mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-22 22:43:03 +01:00
714 lines
20 KiB
C++
714 lines
20 KiB
C++
// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Tested by search_test.cc.
|
|
//
|
|
// Prog::SearchNFA, an NFA search.
|
|
// This is an actual NFA like the theorists talk about,
|
|
// not the pseudo-NFA found in backtracking regexp implementations.
|
|
//
|
|
// IMPLEMENTATION
|
|
//
|
|
// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
|
|
// which is a variant of the one described in Thompson's 1968 CACM paper.
|
|
// See http://swtch.com/~rsc/regexp/ for various history. The main feature
|
|
// over the DFA implementation is that it tracks submatch boundaries.
|
|
//
|
|
// When the choice of submatch boundaries is ambiguous, this particular
|
|
// implementation makes the same choices that traditional backtracking
|
|
// implementations (in particular, Perl and PCRE) do.
|
|
// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
|
|
// time in the length of the input.
|
|
//
|
|
// Like Thompson's original machine and like the DFA implementation, this
|
|
// implementation notices a match only once it is one byte past it.
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <deque>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "util/logging.h"
|
|
#include "util/strutil.h"
|
|
#include "re2/pod_array.h"
|
|
#include "re2/prog.h"
|
|
#include "re2/regexp.h"
|
|
#include "re2/sparse_array.h"
|
|
#include "re2/sparse_set.h"
|
|
|
|
namespace re2 {
|
|
|
|
static const bool ExtraDebug = false;
|
|
|
|
class NFA {
|
|
public:
|
|
NFA(Prog* prog);
|
|
~NFA();
|
|
|
|
// Searches for a matching string.
|
|
// * If anchored is true, only considers matches starting at offset.
|
|
// Otherwise finds lefmost match at or after offset.
|
|
// * If longest is true, returns the longest match starting
|
|
// at the chosen start point. Otherwise returns the so-called
|
|
// left-biased match, the one traditional backtracking engines
|
|
// (like Perl and PCRE) find.
|
|
// Records submatch boundaries in submatch[1..nsubmatch-1].
|
|
// Submatch[0] is the entire match. When there is a choice in
|
|
// which text matches each subexpression, the submatch boundaries
|
|
// are chosen to match what a backtracking implementation would choose.
|
|
bool Search(const StringPiece& text, const StringPiece& context,
|
|
bool anchored, bool longest,
|
|
StringPiece* submatch, int nsubmatch);
|
|
|
|
private:
|
|
struct Thread {
|
|
union {
|
|
int ref;
|
|
Thread* next; // when on free list
|
|
};
|
|
const char** capture;
|
|
};
|
|
|
|
// State for explicit stack in AddToThreadq.
|
|
struct AddState {
|
|
int id; // Inst to process
|
|
Thread* t; // if not null, set t0 = t before processing id
|
|
};
|
|
|
|
// Threadq is a list of threads. The list is sorted by the order
|
|
// in which Perl would explore that particular state -- the earlier
|
|
// choices appear earlier in the list.
|
|
typedef SparseArray<Thread*> Threadq;
|
|
|
|
inline Thread* AllocThread();
|
|
inline Thread* Incref(Thread* t);
|
|
inline void Decref(Thread* t);
|
|
|
|
// Follows all empty arrows from id0 and enqueues all the states reached.
|
|
// Enqueues only the ByteRange instructions that match byte c.
|
|
// context is used (with p) for evaluating empty-width specials.
|
|
// p is the current input position, and t0 is the current thread.
|
|
void AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
|
|
const char* p, Thread* t0);
|
|
|
|
// Run runq on byte c, appending new states to nextq.
|
|
// Updates matched_ and match_ as new, better matches are found.
|
|
// context is used (with p) for evaluating empty-width specials.
|
|
// p is the position of byte c in the input string for AddToThreadq;
|
|
// p-1 will be used when processing Match instructions.
|
|
// Frees all the threads on runq.
|
|
// If there is a shortcut to the end, returns that shortcut.
|
|
int Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
|
|
const char* p);
|
|
|
|
// Returns text version of capture information, for debugging.
