8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-23 05:23:03 +01:00
firebird-mirror/extern/re2/util/sparse_set.h
Adriano dos Santos Fernandes 65f003da0d Import re2 version 2019-08-01.
2019-08-11 11:10:29 -03:00

265 lines
7.0 KiB
C++

// Copyright 2006 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef UTIL_SPARSE_SET_H_
#define UTIL_SPARSE_SET_H_
// DESCRIPTION
//
// SparseSet(m) is a set of integers in [0, m).
// It requires sizeof(int)*m memory, but it provides
// fast iteration through the elements in the set and fast clearing
// of the set.
//
// Insertion and deletion are constant time operations.
//
// Allocating the set is a constant time operation
// when memory allocation is a constant time operation.
//
// Clearing the set is a constant time operation (unusual!).
//
// Iterating through the set is an O(n) operation, where n
// is the number of items in the set (not O(m)).
//
// The set iterator visits entries in the order they were first
// inserted into the set. It is safe to add items to the set while
// using an iterator: the iterator will visit indices added to the set
// during the iteration, but will not re-visit indices whose values
// change after visiting. Thus SparseSet can be a convenient
// implementation of a work queue.
//
// The SparseSet implementation is NOT thread-safe. It is up to the
// caller to make sure only one thread is accessing the set. (Typically
// these sets are temporary values and used in situations where speed is
// important.)
//
// The SparseSet interface does not present all the usual STL bells and
// whistles.
//
// Implemented with reference to Briggs & Torczon, An Efficient
// Representation for Sparse Sets, ACM Letters on Programming Languages
// and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
//
// This is a specialization of sparse array; see sparse_array.h.
// IMPLEMENTATION
//
// See sparse_array.h for implementation details.
// Doing this simplifies the logic below.
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#include <assert.h>
#include <stdint.h>
#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#endif
#include <algorithm>
#include <memory>
#include <utility>
#include "util/pod_array.h"
namespace re2 {
template<typename Value>
class SparseSetT {
public:
SparseSetT();
explicit SparseSetT(int max_size);
~SparseSetT();
typedef int* iterator;
typedef const int* const_iterator;
// Return the number of entries in the set.
int size() const {
return size_;
}
// Indicate whether the set is empty.
int empty() const {
return size_ == 0;
}
// Iterate over the set.
iterator begin() {
return dense_.data();
}
iterator end() {
return dense_.data() + size_;
}
const_iterator begin() const {
return dense_.data();
}
const_iterator end() const {
return dense_.data() + size_;
}
// Change the maximum size of the set.
// Invalidates all iterators.
void resize(int new_max_size);
// Return the maximum size of the set.
// Indices can be in the range [0, max_size).
int max_size() const {
if (dense_.data() != NULL)
return dense_.size();
else
return 0;
}
// Clear the set.
void clear() {
size_ = 0;
}
// Check whether index i is in the set.
bool contains(int i) const;
// Comparison function for sorting.
// Can sort the sparse set so that future iterations
// will visit indices in increasing order using
// std::sort(arr.begin(), arr.end(), arr.less);
static bool less(int a, int b);
public:
// Insert index i into the set.
iterator insert(int i) {
return InsertInternal(true, i);
}
// Insert index i into the set.
// Fast but unsafe: only use if contains(i) is false.
iterator insert_new(int i) {
return InsertInternal(false, i);
}
private:
iterator InsertInternal(bool allow_existing, int i) {
DebugCheckInvariants();
if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
assert(false && "illegal index");
// Semantically, end() would be better here, but we already know
// the user did something stupid, so begin() insulates them from
// dereferencing an invalid pointer.
return begin();
}
if (!allow_existing) {
assert(!contains(i));
create_index(i);
} else {
if (!contains(i))
create_index(i);
}
DebugCheckInvariants();
return dense_.data() + sparse_[i];
}
// Add the index i to the set.
// Only use if contains(i) is known to be false.
// This function is private, only intended as a helper
// for other methods.
void create_index(int i);
// In debug mode, verify that some invariant properties of the class
// are being maintained. This is called at the end of the constructor
// and at the beginning and end of all public non-const member functions.
void DebugCheckInvariants() const;
// Initializes memory for elements [min, max).
void MaybeInitializeMemory(int min, int max) {
#if __has_feature(memory_sanitizer)
__msan_unpoison(sparse_.data() + min, (max - min) * sizeof sparse_[0]);
#elif defined(RE2_ON_VALGRIND)
for (int i = min; i < max; i++) {
sparse_[i] = 0xababababU;
}
#endif
}
int size_ = 0;
PODArray<int> sparse_;
PODArray<int> dense_;
};
template<typename Value>
SparseSetT<Value>::SparseSetT() = default;
// Change the maximum size of the set.
// Invalidates all iterators.
template<typename Value>
void SparseSetT<Value>::resize(int new_max_size) {
DebugCheckInvariants();
if (new_max_size > max_size()) {
const int old_max_size = max_size();
// Construct these first for exception safety.
PODArray<int> a(new_max_size);
PODArray<int> b(new_max_size);
std::copy_n(sparse_.data(), old_max_size, a.data());
std::copy_n(dense_.data(), old_max_size, b.data());
sparse_ = std::move(a);
dense_ = std::move(b);
MaybeInitializeMemory(old_max_size, new_max_size);
}
if (size_ > new_max_size)
size_ = new_max_size;
DebugCheckInvariants();
}
// Check whether index i is in the set.
template<typename Value>
bool SparseSetT<Value>::contains(int i) const {
assert(i >= 0);
assert(i < max_size());
if (static_cast<uint32_t>(i) >= static_cast<uint32_t>(max_size())) {
return false;
}
// Unsigned comparison avoids checking sparse_[i] < 0.
return (uint32_t)sparse_[i] < (uint32_t)size_ &&
dense_[sparse_[i]] == i;
}
template<typename Value>
void SparseSetT<Value>::create_index(int i) {
assert(!contains(i));
assert(size_ < max_size());
sparse_[i] = size_;
dense_[size_] = i;
size_++;
}
template<typename Value> SparseSetT<Value>::SparseSetT(int max_size) :
sparse_(max_size), dense_(max_size) {
MaybeInitializeMemory(size_, max_size);
DebugCheckInvariants();
}
template<typename Value> SparseSetT<Value>::~SparseSetT() {
DebugCheckInvariants();
}
template<typename Value> void SparseSetT<Value>::DebugCheckInvariants() const {
assert(0 <= size_);
assert(size_ <= max_size());
}
// Comparison function for sorting.
template<typename Value> bool SparseSetT<Value>::less(int a, int b) {
return a < b;
}
typedef SparseSetT<void> SparseSet;
} // namespace re2
#endif // UTIL_SPARSE_SET_H_