8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-23 04:03:04 +01:00
firebird-mirror/extern/libcds/cds/container/mspriority_queue.h
2022-10-08 20:46:39 +03:00

320 lines
12 KiB
C++

// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_CONTAINER_MSPRIORITY_QUEUE_H
#define CDSLIB_CONTAINER_MSPRIORITY_QUEUE_H
#include <memory>
#include <cds/container/details/base.h>
#include <cds/intrusive/mspriority_queue.h>
namespace cds { namespace container {
/// MSPriorityQueue related definitions
/** @ingroup cds_nonintrusive_helper
*/
namespace mspriority_queue {
#ifdef CDS_DOXYGEN_INVOKED
/// Synonym for \p cds::intrusive::mspriority_queue::stat
typedef cds::intrusive::mspriority_queue::stat<> stat;
/// Synonym for \p cds::intrusive::mspriority_queue::empty_stat
typedef cds::intrusive::mspriority_queue::empty_stat empty_stat;
#else
using cds::intrusive::mspriority_queue::stat;
using cds::intrusive::mspriority_queue::empty_stat;
#endif
/// MSPriorityQueue traits
/**
The traits for \p %cds::container::MSPriorityQueue is the same as for
\p cds::intrusive::MSPriorityQueue (see \p cds::intrusive::mspriority_queue::traits)
plus some additional properties.
*/
struct traits: public cds::intrusive::mspriority_queue::traits
{
/// The allocator use to allocate memory for values
typedef CDS_DEFAULT_ALLOCATOR allocator;
/// Move policy
/**
The move policy used in \p MSPriorityQueue::pop() function to move item's value.
Default is \p opt::v::assignment_move_policy.
*/
typedef cds::opt::v::assignment_move_policy move_policy;
};
/// Metafunction converting option list to traits
/**
\p Options are:
- \p opt::buffer - the buffer type for heap array. Possible type are: \p opt::v::initiaized_static_buffer, \p opt::v::initialized_dynamic_buffer.
Default is \p %opt::v::initialized_dynamic_buffer.
You may specify any type of values for the buffer since at instantiation time
the \p buffer::rebind member metafunction is called to change the type of values stored in the buffer.
- \p opt::compare - priority compare functor. No default functor is provided.
If the option is not specified, the \p opt::less is used.
- \p opt::less - specifies binary predicate used for priority compare. Default is \p std::less<T>.
- \p opt::lock_type - lock type. Default is \p cds::sync::spin.
- \p opt::back_off - back-off strategy. Default is \p cds::backoff::yield
- \p opt::allocator - allocator (like \p std::allocator) for the values of queue's items.
Default is \ref CDS_DEFAULT_ALLOCATOR
- \p opt::move_policy - policy for moving item's value. Default is \p opt::v::assignment_move_policy.
If the compiler supports move semantics it would be better to specify the move policy
based on the move semantics for type \p T.
- \p opt::stat - internal statistics. Available types: \p mspriority_queue::stat, \p mspriority_queue::empty_stat (the default, no overhead)
*/
template <typename... Options>
struct make_traits {
# ifdef CDS_DOXYGEN_INVOKED
typedef implementation_defined type ; ///< Metafunction result
# else
typedef typename cds::opt::make_options<
typename cds::opt::find_type_traits< traits, Options... >::type
,Options...
>::type type;
# endif
};
} // namespace mspriority_queue
/// Michael & Scott array-based lock-based concurrent priority queue heap
/** @ingroup cds_nonintrusive_priority_queue
Source:
- [1996] G.Hunt, M.Michael, S. Parthasarathy, M.Scott
"An efficient algorithm for concurrent priority queue heaps"
\p %MSPriorityQueue augments the standard array-based heap data structure with
a mutual-exclusion lock on the heap's size and locks on each node in the heap.
Each node also has a tag that indicates whether
it is empty, valid, or in a transient state due to an update to the heap
by an inserting thread.
The algorithm allows concurrent insertions and deletions in opposite directions,
without risking deadlock and without the need for special server threads.
It also uses a "bit-reversal" technique to scatter accesses across the fringe
of the tree to reduce contention.
On large heaps the algorithm achieves significant performance improvements
over serialized single-lock algorithm, for various insertion/deletion
workloads. For small heaps it still performs well, but not as well as
single-lock algorithm.
Template parameters:
- \p T - type to be stored in the list. The priority is a part of \p T type.
- \p Traits - the traits. See \p mspriority_queue::traits for explanation.
It is possible to declare option-based queue with \p mspriority_queue::make_traits
metafunction instead of \p Traits template argument.