|
|
std::string FormatCapture(const char** capture);
|
|
|
|
void CopyCapture(const char** dst, const char** src) {
|
|
memmove(dst, src, ncapture_*sizeof src[0]);
|
|
}
|
|
|
|
Prog* prog_; // underlying program
|
|
int start_; // start instruction in program
|
|
int ncapture_; // number of submatches to track
|
|
bool longest_; // whether searching for longest match
|
|
bool endmatch_; // whether match must end at text.end()
|
|
const char* btext_; // beginning of text (for FormatSubmatch)
|
|
const char* etext_; // end of text (for endmatch_)
|
|
Threadq q0_, q1_; // pre-allocated for Search.
|
|
PODArray<AddState> stack_; // pre-allocated for AddToThreadq
|
|
std::deque<Thread> arena_; // thread arena
|
|
Thread* freelist_; // thread freelist
|
|
const char** match_; // best match so far
|
|
bool matched_; // any match so far?
|
|
|
|
NFA(const NFA&) = delete;
|
|
NFA& operator=(const NFA&) = delete;
|
|
};
|
|
|
|
NFA::NFA(Prog* prog) {
|
|
prog_ = prog;
|
|
start_ = prog_->start();
|
|
ncapture_ = 0;
|
|
longest_ = false;
|
|
endmatch_ = false;
|
|
btext_ = NULL;
|
|
etext_ = NULL;
|
|
q0_.resize(prog_->size());
|
|
q1_.resize(prog_->size());
|
|
// See NFA::AddToThreadq() for why this is so.
|
|
int nstack = 2*prog_->inst_count(kInstCapture) +
|
|
prog_->inst_count(kInstEmptyWidth) +
|
|
prog_->inst_count(kInstNop) + 1; // + 1 for start inst
|
|
stack_ = PODArray<AddState>(nstack);
|
|
freelist_ = NULL;
|
|
match_ = NULL;
|
|
matched_ = false;
|
|
}
|
|
|
|
NFA::~NFA() {
|
|
delete[] match_;
|
|
for (const Thread& t : arena_)
|
|
delete[] t.capture;
|
|
}
|
|
|
|
NFA::Thread* NFA::AllocThread() {
|
|
Thread* t = freelist_;
|
|
if (t != NULL) {
|
|
freelist_ = t->next;
|
|
t->ref = 1;
|
|
// We don't need to touch t->capture because
|
|
// the caller will immediately overwrite it.
|
|
return t;
|
|
}
|
|
arena_.emplace_back();
|
|
t = &arena_.back();
|
|
t->ref = 1;
|
|
t->capture = new const char*[ncapture_];
|
|
return t;
|
|
}
|
|
|
|
NFA::Thread* NFA::Incref(Thread* t) {
|
|
DCHECK(t != NULL);
|
|
t->ref++;
|
|
return t;
|
|
}
|
|
|
|
void NFA::Decref(Thread* t) {
|
|
DCHECK(t != NULL);
|
|
t->ref--;
|
|
if (t->ref > 0)
|
|
return;
|
|
DCHECK_EQ(t->ref, 0);
|
|
t->next = freelist_;
|
|
freelist_ = t;
|
|
}
|
|
|
|
// Follows all empty arrows from id0 and enqueues all the states reached.
|
|
// Enqueues only the ByteRange instructions that match byte c.
|
|
// context is used (with p) for evaluating empty-width specials.
|
|
// p is the current input position, and t0 is the current thread.
|
|
void NFA::AddToThreadq(Threadq* q, int id0, int c, const StringPiece& context,
|
|
const char* p, Thread* t0) {
|
|
if (id0 == 0)
|
|
return;
|
|
|
|
// Use stack_ to hold our stack of instructions yet to process.
|
|
// It was preallocated as follows:
|
|
// two entries per Capture;
|
|
// one entry per EmptyWidth; and
|
|
// one entry per Nop.
|
|
// This reflects the maximum number of stack pushes that each can
|
|
// perform. (Each instruction can be processed at most once.)
