8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-26 08:03:03 +01:00
firebird-mirror/src/common/sha.cpp
2014-12-16 05:02:48 +00:00

398 lines
11 KiB
C++

// NIST Secure Hash Algorithm
// heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
// from Peter C. Gutmann's implementation as found in
// Applied Cryptography by Bruce Schneier
// This code is in the public domain
// Adapted and added to firebird svn tree - A.Peshkov, 2004
#ifndef SHA_H
#define SHA_H
#include <stdlib.h>
#include <stdio.h>
#include "../common/sha.h"
#include "../common/classes/array.h"
#include "../common/os/guid.h"
#include "../common/utils_proto.h"
using namespace Firebird;
namespace
{
#define SHA_BLOCKSIZE Sha1::BLOCK_SIZE
#define SHA_DIGESTSIZE Sha1::HASH_SIZE
typedef Sha1::ShaInfo SHA_INFO;
void sha_init(SHA_INFO *);
void sha_update(SHA_INFO *, const BYTE *, size_t);
void sha_final(unsigned char [SHA_DIGESTSIZE], SHA_INFO *);
#define SHA_VERSION 1
#include "firebird.h"
#ifdef WORDS_BIGENDIAN
# if SIZEOF_LONG == 4
# define SHA_BYTE_ORDER 4321
# elif SIZEOF_LONG == 8
# define SHA_BYTE_ORDER 87654321
# endif
#else
# if SIZEOF_LONG == 4
# define SHA_BYTE_ORDER 1234
# elif SIZEOF_LONG == 8
# define SHA_BYTE_ORDER 12345678
# endif
#endif
#endif // SHA_H
/* (PD) 2001 The Bitzi Corporation
* Please see file COPYING or http://web.archive.org/web/20120315075909/http://bitzi.com/publicdomain
* for more info.
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* Further modifications to include the "UNRAVEL" stuff, below
*
* This code is in the public domain
*
*/
// UNRAVEL should be fastest & biggest
// UNROLL_LOOPS should be just as big, but slightly slower
// both undefined should be smallest and slowest
#define UNRAVEL
// #define UNROLL_LOOPS
// SHA f()-functions
#define f1(x, y, z) ((x & y) | (~x & z))
#define f2(x, y, z) (x ^ y ^ z)
#define f3(x, y, z) ((x & y) | (x & z) | (y & z))
#define f4(x, y, z) (x ^ y ^ z)
// SHA constants
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
// truncate to 32 bits -- should be a null op on 32-bit machines
#define T32(x) ((x) & 0xffffffffL)
// 32-bit rotate
#define R32(x, n) T32(((x << n) | (x >> (32 - n))))
// the generic case, for when the overall rotation is not unraveled
#define FG(n) \
T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B, 30); B = A; A = T
// specific cases, for when the overall rotation is unraveled
#define FA(n) \
T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); B = R32(B, 30)
#define FB(n) \
E = T32(R32(T, 5) + f##n(A, B, C) + D + *WP++ + CONST##n); A = R32(A, 30)
#define FC(n) \
D = T32(R32(E, 5) + f##n(T, A, B) + C + *WP++ + CONST##n); T = R32(T, 30)
#define FD(n) \
C = T32(R32(D, 5) + f##n(E, T, A) + B + *WP++ + CONST##n); E = R32(E, 30)
#define FE(n) \
B = T32(R32(C, 5) + f##n(D, E, T) + A + *WP++ + CONST##n); D = R32(D, 30)
#define FT(n) \
A = T32(R32(B, 5) + f##n(C, D, E) + T + *WP++ + CONST##n); C = R32(C, 30)
// do SHA transformation
static void sha_transform(SHA_INFO *sha_info)
{
int i;
Sha1::LONG W[80];
const BYTE* dp = sha_info->data;
/*
the following makes sure that at least one code block below is
traversed or an error is reported, without the necessity for nested
preprocessor if/else/endif blocks, which are a great pain in the
nether regions of the anatomy...
