mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-23 04:03:04 +01:00
801 lines
31 KiB
C++
801 lines
31 KiB
C++
// Copyright (c) 2006-2018 Maxim Khizhinsky
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H
|
|
#define CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H
|
|
|
|
#include <cds/intrusive/feldman_hashset_rcu.h>
|
|
#include <cds/container/details/feldman_hashmap_base.h>
|
|
|
|
namespace cds { namespace container {
|
|
|
|
/// Hash map based on multi-level array
|
|
/** @ingroup cds_nonintrusive_map
|
|
@anchor cds_container_FeldmanHashMap_rcu
|
|
|
|
Source:
|
|
- [2013] Steven Feldman, Pierre LaBorde, Damian Dechev "Concurrent Multi-level Arrays:
|
|
Wait-free Extensible Hash Maps"
|
|
|
|
See algorithm short description @ref cds_container_FeldmanHashMap_hp "here"
|
|
|
|
@note Two important things you should keep in mind when you're using \p %FeldmanHashMap:
|
|
- all keys is converted to fixed-size bit-string by hash functor provided.
|
|
You can use variable-length keys, for example, \p std::string as a key for \p %FeldmanHashMap,
|
|
but real key in the map will be fixed-size hash values of your keys.
|
|
For the strings you may use well-known hashing algorithms like <a href="https://en.wikipedia.org/wiki/Secure_Hash_Algorithm">SHA1, SHA2</a>,
|
|
<a href="https://en.wikipedia.org/wiki/MurmurHash">MurmurHash</a>, <a href="https://en.wikipedia.org/wiki/CityHash">CityHash</a>
|
|
or its successor <a href="https://code.google.com/p/farmhash/">FarmHash</a> and so on, which
|
|
converts variable-length strings to fixed-length bit-strings, and such hash values will be the keys in \p %FeldmanHashMap.
|
|
If your key is fixed-sized the hash functor is optional, see \p feldman_hashmap::traits::hash for explanation and examples.
|
|
- \p %FeldmanHashMap uses a perfect hashing. It means that if two different keys, for example, of type \p std::string,
|
|
have identical hash then you cannot insert both that keys in the map. \p %FeldmanHashMap does not maintain the key,
|
|
it maintains its fixed-size hash value.
|
|
|
|
The map supports @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional thread-safe iterators".
|
|
|
|
Template parameters:
|
|
- \p RCU - one of \ref cds_urcu_gc "RCU type"
|
|
- \p Key - a key type to be stored in the map
|
|
- \p T - a value type to be stored in the map
|
|
- \p Traits - type traits, the structure based on \p feldman_hashmap::traits or result of \p feldman_hashmap::make_traits metafunction.
|
|
|
|
@note Before including <tt><cds/intrusive/feldman_hashset_rcu.h></tt> you should include appropriate RCU header file,
|
|
see \ref cds_urcu_gc "RCU type" for list of existing RCU class and corresponding header files.