|
|
AddState* stk = stack_.data();
|
|
int nstk = 0;
|
|
|
|
stk[nstk++] = {id0, NULL};
|
|
while (nstk > 0) {
|
|
DCHECK_LE(nstk, stack_.size());
|
|
AddState a = stk[--nstk];
|
|
|
|
Loop:
|
|
if (a.t != NULL) {
|
|
// t0 was a thread that we allocated and copied in order to
|
|
// record the capture, so we must now decref it.
|
|
Decref(t0);
|
|
t0 = a.t;
|
|
}
|
|
|
|
int id = a.id;
|
|
if (id == 0)
|
|
continue;
|
|
if (q->has_index(id)) {
|
|
if (ExtraDebug)
|
|
fprintf(stderr, " [%d%s]\n", id, FormatCapture(t0->capture).c_str());
|
|
continue;
|
|
}
|
|
|
|
// Create entry in q no matter what. We might fill it in below,
|
|
// or we might not. Even if not, it is necessary to have it,
|
|
// so that we don't revisit id0 during the recursion.
|
|
q->set_new(id, NULL);
|
|
Thread** tp = &q->get_existing(id);
|
|
int j;
|
|
Thread* t;
|
|
Prog::Inst* ip = prog_->inst(id);
|
|
switch (ip->opcode()) {
|
|
default:
|
|
LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
|
|
break;
|
|
|
|
case kInstFail:
|
|
break;
|
|
|
|
case kInstAltMatch:
|
|
// Save state; will pick up at next byte.
|
|
t = Incref(t0);
|
|
*tp = t;
|
|
|
|
DCHECK(!ip->last());
|
|
a = {id+1, NULL};
|
|
goto Loop;
|
|
|
|
case kInstNop:
|
|
if (!ip->last())
|
|
stk[nstk++] = {id+1, NULL};
|
|
|
|
// Continue on.
|
|
a = {ip->out(), NULL};
|
|
goto Loop;
|
|
|
|
case kInstCapture:
|
|
if (!ip->last())
|
|
stk[nstk++] = {id+1, NULL};
|
|
|
|
if ((j=ip->cap()) < ncapture_) {
|
|
// Push a dummy whose only job is to restore t0
|
|
// once we finish exploring this possibility.
|
|
stk[nstk++] = {0, t0};
|
|
|
|
// Record capture.
|
|
t = AllocThread();
|
|
CopyCapture(t->capture, t0->capture);
|
|
t->capture[j] = p;
|
|
t0 = t;
|
|
}
|
|
a = {ip->out(), NULL};
|
|
goto Loop;
|
|
|
|
case kInstByteRange:
|
|
if (!ip->Matches(c))
|
|
goto Next;
|
|
|
|
// Save state; will pick up at next byte.
|
|
t = Incref(t0);
|
|
*tp = t;
|
|
if (ExtraDebug)
|
|
fprintf(stderr, " + %d%s\n", id, FormatCapture(t0->capture).c_str());
|
|
|
|
if (ip->hint() == 0)
|
|
break;
|
|
a = {id+ip->hint(), NULL};
|
|
goto Loop;
|
|
|
|
case kInstMatch:
|
|
// Save state; will pick up at next byte.
|
|
t = Incref(t0);
|
|
*tp = t;
|
|
if (ExtraDebug)
|
|
fprintf(stderr, " ! %d%s\n", id, FormatCapture(t0->capture).c_str());
|
|
|
|
Next:
|
|
if (ip->last())
|
|
break;
|
|
a = {id+1, NULL};
|
|
goto Loop;
|
|
|
|
case kInstEmptyWidth:
|
|
if (!ip->last())
|
|
stk[nstk++] = {id+1, NULL};
|
|
|
|
// Continue on if we have all the right flag bits.
|
|
if (ip->empty() & ~Prog::EmptyFlags(context, p))
|
|
break;
|
|
a = {ip->out(), NULL};
|
|
goto Loop;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Run runq on byte c, appending new states to nextq.
|
|
// Updates matched_ and match_ as new, better matches are found.
