8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-23 06:43:04 +01:00
firebird-mirror/extern/libcds/cds/sync/spinlock.h
2022-10-08 20:46:39 +03:00

383 lines
14 KiB
C++

// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_SYNC_SPINLOCK_H
#define CDSLIB_SYNC_SPINLOCK_H
#include <cds/algo/atomic.h>
#include <cds/os/thread.h>
#include <cds/algo/backoff_strategy.h>
namespace cds {
/// Synchronization primitives
namespace sync {
/// Spin lock
/**
Simple and light-weight spin-lock critical section
It is useful to gain access to small (short-timed) code
Algorithm:
TATAS (test-and-test-and-lock)
[1984] L. Rudolph, Z. Segall. Dynamic Decentralized Cache Schemes for MIMD Parallel Processors.
No serialization performed - any of waiting threads may owns the spin-lock.
This spin-lock is NOT recursive: the thread owned the lock cannot call \p lock() method without deadlock.
The method \p unlock() can call any thread
DEBUG version: The spinlock stores owner thead id. Assertion is raised when:
- double lock attempt encountered by same thread (deadlock)
- unlock by another thread
If spin-lock is locked the \p Backoff algorithm is called. Predefined \p backoff::LockDefault class yields current
thread and repeats lock attempts later
Template parameters:
- \p Backoff - backoff strategy. Used when spin lock is locked
*/
template <typename Backoff >
class spin_lock
{
public:
typedef Backoff backoff_strategy; ///< back-off strategy type
private:
atomics::atomic<bool> m_spin; ///< Spin
# ifdef CDS_DEBUG
typename OS::ThreadId m_dbgOwnerId; ///< Owner thread id (only for debug mode)
# endif
public:
/// Construct free (unlocked) spin-lock
spin_lock() noexcept
# ifdef CDS_DEBUG
: m_dbgOwnerId( OS::c_NullThreadId )
# endif
{
m_spin.store( false, atomics::memory_order_release );
}
/// Construct spin-lock in specified state
/**
In debug mode: if \p bLocked = true then spin-lock is made owned by current thread
*/
explicit spin_lock( bool bLocked ) noexcept
# ifdef CDS_DEBUG
: m_dbgOwnerId( bLocked ? cds::OS::get_current_thread_id() : cds::OS::c_NullThreadId )
# endif
{
m_spin.store( bLocked, atomics::memory_order_release );
}
/// Dummy copy constructor
/**
The ctor initializes the spin to free (unlocked) state like the default ctor.
*/
spin_lock(const spin_lock<Backoff>& ) noexcept
: m_spin( false )
# ifdef CDS_DEBUG
, m_dbgOwnerId( cds::OS::c_NullThreadId )
# endif
{
CDS_TSAN_ANNOTATE_MUTEX_CREATE( this );
}
/// Destructor. On debug time it checks whether spin-lock is free
~spin_lock()
{
assert( !m_spin.load( atomics::memory_order_relaxed ));
CDS_TSAN_ANNOTATE_MUTEX_DESTROY( this );
}
/// Check if the spin is locked
bool is_locked() const noexcept
{
return m_spin.load( atomics::memory_order_relaxed );
}
/// Try to lock the object
/**
Returns \p true if locking is succeeded
otherwise (if the spin is already locked) returns \p false
Debug version: deadlock can be detected
*/
bool try_lock() noexcept
{
# ifdef CDS_THREAD_SANITIZER_ENABLED
bool bCurrent = m_spin.exchange( true, atomics::memory_order_acq_rel );
if ( !bCurrent )
CDS_TSAN_ANNOTATE_MUTEX_ACQUIRED( this );
# else
bool bCurrent = m_spin.exchange( true, atomics::memory_order_acquire );
# endif
CDS_DEBUG_ONLY(
if ( !bCurrent ) {
m_dbgOwnerId = OS::get_current_thread_id();
}
)
return !bCurrent;
}
/// Try to lock the object, repeat \p nTryCount times if failed
/**
Returns \p true if locking is succeeded
otherwise (if the spin is already locked) returns \p false