|
|
*/
|
|
template <
|
|
class RCU
|
|
,typename Key
|
|
,typename T
|
|
#ifdef CDS_DOXYGEN_INVOKED
|
|
,class Traits = feldman_hashmap::traits
|
|
#else
|
|
,class Traits
|
|
#endif
|
|
>
|
|
class FeldmanHashMap< cds::urcu::gc< RCU >, Key, T, Traits >
|
|
#ifdef CDS_DOXYGEN_INVOKED
|
|
: protected cds::intrusive::FeldmanHashSet< cds::urcu::gc< RCU >, std::pair<Key const, T>, Traits >
|
|
#else
|
|
: protected cds::container::details::make_feldman_hashmap< cds::urcu::gc< RCU >, Key, T, Traits >::type
|
|
#endif
|
|
{
|
|
//@cond
|
|
typedef cds::container::details::make_feldman_hashmap< cds::urcu::gc< RCU >, Key, T, Traits > maker;
|
|
typedef typename maker::type base_class;
|
|
//@endcond
|
|
public:
|
|
typedef cds::urcu::gc< RCU > gc; ///< RCU garbage collector
|
|
typedef Key key_type; ///< Key type
|
|
typedef T mapped_type; ///< Mapped type
|
|
typedef std::pair< key_type const, mapped_type> value_type; ///< Key-value pair to be stored in the map
|
|
typedef Traits traits; ///< Map traits
|
|
#ifdef CDS_DOXYGEN_INVOKED
|
|
typedef typename traits::hash hasher; ///< Hash functor, see \p feldman_hashmap::traits::hash
|
|
#else
|
|
typedef typename maker::hasher hasher;
|
|
#endif
|
|
|
|
typedef typename maker::hash_type hash_type; ///< Hash type deduced from \p hasher return type
|
|
typedef typename base_class::hash_comparator hash_comparator; ///< hash compare functor based on \p Traits::compare and \p Traits::less
|
|
typedef typename traits::item_counter item_counter; ///< Item counter type
|
|
typedef typename traits::allocator allocator; ///< Element allocator
|
|
typedef typename traits::node_allocator node_allocator; ///< Array node allocator
|
|
typedef typename traits::memory_model memory_model; ///< Memory model
|
|
typedef typename traits::back_off back_off; ///< Back-off strategy
|
|
typedef typename traits::stat stat; ///< Internal statistics type
|
|
typedef typename traits::rcu_check_deadlock rcu_check_deadlock; ///< Deadlock checking policy
|
|
typedef typename gc::scoped_lock rcu_lock; ///< RCU scoped lock
|
|
static constexpr const bool c_bExtractLockExternal = false; ///< Group of \p extract_xxx functions does not require external locking
|
|
|
|
/// Level statistics
|
|
typedef feldman_hashmap::level_statistics level_statistics;
|
|
|
|
protected:
|
|
//@cond
|
|
typedef typename maker::node_type node_type;
|
|
typedef typename maker::cxx_node_allocator cxx_node_allocator;
|
|
typedef std::unique_ptr< node_type, typename maker::node_disposer > scoped_node_ptr;
|
|
typedef typename base_class::check_deadlock_policy check_deadlock_policy;
|
|
|
|
struct node_cast
|
|
{
|
|
value_type * operator()(node_type * p) const
|
|
{
|
|
return p ? &p->m_Value : nullptr;
|
|
}
|
|
};
|
|
|
|
public:
|
|
/// pointer to extracted node
|
|
using exempt_ptr = cds::urcu::exempt_ptr< gc, node_type, value_type, typename base_class::disposer, node_cast >;
|
|
|
|
protected:
|
|
template <bool IsConst>
|
|
class bidirectional_iterator: public base_class::iterator_base
|
|
{
|
|
friend class FeldmanHashMap;
|
|
typedef typename base_class::iterator_base iterator_base;
|
|
|
|
protected:
|
|
static constexpr bool const c_bConstantIterator = IsConst;
|
|
|
|
public:
|
|
typedef typename std::conditional< IsConst, value_type const*, value_type*>::type value_ptr; ///< Value pointer
|
|
typedef typename std::conditional< IsConst, value_type const&, value_type&>::type value_ref; ///< Value reference
|
|
|
|
public:
|
|
bidirectional_iterator() noexcept
|
|
{}
|
|
|
|
bidirectional_iterator( bidirectional_iterator const& rhs ) noexcept
|
|
: iterator_base( rhs )
|
|
{}
|
|
|
|
bidirectional_iterator& operator=(bidirectional_iterator const& rhs) noexcept
|
|
{
|
|
iterator_base::operator=( rhs );
|
|
return *this;
|
|
}
|
|
|
|
bidirectional_iterator& operator++()
|
|
{
|
|
iterator_base::operator++();
|
|
return *this;
|
|
}
|
|
|
|
bidirectional_iterator& operator--()
|
|
{
|
|
iterator_base::operator--();
|
|
return *this;
|
|
}
|
|
|
|
value_ptr operator ->() const noexcept
|
|
{
|
|
node_type * p = iterator_base::pointer();
|
|
return p ? &p->m_Value : nullptr;
|
|
}
|
|
|
|
value_ref operator *() const noexcept
|
|
{
|
|
node_type * p = iterator_base::pointer();
|
|
assert( p );
|
|
return p->m_Value;
|
|
}
|
|
|
|
void release()
|
|
{
|
|
iterator_base::release();
|
|
}
|
|
|
|
template <bool IsConst2>
|
|
bool operator ==(bidirectional_iterator<IsConst2> const& rhs) const noexcept
|
|
{
|
|
return iterator_base::operator==( rhs );
|
|
}
|
|
|
|
template <bool IsConst2>
|
|
bool operator !=(bidirectional_iterator<IsConst2> const& rhs) const noexcept
|
|
{
|
|
return !( *this == rhs );
|
|
}
|
|
|
|
public: // for internal use only!