|
|
// context is used (with p) for evaluating empty-width specials.
|
|
// p is the position of byte c in the input string for AddToThreadq;
|
|
// p-1 will be used when processing Match instructions.
|
|
// Frees all the threads on runq.
|
|
// If there is a shortcut to the end, returns that shortcut.
|
|
int NFA::Step(Threadq* runq, Threadq* nextq, int c, const StringPiece& context,
|
|
const char* p) {
|
|
nextq->clear();
|
|
|
|
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
|
Thread* t = i->value();
|
|
if (t == NULL)
|
|
continue;
|
|
|
|
if (longest_) {
|
|
// Can skip any threads started after our current best match.
|
|
if (matched_ && match_[0] < t->capture[0]) {
|
|
Decref(t);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
int id = i->index();
|
|
Prog::Inst* ip = prog_->inst(id);
|
|
|
|
switch (ip->opcode()) {
|
|
default:
|
|
// Should only see the values handled below.
|
|
LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
|
|
break;
|
|
|
|
case kInstByteRange:
|
|
AddToThreadq(nextq, ip->out(), c, context, p, t);
|
|
break;
|
|
|
|
case kInstAltMatch:
|
|
if (i != runq->begin())
|
|
break;
|
|
// The match is ours if we want it.
|
|
if (ip->greedy(prog_) || longest_) {
|
|
CopyCapture(match_, t->capture);
|
|
matched_ = true;
|
|
|
|
Decref(t);
|
|
for (++i; i != runq->end(); ++i) {
|
|
if (i->value() != NULL)
|
|
Decref(i->value());
|
|
}
|
|
runq->clear();
|
|
if (ip->greedy(prog_))
|
|
return ip->out1();
|
|
return ip->out();
|
|
}
|
|
break;
|
|
|
|
case kInstMatch: {
|
|
// Avoid invoking undefined behavior (arithmetic on a null pointer)
|
|
// by storing p instead of p-1. (What would the latter even mean?!)
|
|
// This complements the special case in NFA::Search().
|
|
if (p == NULL) {
|
|
CopyCapture(match_, t->capture);
|
|
match_[1] = p;
|
|
matched_ = true;
|
|
break;
|
|
}
|
|
|
|
if (endmatch_ && p-1 != etext_)
|
|
break;
|
|
|
|
if (longest_) {
|
|
// Leftmost-longest mode: save this match only if
|
|
// it is either farther to the left or at the same
|
|
// point but longer than an existing match.
|
|
if (!matched_ || t->capture[0] < match_[0] ||
|
|
(t->capture[0] == match_[0] && p-1 > match_[1])) {
|
|
CopyCapture(match_, t->capture);
|
|
match_[1] = p-1;
|
|
matched_ = true;
|
|
}
|
|
} else {
|
|
// Leftmost-biased mode: this match is by definition
|
|
// better than what we've already found (see next line).
|
|
CopyCapture(match_, t->capture);
|
|
match_[1] = p-1;
|
|
matched_ = true;
|
|
|
|
// Cut off the threads that can only find matches
|
|
// worse than the one we just found: don't run the
|
|
// rest of the current Threadq.
|
|
Decref(t);
|
|
for (++i; i != runq->end(); ++i) {
|
|
if (i->value() != NULL)
|
|
Decref(i->value());
|
|
}
|
|
runq->clear();
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
Decref(t);
|
|
}
|
|
runq->clear();
|
|
return 0;
|
|
}
|
|
|
|
std::string NFA::FormatCapture(const char** capture) {
|
|
std::string s;
|
|
for (int i = 0; i < ncapture_; i+=2) {
|
|
if (capture[i] == NULL)
|
|
s += "(?,?)";
|
|
else if (capture[i+1] == NULL)
|
|
s += StringPrintf("(%td,?)",
|
|
capture[i] - btext_);
|
|
else
|
|
s += StringPrintf("(%td,%td)",
|
|
capture[i] - btext_,
|
|
capture[i+1] - btext_);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
|
|
bool anchored, bool longest,
|
|
StringPiece* submatch, int nsubmatch) {
|
|
if (start_ == 0)
|
|
return false;
|
|
|
|
StringPiece context = const_context;
|
|
if (context.data() == NULL)
|
|
context = text;
|
|
|
|
// Sanity check: make sure that text lies within context.