*/
#undef SWAP_DONE
#if (SHA_BYTE_ORDER == 1234)
#define SWAP_DONE
for (i = 0; i < 16; ++i)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 4;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif // SHA_BYTE_ORDER == 1234
#if (SHA_BYTE_ORDER == 4321)
#define SWAP_DONE
for (i = 0; i < 16; ++i)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 4;
W[i] = T32(T);
}
#endif // SHA_BYTE_ORDER == 4321
#if (SHA_BYTE_ORDER == 12345678)
#define SWAP_DONE
for (i = 0; i < 16; i += 2)
{
Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif // SHA_BYTE_ORDER == 12345678
#if (SHA_BYTE_ORDER == 87654321)
#define SWAP_DONE
for (i = 0; i < 16; i += 2)
{
const Sha1::LONG T = *((Sha1::LONG *) dp);
dp += 8;
W[i] = T32(T >> 32);
W[i + 1] = T32(T);
}
#endif // SHA_BYTE_ORDER == 87654321
#ifndef SWAP_DONE
#error Unknown byte order -- you need to add code here
#endif // SWAP_DONE
for (i = 16; i < 80; ++i)
{
W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16];
#if (SHA_VERSION == 1)
W[i] = R32(W[i], 1);
#endif // SHA_VERSION
}
Sha1::LONG A = sha_info->digest[0];
Sha1::LONG B = sha_info->digest[1];
Sha1::LONG C = sha_info->digest[2];
Sha1::LONG D = sha_info->digest[3];
Sha1::LONG E = sha_info->digest[4];
const Sha1::LONG* WP = W;
Sha1::LONG T;
#ifdef UNRAVEL
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
sha_info->digest[0] = T32(sha_info->digest[0] + E);
sha_info->digest[1] = T32(sha_info->digest[1] + T);
sha_info->digest[2] = T32(sha_info->digest[2] + A);
sha_info->digest[3] = T32(sha_info->digest[3] + B);
sha_info->digest[4] = T32(sha_info->digest[4] + C);
#else // !UNRAVEL
#ifdef UNROLL_LOOPS
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else // !UNROLL_LOOPS
for (i = 0; i < 20; ++i) { FG(1); }
for (i = 20; i < 40; ++i) { FG(2); }
for (i = 40; i < 60; ++i) { FG(3); }
for (i = 60; i < 80; ++i) { FG(4); }
#endif // !UNROLL_LOOPS
sha_info->digest[0] = T32(sha_info->digest[0] + A);
sha_info->digest[1] = T32(sha_info->digest[1] + B);
sha_info->digest[2] = T32(sha_info->digest[2] + C);
sha_info->digest[3] = T32(sha_info->digest[3] + D);
sha_info->digest[4] = T32(sha_info->digest[4] + E);
#endif // !UNRAVEL
}
// initialize the SHA digest
void sha_init(SHA_INFO *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
// update the SHA digest
void sha_update(SHA_INFO *sha_info, const BYTE *buffer, size_t count)
{
const Sha1::LONG clo = T32(sha_info->count_lo + ((Sha1::LONG) count << 3));
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (Sha1::LONG) count >> 29;
if (sha_info->local)
{
size_t i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(sha_info->data + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE)
{
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
// finish computing the SHA digest
void sha_final(unsigned char digest[SHA_DIGESTSIZE], SHA_INFO *sha_info)
{
const Sha1::LONG lo_bit_count = sha_info->count_lo;
const Sha1::LONG hi_bit_count = sha_info->count_hi;
unsigned int count = (int) ((lo_bit_count >> 3) & 0x3f);
sha_info->data[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8)
{
memset(sha_info->data + count, 0, SHA_BLOCKSIZE - count);
sha_transform(sha_info);
memset(sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(sha_info->data + count, 0, SHA_BLOCKSIZE - 8 - count);
}
sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff);
sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff);
sha_info->data[58] = (unsigned char) ((hi_bit_count >> 8) & 0xff);
sha_info->data[59] = (unsigned char) ((hi_bit_count >> 0) & 0xff);
sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff);
sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff);
sha_info->data[62] = (unsigned char) ((lo_bit_count >> 8) & 0xff);
sha_info->data[63] = (unsigned char) ((lo_bit_count >> 0) & 0xff);
sha_transform(sha_info);
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
}
} // anonymous namespace
namespace Firebird {
void Sha1::hashBased64(string& hash, const string& data)
{
SHA_INFO si;
sha_init(&si);
sha_update(&si, reinterpret_cast<const unsigned char*>(data.c_str()), data.length());
UCharBuffer b;
sha_final(b.getBuffer(SHA_DIGESTSIZE), &si);
fb_utils::base64(hash, b);
}
Sha1::Sha1()
: active(false)
{
reset();
}
void Sha1::process(size_t length, const void* bytes)
{
sha_update(&handle, static_cast<const unsigned char*>(bytes), length);
}
void Sha1::getHash(UCharBuffer& hash)
{
fb_assert(active);
sha_final(hash.getBuffer(HASH_SIZE), &handle);
}
void Sha1::reset()
{
clear();
sha_init(&handle);
active = true;
}
Sha1::~Sha1()
{
clear();
}
void Sha1::clear()
{
if (active)
{
unsigned char tmp[HASH_SIZE];
sha_final(tmp, &handle);
active = false;
}
}
} // namespace Firebird