|
|
bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx, bool )
|
|
: iterator_base( set, pNode, idx, false )
|
|
{}
|
|
|
|
bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx )
|
|
: iterator_base( set, pNode, idx )
|
|
{}
|
|
};
|
|
|
|
/// Reverse bidirectional iterator
|
|
template <bool IsConst>
|
|
class reverse_bidirectional_iterator : public base_class::iterator_base
|
|
{
|
|
friend class FeldmanHashMap;
|
|
typedef typename base_class::iterator_base iterator_base;
|
|
|
|
public:
|
|
typedef typename std::conditional< IsConst, value_type const*, value_type*>::type value_ptr; ///< Value pointer
|
|
typedef typename std::conditional< IsConst, value_type const&, value_type&>::type value_ref; ///< Value reference
|
|
|
|
public:
|
|
reverse_bidirectional_iterator() noexcept
|
|
: iterator_base()
|
|
{}
|
|
|
|
reverse_bidirectional_iterator( reverse_bidirectional_iterator const& rhs ) noexcept
|
|
: iterator_base( rhs )
|
|
{}
|
|
|
|
reverse_bidirectional_iterator& operator=( reverse_bidirectional_iterator const& rhs) noexcept
|
|
{
|
|
iterator_base::operator=( rhs );
|
|
return *this;
|
|
}
|
|
|
|
reverse_bidirectional_iterator& operator++()
|
|
{
|
|
iterator_base::operator--();
|
|
return *this;
|
|
}
|
|
|
|
reverse_bidirectional_iterator& operator--()
|
|
{
|
|
iterator_base::operator++();
|
|
return *this;
|
|
}
|
|
|
|
value_ptr operator ->() const noexcept
|
|
{
|
|
node_type * p = iterator_base::pointer();
|
|
return p ? &p->m_Value : nullptr;
|
|
}
|
|
|
|
value_ref operator *() const noexcept
|
|
{
|
|
node_type * p = iterator_base::pointer();
|
|
assert( p );
|
|
return p->m_Value;
|
|
}
|
|
|
|
void release()
|
|
{
|
|
iterator_base::release();
|
|
}
|
|
|
|
template <bool IsConst2>
|
|
bool operator ==(reverse_bidirectional_iterator<IsConst2> const& rhs) const
|
|
{
|
|
return iterator_base::operator==( rhs );
|
|
}
|
|
|
|
template <bool IsConst2>
|
|
bool operator !=(reverse_bidirectional_iterator<IsConst2> const& rhs)
|
|
{
|
|
return !( *this == rhs );
|
|
}
|
|
|
|
public: // for internal use only!