|
|
if (text.begin() < context.begin() || text.end() > context.end()) {
|
|
LOG(DFATAL) << "context does not contain text";
|
|
return false;
|
|
}
|
|
|
|
if (prog_->anchor_start() && context.begin() != text.begin())
|
|
return false;
|
|
if (prog_->anchor_end() && context.end() != text.end())
|
|
return false;
|
|
anchored |= prog_->anchor_start();
|
|
if (prog_->anchor_end()) {
|
|
longest = true;
|
|
endmatch_ = true;
|
|
}
|
|
|
|
if (nsubmatch < 0) {
|
|
LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
|
|
return false;
|
|
}
|
|
|
|
// Save search parameters.
|
|
ncapture_ = 2*nsubmatch;
|
|
longest_ = longest;
|
|
|
|
if (nsubmatch == 0) {
|
|
// We need to maintain match[0], both to distinguish the
|
|
// longest match (if longest is true) and also to tell
|
|
// whether we've seen any matches at all.
|
|
ncapture_ = 2;
|
|
}
|
|
|
|
match_ = new const char*[ncapture_];
|
|
memset(match_, 0, ncapture_*sizeof match_[0]);
|
|
matched_ = false;
|
|
|
|
// For debugging prints.
|
|
btext_ = context.data();
|
|
// For convenience.
|
|
etext_ = text.data() + text.size();
|
|
|
|
if (ExtraDebug)
|
|
fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
|
|
std::string(text).c_str(), std::string(context).c_str(), anchored, longest);
|
|
|
|
// Set up search.
|
|
Threadq* runq = &q0_;
|
|
Threadq* nextq = &q1_;
|
|
runq->clear();
|
|
nextq->clear();
|
|
|
|
// Loop over the text, stepping the machine.
|
|
for (const char* p = text.data();; p++) {
|
|
if (ExtraDebug) {
|
|
int c = 0;
|
|
if (p == btext_)
|
|
c = '^';
|
|
else if (p > etext_)
|
|
c = '$';
|
|
else if (p < etext_)
|
|
c = p[0] & 0xFF;
|
|
|
|
fprintf(stderr, "%c:", c);
|
|
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
|
Thread* t = i->value();
|
|
if (t == NULL)
|
|
continue;
|
|
fprintf(stderr, " %d%s", i->index(), FormatCapture(t->capture).c_str());
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
// This is a no-op the first time around the loop because runq is empty.
|
|
int id = Step(runq, nextq, p < etext_ ? p[0] & 0xFF : -1, context, p);
|
|
DCHECK_EQ(runq->size(), 0);
|
|
using std::swap;
|
|
swap(nextq, runq);
|
|
nextq->clear();
|
|
if (id != 0) {
|
|
// We're done: full match ahead.
|
|
p = etext_;
|
|
for (;;) {
|
|
Prog::Inst* ip = prog_->inst(id);
|
|
switch (ip->opcode()) {
|
|
default:
|
|
LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
|
|
break;
|
|
|
|
case kInstCapture:
|
|
if (ip->cap() < ncapture_)
|
|
match_[ip->cap()] = p;
|
|
id = ip->out();
|
|
continue;
|
|
|
|
case kInstNop:
|
|
id = ip->out();
|
|
continue;
|
|
|
|
case kInstMatch:
|
|
match_[1] = p;
|
|
matched_ = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (p > etext_)
|
|
break;
|
|
|
|
// Start a new thread if there have not been any matches.
|
|
// (No point in starting a new thread if there have been
|
|
// matches, since it would be to the right of the match
|
|
// we already found.)
|
|
if (!matched_ && (!anchored || p == text.data())) {
|
|
// Try to use prefix accel (e.g. memchr) to skip ahead.
|
|
// The search must be unanchored and there must be zero
|
|
// possible matches already.