*/
bool try_lock( unsigned int nTryCount ) noexcept( noexcept( backoff_strategy()()))
{
backoff_strategy backoff;
while ( nTryCount-- ) {
if ( try_lock())
return true;
backoff();
}
return false;
}
/// Lock the spin-lock. Waits infinitely while spin-lock is locked. Debug version: deadlock may be detected
void lock() noexcept(noexcept( backoff_strategy()()))
{
backoff_strategy backoff;
// Deadlock detected
CDS_TSAN_ANNOTATE_IGNORE_READS_BEGIN;
assert( m_dbgOwnerId != OS::get_current_thread_id());
CDS_TSAN_ANNOTATE_IGNORE_READS_END;
// TATAS algorithm
while ( !try_lock()) {
while ( m_spin.load( atomics::memory_order_acquire ))
backoff();
}
assert( m_dbgOwnerId == OS::get_current_thread_id());
}
/// Unlock the spin-lock. Debug version: deadlock may be detected
void unlock() noexcept
{
assert( m_spin.load( atomics::memory_order_relaxed ));
assert( m_dbgOwnerId == OS::get_current_thread_id());
CDS_DEBUG_ONLY( m_dbgOwnerId = OS::c_NullThreadId; )
CDS_TSAN_ANNOTATE_MUTEX_RELEASED( this );
m_spin.store( false, atomics::memory_order_release );
}
};
/// Spin-lock implementation default for the current platform
typedef spin_lock<backoff::LockDefault > spin;
/// Recursive spin lock.
/**
Allows recursive calls: the owner thread may recursive enter to critical section guarded by the spin-lock.
Template parameters:
- \p Integral one of integral atomic type: <tt>unsigned int</tt>, \p int, and others
- \p Backoff backoff strategy. Used when spin lock is locked
*/
template <typename Integral, class Backoff>
class reentrant_spin_lock
{
typedef OS::ThreadId thread_id; ///< The type of thread id
public:
typedef Integral integral_type; ///< The integral type
typedef Backoff backoff_strategy; ///< The backoff type
private:
//@cond
atomics::atomic<integral_type> m_spin; ///< spin-lock atomic
atomics::atomic<thread_id> m_OwnerId; ///< Owner thread id. If spin-lock is not locked it usually equals to \p OS::c_NullThreadId
//@endcond
private:
//@cond
void take( thread_id tid ) noexcept
{
m_OwnerId.store( tid, atomics::memory_order_relaxed );
}
void free() noexcept
{
m_OwnerId.store( OS::c_NullThreadId, atomics::memory_order_relaxed );
}
bool is_taken( thread_id tid ) const noexcept
{
return m_OwnerId.load( atomics::memory_order_relaxed ) == tid;
}
bool try_taken_lock( thread_id tid ) noexcept
{
if ( is_taken( tid )) {
m_spin.fetch_add( 1, atomics::memory_order_relaxed );
return true;
}
return false;
}
bool try_acquire() noexcept
{
integral_type nCurrent = 0;
bool bRet = m_spin.compare_exchange_weak( nCurrent, 1, atomics::memory_order_acquire, atomics::memory_order_acquire );
# ifdef CDS_THREAD_SANITIZER_ENABLED
if ( bRet )
CDS_TSAN_ANNOTATE_MUTEX_ACQUIRED( this );
# endif
return bRet;
}
bool try_acquire( unsigned int nTryCount ) noexcept( noexcept( backoff_strategy()()))
{
backoff_strategy bkoff;
while ( nTryCount-- ) {
if ( try_acquire())
return true;
bkoff();
}
return false;
}
void acquire() noexcept( noexcept( backoff_strategy()()))
{
// TATAS algorithm
backoff_strategy bkoff;
while ( !try_acquire()) {
while ( m_spin.load( atomics::memory_order_acquire ))
bkoff();
}
}
//@endcond
public:
/// Default constructor initializes spin to free (unlocked) state
reentrant_spin_lock() noexcept
: m_spin(0)
, m_OwnerId( OS::c_NullThreadId )
{
CDS_TSAN_ANNOTATE_MUTEX_CREATE( this );
}
/// Dummy copy constructor
/**
In theory, spin-lock cannot be copied. However, it is not practical.