|
|
reverse_bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx, bool )
|
|
: iterator_base( set, pNode, idx, false )
|
|
{}
|
|
|
|
reverse_bidirectional_iterator( base_class const& set, typename base_class::array_node * pNode, size_t idx )
|
|
: iterator_base( set, pNode, idx, false )
|
|
{
|
|
iterator_base::backward();
|
|
}
|
|
};
|
|
//@endcond
|
|
|
|
public:
|
|
#ifdef CDS_DOXYGEN_INVOKED
|
|
typedef implementation_defined iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional iterator" type
|
|
typedef implementation_defined const_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional const iterator" type
|
|
typedef implementation_defined reverse_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional reverse iterator" type
|
|
typedef implementation_defined const_reverse_iterator; ///< @ref cds_container_FeldmanHashMap_rcu_iterators "bidirectional reverse const iterator" type
|
|
#else
|
|
typedef bidirectional_iterator<false> iterator;
|
|
typedef bidirectional_iterator<true> const_iterator;
|
|
typedef reverse_bidirectional_iterator<false> reverse_iterator;
|
|
typedef reverse_bidirectional_iterator<true> const_reverse_iterator;
|
|
#endif
|
|
|
|
protected:
|
|
//@cond
|
|
hasher m_Hasher;
|
|
//@endcond
|
|
|
|
public:
|
|
/// Creates empty map
|
|
/**
|
|
@param head_bits - 2<sup>head_bits</sup> specifies the size of head array, minimum is 4.
|
|
@param array_bits - 2<sup>array_bits</sup> specifies the size of array node, minimum is 2.
|
|
|
|
Equation for \p head_bits and \p array_bits:
|
|
\code
|
|
sizeof(hash_type) * 8 == head_bits + N * array_bits
|
|
\endcode
|
|
where \p N is multi-level array depth.
|
|
*/
|
|
FeldmanHashMap( size_t head_bits = 8, size_t array_bits = 4 )
|
|
: base_class( head_bits, array_bits )
|
|
{}
|
|
|
|
/// Destructs the map and frees all data
|
|
~FeldmanHashMap()
|
|
{}
|
|
|
|
/// Inserts new element with key and default value
|
|
/**
|
|
The function creates an element with \p key and default value, and then inserts the node created into the map.
|
|
|
|
Preconditions:
|
|
- The \p key_type should be constructible from a value of type \p K.
|
|
In trivial case, \p K is equal to \p key_type.
|
|
- The \p mapped_type should be default-constructible.
|
|
|
|
Returns \p true if inserting successful, \p false otherwise.
|
|
|
|
The function locks RCU internally.
|
|
*/
|
|
template <typename K>
|
|
bool insert( K&& key )
|
|
{
|
|
scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward<K>(key)));
|
|
if ( base_class::insert( *sp )) {
|
|
sp.release();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Inserts new element
|
|
/**
|
|
The function creates a node with copy of \p val value
|
|
and then inserts the node created into the map.
|
|
|
|
Preconditions:
|
|
- The \p key_type should be constructible from \p key of type \p K.
|
|
- The \p value_type should be constructible from \p val of type \p V.
|
|
|
|
Returns \p true if \p val is inserted into the map, \p false otherwise.
|
|
|
|
The function locks RCU internally.
|
|
*/
|
|
template <typename K, typename V>
|
|
bool insert( K&& key, V&& val )
|
|
{
|
|
scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward<K>(key), std::forward<V>(val)));
|
|
if ( base_class::insert( *sp )) {
|
|
sp.release();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Inserts new element and initialize it by a functor
|
|
/**
|
|
This function inserts new element with key \p key and if inserting is successful then it calls
|
|
\p func functor with signature
|
|
\code
|
|
struct functor {
|
|
void operator()( value_type& item );
|
|
};
|
|
\endcode
|
|
|
|
The argument \p item of user-defined functor \p func is the reference
|
|
to the map's item inserted:
|
|
- <tt>item.first</tt> is a const reference to item's key that cannot be changed.
|
|
- <tt>item.second</tt> is a reference to item's value that may be changed.
|
|
|
|
\p key_type should be constructible from value of type \p K.