|
|
if (!anchored && runq->size() == 0 &&
|
|
p < etext_ && prog_->can_prefix_accel()) {
|
|
p = reinterpret_cast<const char*>(prog_->PrefixAccel(p, etext_ - p));
|
|
if (p == NULL)
|
|
p = etext_;
|
|
}
|
|
|
|
Thread* t = AllocThread();
|
|
CopyCapture(t->capture, match_);
|
|
t->capture[0] = p;
|
|
AddToThreadq(runq, start_, p < etext_ ? p[0] & 0xFF : -1, context, p,
|
|
t);
|
|
Decref(t);
|
|
}
|
|
|
|
// If all the threads have died, stop early.
|
|
if (runq->size() == 0) {
|
|
if (ExtraDebug)
|
|
fprintf(stderr, "dead\n");
|
|
break;
|
|
}
|
|
|
|
// Avoid invoking undefined behavior (arithmetic on a null pointer)
|
|
// by simply not continuing the loop.
|
|
// This complements the special case in NFA::Step().
|
|
if (p == NULL) {
|
|
(void) Step(runq, nextq, -1, context, p);
|
|
DCHECK_EQ(runq->size(), 0);
|
|
using std::swap;
|
|
swap(nextq, runq);
|
|
nextq->clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
|
if (i->value() != NULL)
|
|
Decref(i->value());
|
|
}
|
|
|
|
if (matched_) {
|
|
for (int i = 0; i < nsubmatch; i++)
|
|
submatch[i] =
|
|
StringPiece(match_[2 * i],
|
|
static_cast<size_t>(match_[2 * i + 1] - match_[2 * i]));
|
|
if (ExtraDebug)
|
|
fprintf(stderr, "match (%td,%td)\n",
|
|
match_[0] - btext_,
|
|
match_[1] - btext_);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch) {
|
|
if (ExtraDebug)
|
|
Dump();
|
|
|
|
NFA nfa(this);
|
|
StringPiece sp;
|
|
if (kind == kFullMatch) {
|
|
anchor = kAnchored;
|
|
if (nmatch == 0) {
|
|
match = &sp;
|
|
nmatch = 1;
|
|
}
|
|
}
|
|
if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
|
|
return false;
|
|
if (kind == kFullMatch && match[0].end() != text.end())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// For each instruction i in the program reachable from the start, compute the
|
|
// number of instructions reachable from i by following only empty transitions
|
|
// and record that count as fanout[i].
|
|
//
|
|
// fanout holds the results and is also the work queue for the outer iteration.
|
|
// reachable holds the reached nodes for the inner iteration.
|
|
void Prog::Fanout(SparseArray<int>* fanout) {
|
|
DCHECK_EQ(fanout->max_size(), size());
|
|
SparseSet reachable(size());
|
|
fanout->clear();
|
|
fanout->set_new(start(), 0);
|
|
for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) {
|
|
int* count = &i->value();
|
|
reachable.clear();
|
|
reachable.insert(i->index());
|
|
for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) {
|
|
int id = *j;
|
|
Prog::Inst* ip = inst(id);
|
|
switch (ip->opcode()) {
|
|
default:
|
|
LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()";
|
|
break;
|
|
|
|
case kInstByteRange:
|
|
if (!ip->last())
|
|
reachable.insert(id+1);
|
|
|
|
(*count)++;
|
|
if (!fanout->has_index(ip->out())) {
|
|
fanout->set_new(ip->out(), 0);
|
|
}
|
|
break;
|
|
|
|
case kInstAltMatch:
|
|
DCHECK(!ip->last());
|
|
reachable.insert(id+1);
|
|
break;
|
|
|
|
case kInstCapture:
|
|
case kInstEmptyWidth:
|
|
case kInstNop:
|
|
if (!ip->last())
|
|
reachable.insert(id+1);
|
|
|
|
reachable.insert(ip->out());
|
|
break;
|
|
|
|
case kInstMatch:
|
|
if (!ip->last())
|
|
reachable.insert(id+1);
|
|
break;
|
|
|
|
case kInstFail:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace re2
|