*/
template <typename T, class Traits = mspriority_queue::traits >
class MSPriorityQueue: protected cds::intrusive::MSPriorityQueue< T, Traits >
{
//@cond
typedef cds::intrusive::MSPriorityQueue< T, Traits > base_class;
//@endcond
public:
typedef T value_type ; ///< Value type stored in the queue
typedef Traits traits ; ///< Traits template parameter
typedef typename base_class::key_comparator key_comparator; ///< priority comparing functor based on opt::compare and opt::less option setter.
typedef typename base_class::lock_type lock_type; ///< heap's size lock type
typedef typename base_class::back_off back_off ; ///< Back-off strategy
typedef typename traits::stat stat; ///< internal statistics type, see \p intrusive::mspriority_queue::traits::stat
typedef typename base_class::item_counter item_counter;///< Item counter type
typedef typename std::allocator_traits<typename traits::allocator>::template rebind_alloc<value_type> allocator_type; ///< Value allocator
typedef typename traits::move_policy move_policy; ///< Move policy for type \p T
protected:
//@cond
typedef cds::details::Allocator< value_type, allocator_type > cxx_allocator;
struct value_deleter {
void operator()( value_type * p ) const
{
cxx_allocator().Delete( p );
}
};
typedef std::unique_ptr<value_type, value_deleter> scoped_ptr;
//@endcond
public:
/// Constructs empty priority queue
/**
For \p cds::opt::v::initialized_static_buffer the \p nCapacity parameter is ignored.
*/
MSPriorityQueue( size_t nCapacity )
: base_class( nCapacity )
{}
/// Clears priority queue and destructs the object
~MSPriorityQueue()
{
clear();
}
/// Inserts an item into priority queue
/**
If the priority queue is full, the function returns \p false,
no item has been added.
Otherwise, the function inserts the copy of \p val into the heap
and returns \p true.
The function use copy constructor to create new heap item from \p val.
*/
bool push( value_type const& val )
{
scoped_ptr pVal( cxx_allocator().New( val ));
if ( base_class::push( *(pVal.get()))) {
pVal.release();
return true;
}
return false;
}
/// Inserts an item into the queue using a functor
/**
\p Func is a functor called to create node.
The functor \p f takes one argument - a reference to a new node of type \ref value_type :
\code
cds::container::MSPriorityQueue< Foo > myQueue;
Bar bar;
myQueue.push_with( [&bar]( Foo& dest ) { dest = bar; } );
\endcode
*/
template <typename Func>
bool push_with( Func f )
{
scoped_ptr pVal( cxx_allocator().New());
f( *pVal );
if ( base_class::push( *pVal )) {
pVal.release();
return true;
}
return false;
}
/// Inserts a item into priority queue
/**
If the priority queue is full, the function returns \p false,
no item has been added.
Otherwise, the function inserts a new item created from \p args arguments
into the heap and returns \p true.
*/
template <typename... Args>
bool emplace( Args&&... args )
{
scoped_ptr pVal( cxx_allocator().MoveNew( std::forward<Args>(args)... ));
if ( base_class::push( *(pVal.get()))) {
pVal.release();
return true;
}
return false;
}
/// Extracts item with high priority
/**
If the priority queue is empty, the function returns \p false.
Otherwise, it returns \p true and \p dest contains the copy of extracted item.
The item is deleted from the heap.
The function uses \ref move_policy to move extracted value from the heap's top
to \p dest.
The function is equivalent of such call:
\code
pop_with( dest, [&dest]( value_type& src ) { move_policy()(dest, src); } );
\endcode
*/
bool pop( value_type& dest )
{
return pop_with( [&dest]( value_type& src ) { move_policy()(dest, std::move(src)); });
}
/// Extracts an item with high priority
/**
If the priority queue is empty, the function returns \p false.
Otherwise, it returns \p true and \p dest contains the copy of extracted item.
The item is deleted from the heap.
\p Func is a functor called to copy popped value.
The functor takes one argument - a reference to removed node:
\code
cds:container::MSPriorityQueue< Foo > myQueue;
Bar bar;
myQueue.pop_with( [&bar]( Foo& src ) { bar = std::move( src );});
\endcode
*/
template <typename Func>
bool pop_with( Func f )
{
value_type * pVal = base_class::pop();
if ( pVal ) {
f( *pVal );
cxx_allocator().Delete( pVal );
return true;
}
return false;
}
/// Clears the queue (not atomic)
/**
This function is not atomic, but thread-safe
*/
void clear()
{
base_class::clear_with( []( value_type& src ) { value_deleter()(&src); } );
}
/// Clears the queue (not atomic)
/**
This function is not atomic, but thread-safe.
For each item removed the functor \p f is called.
\p Func interface is:
\code
struct clear_functor
{
void operator()( value_type& item );
};
\endcode
*/
template <typename Func>
void clear_with( Func f )
{
base_class::clear_with( [&f]( value_type& val ) { f(val); value_deleter()( &val ); } );
}
/// Checks is the priority queue is empty
bool empty() const
{
return base_class::empty();
}
/// Checks if the priority queue is full
bool full() const
{
return base_class::full();
}
/// Returns current size of priority queue
size_t size() const
{
return base_class::size();
}
/// Return capacity of the priority queue
size_t capacity() const
{
return base_class::capacity();
}
/// Returns const reference to internal statistics
stat const& statistics() const
{
return base_class::statistics();
}
};
}} // namespace cds::container
#endif // #ifndef CDSLIB_CONTAINER_MSPRIORITY_QUEUE_H