|
|
|
|
The function allows to split creating of new item into two part:
|
|
- create item from \p key;
|
|
- insert new item into the map;
|
|
- if inserting is successful, initialize the value of item by calling \p func functor
|
|
|
|
This can be useful if complete initialization of object of \p value_type is heavyweight and
|
|
it is preferable that the initialization should be completed only if inserting is successful.
|
|
|
|
The function locks RCU internally.
|
|
*/
|
|
template <typename K, typename Func>
|
|
bool insert_with( K&& key, Func func )
|
|
{
|
|
scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward<K>(key)));
|
|
if ( base_class::insert( *sp, [&func]( node_type& item ) { func( item.m_Value ); } )) {
|
|
sp.release();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// For key \p key inserts data of type \p value_type created in-place from <tt>std::forward<Args>(args)...</tt>
|
|
/**
|
|
Returns \p true if inserting successful, \p false otherwise.
|
|
|
|
The function locks RCU internally.
|
|
*/
|
|
template <typename K, typename... Args>
|
|
bool emplace( K&& key, Args&&... args )
|
|
{
|
|
scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward<K>(key), std::forward<Args>(args)... ));
|
|
if ( base_class::insert( *sp )) {
|
|
sp.release();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Updates data by \p key
|
|
/**
|
|
The operation performs inserting or replacing the element with lock-free manner.
|
|
|
|
If the \p key not found in the map, then the new item created from \p key
|
|
will be inserted into the map iff \p bInsert is \p true
|
|
(note that in this case the \ref key_type should be constructible from type \p K).
|
|
Otherwise, if \p key is found, it is replaced with a new item created from
|
|
\p key.
|
|
The functor \p Func signature:
|
|
\code
|
|
struct my_functor {
|
|
void operator()( value_type& item, value_type * old );
|
|
};
|
|
\endcode
|
|
where:
|
|
- \p item - item of the map
|
|
- \p old - old item of the map, if \p nullptr - the new item was inserted
|
|
|
|
The functor may change any fields of the \p item.second.
|
|
|
|
Returns <tt> std::pair<bool, bool> </tt> where \p first is \p true if operation is successful,
|
|
\p second is \p true if new item has been added or \p false if \p key already exists.
|
|
|
|
The function locks RCU internally.
|
|
|
|
@warning See \ref cds_intrusive_item_creating "insert item troubleshooting"
|
|
*/
|
|
template <typename K, typename Func>
|
|
std::pair<bool, bool> update( K&& key, Func func, bool bInsert = true )
|
|
{
|
|
scoped_node_ptr sp( cxx_node_allocator().MoveNew( m_Hasher, std::forward<K>(key)));
|
|
std::pair<bool, bool> result = base_class::do_update( *sp,
|
|
[&func]( node_type& node, node_type * old ) { func( node.m_Value, old ? &old->m_Value : nullptr );},
|
|
bInsert );
|
|
if ( result.first )
|
|
sp.release();
|
|
return result;
|
|
}
|
|
|
|
/// Delete \p key from the map
|
|
/**
|
|
\p key_type must be constructible from value of type \p K.
|
|
The function deletes the element with hash value equal to <tt>hash( key_type( key ))</tt>
|
|
|
|
Return \p true if \p key is found and deleted, \p false otherwise.
|
|
|
|
RCU should not be locked. The function locks RCU internally.
|
|
*/
|
|
template <typename K>
|
|
bool erase( K const& key )
|
|
{
|
|
return base_class::erase(m_Hasher(key_type(key)));
|
|
}
|
|
|
|
/// Delete \p key from the map
|
|
/**
|
|
The function searches an item with hash value equal to <tt>hash( key_type( key ))</tt>,
|
|
calls \p f functor and deletes the item. If \p key is not found, the functor is not called.
|
|
|
|
The functor \p Func interface:
|
|
\code
|
|
struct extractor {
|
|
void operator()(value_type& item) { ... }
|
|
};
|
|
\endcode
|
|
where \p item is the element found.
