitterbug1293(){
UChar src[] = {0x30DE, 0x30A4, 0x5E83, 0x544A, 0x30BF, 0x30A4, 0x30D7,0x000};
char target[256];
UErrorCode status = U_ZERO_ERROR;
UConverter* conv=NULL;
int32_t target_cap, bytes_needed, numNeeded = 0;
conv = ucnv_open("shift-jis",&status);
if(U_FAILURE(status)){
log_data_err("Could not open Shift-Jis converter. Error: %s", u_errorName(status));
return;
}
do{
target_cap =0;
bytes_needed = ucnv_fromUChars(conv,target,256,src,u_strlen(src),&status);
target_cap = (bytes_needed > target_cap) ? bytes_needed : target_cap +1;
if(numNeeded!=0 && numNeeded!= bytes_needed){
log_err("ucnv_fromUChars returns different values for required capacity in pre-flight and conversion modes");
}
numNeeded = bytes_needed;
} while (status == U_BUFFER_OVERFLOW_ERROR);
if(U_FAILURE(status)){
log_err("An error occured in ucnv_fromUChars. Error: %s", u_errorName(status));
return;
}
ucnv_close(conv);
}
#endif