Therefore, we provide dummy copy constructor that do no copy in fact. The ctor
initializes the spin to free (unlocked) state like default ctor.
*/
reentrant_spin_lock( const reentrant_spin_lock<Integral, Backoff>& ) noexcept
: m_spin(0)
, m_OwnerId( OS::c_NullThreadId )
{
CDS_TSAN_ANNOTATE_MUTEX_CREATE( this );
}
/// Construct object in specified state
explicit reentrant_spin_lock( bool bLocked )
: m_spin(0)
, m_OwnerId( OS::c_NullThreadId )
{
CDS_TSAN_ANNOTATE_MUTEX_CREATE( this );
if ( bLocked )
lock();
}
/// Dtor. Spin-lock must be unlocked
~reentrant_spin_lock()
{
assert( m_spin.load( atomics::memory_order_acquire ) == 0 );
assert( m_OwnerId.load( atomics::memory_order_relaxed ) == OS::c_NullThreadId );
CDS_TSAN_ANNOTATE_MUTEX_DESTROY( this );
}
/// Checks if the spin is locked
/**
The spin is locked if lock count > 0 and the current thread is not an owner of the lock.
Otherwise (i.e. lock count == 0 or the curren thread owns the spin) the spin is unlocked.
*/
bool is_locked() const noexcept
{
return !( m_spin.load( atomics::memory_order_relaxed ) == 0 || is_taken( cds::OS::get_current_thread_id()));
}
/// Try to lock the spin-lock
bool try_lock() noexcept( noexcept( std::declval<reentrant_spin_lock>().try_acquire()))
{
thread_id tid = OS::get_current_thread_id();
if ( try_taken_lock( tid ))
return true;
if ( try_acquire()) {
take( tid );
return true;
}
return false;
}
/// Try to lock up to \p nTryCount attempts
bool try_lock( unsigned int nTryCount ) noexcept( noexcept( std::declval<reentrant_spin_lock>().try_acquire( nTryCount )))
{
thread_id tid = OS::get_current_thread_id();
if ( try_taken_lock( tid ))
return true;
if ( try_acquire( nTryCount )) {
take( tid );
return true;
}
return false;
}
/// Lock the object waits if it is busy
void lock() noexcept( noexcept( std::declval<reentrant_spin_lock>().acquire()))
{
thread_id tid = OS::get_current_thread_id();
if ( !try_taken_lock( tid )) {
acquire();
take( tid );
}
}
/// Unlock the spin-lock
void unlock() noexcept
{
assert( is_taken( OS::get_current_thread_id()));
integral_type n = m_spin.load( atomics::memory_order_relaxed );
if ( n > 1 )
m_spin.store( n - 1, atomics::memory_order_relaxed );
else {
free();
CDS_TSAN_ANNOTATE_MUTEX_RELEASED( this );
m_spin.store( 0, atomics::memory_order_release );
}
}
/// Change the owner of locked spin-lock. May be called by thread that owns spin-lock
void change_owner( OS::ThreadId newOwnerId ) noexcept
{
assert( is_taken( OS::get_current_thread_id()));
assert( newOwnerId != OS::c_NullThreadId );
m_OwnerId.store( newOwnerId, atomics::memory_order_relaxed );
}
};
/// Recursive 32bit spin-lock
typedef reentrant_spin_lock<uint32_t, backoff::LockDefault> reentrant_spin32;
/// Default recursive spin-lock
typedef reentrant_spin32 reentrant_spin;
/// Recursive 64bit spin-lock
typedef reentrant_spin_lock<uint64_t, backoff::LockDefault> reentrant_spin64;
} // namespace sync
} // namespace cds
#endif // #ifndef CDSLIB_SYNC_SPINLOCK_H