|
|
|
|
\p key_type must be constructible from value of type \p K.
|
|
|
|
Return \p true if key is found and deleted, \p false otherwise
|
|
|
|
RCU should not be locked. The function locks RCU internally.
|
|
*/
|
|
template <typename K, typename Func>
|
|
bool erase( K const& key, Func f )
|
|
{
|
|
return base_class::erase(m_Hasher(key_type(key)), [&f]( node_type& node) { f( node.m_Value ); });
|
|
}
|
|
|
|
/// Extracts the item from the map with specified \p key
|
|
/**
|
|
The function searches an item with key equal to <tt>hash( key_type( key ))</tt> in the map,
|
|
unlinks it from the map, and returns a guarded pointer to the item found.
|
|
If \p key is not found the function returns an empty guarded pointer.
|
|
|
|
RCU \p synchronize method can be called. RCU should NOT be locked.
|
|
The function does not call the disposer for the item found.
|
|
The disposer will be implicitly invoked when the returned object is destroyed or when
|
|
its \p release() member function is called.
|
|
Example:
|
|
\code
|
|
typedef cds::container::FeldmanHashMap< cds::urcu::gc< cds::urcu::general_buffered<>>, int, foo, my_traits > map_type;
|
|
map_type theMap;
|
|
// ...
|
|
|
|
typename map_type::exempt_ptr ep( theMap.extract( 5 ));
|
|
if ( ep ) {
|
|
// Deal with ep
|
|
//...
|
|
|
|
// Dispose returned item.
|
|
ep.release();
|
|
}
|
|
\endcode
|
|
*/
|
|
template <typename K>
|
|
exempt_ptr extract( K const& key )
|
|
{
|
|
check_deadlock_policy::check();
|
|
|
|
node_type * p;
|
|
{
|
|
rcu_lock rcuLock;
|
|
p = base_class::do_erase( m_Hasher( key_type(key)), [](node_type const&) -> bool {return true;});
|
|
}
|
|
return exempt_ptr(p);
|
|
}
|
|
|
|
/// Checks whether the map contains \p key
|
|
/**
|
|
The function searches the item by its hash that is equal to <tt>hash( key_type( key ))</tt>
|
|
and returns \p true if it is found, or \p false otherwise.
|
|
*/
|
|
template <typename K>
|
|
bool contains( K const& key )
|
|
{
|
|
return base_class::contains( m_Hasher( key_type( key )));
|
|
}
|
|
|
|
/// Find the key \p key
|
|
/**
|
|
|
|
The function searches the item by its hash that is equal to <tt>hash( key_type( key ))</tt>
|
|
and calls the functor \p f for item found.
|
|
The interface of \p Func functor is:
|
|
\code
|
|
struct functor {
|
|
void operator()( value_type& item );
|
|
};
|
|
\endcode
|
|
where \p item is the item found.
|
|
|
|
The functor may change \p item.second.
|
|
|
|
The function returns \p true if \p key is found, \p false otherwise.
|
|
*/
|
|
template <typename K, typename Func>
|
|
bool find( K const& key, Func f )
|
|
{
|
|
return base_class::find( m_Hasher( key_type( key )), [&f](node_type& node) { f( node.m_Value );});
|
|
}
|
|
|
|
/// Finds the key \p key and return the item found
|
|
/**
|
|
The function searches the item by its \p hash
|
|
and returns the pointer to the item found.
|
|
If \p hash is not found the function returns \p nullptr.
|
|
|
|
RCU should be locked before the function invocation.
|
|
Returned pointer is valid only while RCU is locked.
|
|
|
|
Usage:
|
|
\code
|
|
typedef cds::container::FeldmanHashMap< your_template_params > my_map;
|
|
my_map theMap;
|
|
// ...
|
|
{
|
|
// lock RCU
|
|
my_map::rcu_lock;
|
|
|
|
foo * p = theMap.get( 5 );
|
|
if ( p ) {
|
|
// Deal with p
|
|
//...
|
|
}
|
|
}
|
|
\endcode
|
|
*/
|
|
template <typename K>
|
|
value_type * get( K const& key )
|
|
{
|
|
node_type * p = base_class::get( m_Hasher( key_type( key )));
|
|
return p ? &p->m_Value : nullptr;
|
|
}
|
|
|
|
/// Clears the map (non-atomic)
|
|
/**
|
|
The function unlink all data node from the map.
|
|
The function is not atomic but is thread-safe.
|
|
After \p %clear() the map may not be empty because another threads may insert items.
|
|
*/
|
|
void clear()
|
|
{
|
|
base_class::clear();
|
|
}
|
|
|
|
/// Checks if the map is empty
|
|
/**
|
|
Emptiness is checked by item counting: if item count is zero then the map is empty.
|
|
Thus, the correct item counting feature is an important part of the map implementation.
|
|
*/
|
|
bool empty() const
|
|
{
|
|
return base_class::empty();
|
|
}
|
|
|
|
/// Returns item count in the map
|
|
size_t size() const
|
|
{
|
|
return base_class::size();
|
|
}
|
|
|
|
/// Returns const reference to internal statistics
|
|
stat const& statistics() const
|
|
{
|
|
return base_class::statistics();
|
|
}
|
|
|
|
/// Returns the size of head node
|
|
size_t head_size() const
|
|
{
|
|
return base_class::head_size();
|
|
}
|
|
|
|
/// Returns the size of the array node
|
|
size_t array_node_size() const
|
|
{
|
|
return base_class::array_node_size();
|
|
}
|
|
|
|
/// Collects tree level statistics into \p stat
|
|
/**
|
|
The function traverses the set and collects statistics for each level of the tree
|
|
into \p feldman_hashset::level_statistics struct. The element of \p stat[i]
|
|
represents statistics for level \p i, level 0 is head array.
|
|
The function is thread-safe and may be called in multi-threaded environment.
|
|
|
|
Result can be useful for estimating efficiency of hash functor you use.
|
|
*/
|
|
void get_level_statistics(std::vector< feldman_hashmap::level_statistics>& stat) const
|
|
{
|
|
base_class::get_level_statistics(stat);
|
|
}
|
|
|
|
public:
|
|
///@name Thread-safe iterators
|
|
/** @anchor cds_container_FeldmanHashMap_rcu_iterators
|
|
The map supports thread-safe iterators: you may iterate over the map in multi-threaded environment
|
|
under explicit RCU lock.
|
|
RCU lock requirement means that inserting or searching is allowed but you must not erase the items from the map
|
|
since erasing under RCU lock can lead to a deadlock. However, another thread can call \p erase() safely
|
|
while your thread is iterating.
|
|
|
|
A typical example is:
|
|
\code
|
|
struct foo {
|
|
// ... other fields
|
|
uint32_t payload; // only for example
|
|
};
|
|
typedef cds::urcu::gc< cds::urcu::general_buffered<>> rcu;
|
|
typedef cds::container::FeldmanHashMap< rcu, std::string, foo> map_type;
|
|
|
|
map_type m;
|
|
|
|
// ...
|
|
|
|
// iterate over the map
|
|
{
|
|
// lock the RCU.
|
|
typename set_type::rcu_lock l; // scoped RCU lock
|
|
|
|
// traverse the map
|
|
for ( auto i = m.begin(); i != s.end(); ++i ) {
|
|
// deal with i. Remember, erasing is prohibited here!
|
|
i->second.payload++;
|
|
}
|
|
} // at this point RCU lock is released
|
|
\endcode
|
|
|
|
Each iterator object supports the common interface:
|
|
- dereference operators:
|
|
@code
|
|
value_type [const] * operator ->() noexcept
|
|
value_type [const] & operator *() noexcept
|
|
@endcode
|
|
- pre-increment and pre-decrement. Post-operators is not supported
|
|
- equality operators <tt>==</tt> and <tt>!=</tt>.
|
|
Iterators are equal iff they point to the same cell of the same array node.
|
|
Note that for two iterators \p it1 and \p it2 the condition <tt> it1 == it2 </tt>
|
|
does not entail <tt> &(*it1) == &(*it2) </tt>: welcome to concurrent containers
|
|
|
|
@note It is possible the item can be iterated more that once, for example, if an iterator points to the item
|
|
in an array node that is being splitted.
|
|
*/
|
|
///@{
|
|
/// Returns an iterator to the beginning of the map
|
|
iterator begin()
|
|
{
|
|
return base_class::template init_begin<iterator>();
|
|
}
|
|
|
|
/// Returns an const iterator to the beginning of the map
|
|
const_iterator begin() const
|
|
{
|
|
return base_class::template init_begin<const_iterator>();
|
|
}
|
|
|
|
/// Returns an const iterator to the beginning of the map
|
|
const_iterator cbegin()
|
|
{
|
|
return base_class::template init_begin<const_iterator>();
|
|
}
|
|
|
|
/// Returns an iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior.
|
|
iterator end()
|
|
{
|
|
return base_class::template init_end<iterator>();
|
|
}
|
|
|
|
/// Returns a const iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior.
|
|
const_iterator end() const
|
|
{
|
|
return base_class::template init_end<const_iterator>();
|
|
}
|
|
|
|
/// Returns a const iterator to the element following the last element of the map. This element acts as a placeholder; attempting to access it results in undefined behavior.
|
|
const_iterator cend()
|
|
{
|
|
return base_class::template init_end<const_iterator>();
|
|
}
|
|
|
|
/// Returns a reverse iterator to the first element of the reversed map
|
|
reverse_iterator rbegin()
|
|
{
|
|
return base_class::template init_rbegin<reverse_iterator>();
|
|
}
|
|
|
|
/// Returns a const reverse iterator to the first element of the reversed map
|
|
const_reverse_iterator rbegin() const
|
|
{
|
|
return base_class::template init_rbegin<const_reverse_iterator>();
|
|
}
|
|
|
|
/// Returns a const reverse iterator to the first element of the reversed map
|
|
const_reverse_iterator crbegin()
|
|
{
|
|
return base_class::template init_rbegin<const_reverse_iterator>();
|
|
}
|
|
|
|
/// Returns a reverse iterator to the element following the last element of the reversed map
|
|
/**
|
|
It corresponds to the element preceding the first element of the non-reversed container.
|
|
This element acts as a placeholder, attempting to access it results in undefined behavior.
|
|
*/
|
|
reverse_iterator rend()
|
|
{
|
|
return base_class::template init_rend<reverse_iterator>();
|
|
}
|
|
|
|
/// Returns a const reverse iterator to the element following the last element of the reversed map
|
|
/**
|
|
It corresponds to the element preceding the first element of the non-reversed container.
|
|
This element acts as a placeholder, attempting to access it results in undefined behavior.
|
|
*/
|
|
const_reverse_iterator rend() const
|
|
{
|
|
return base_class::template init_rend<const_reverse_iterator>();
|
|
}
|
|
|
|
/// Returns a const reverse iterator to the element following the last element of the reversed map
|
|
/**
|
|
It corresponds to the element preceding the first element of the non-reversed container.
|
|
This element acts as a placeholder, attempting to access it results in undefined behavior.
|
|
*/
|
|
const_reverse_iterator crend()
|
|
{
|
|
return base_class::template init_rend<const_reverse_iterator>();
|
|
}
|
|
///@}
|
|
};
|
|
}} // namespace cds::container
|
|
|
|
#endif // #ifndef CDSLIB_CONTAINER_FELDMAN_HASHMAP_RCU_H
|