8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-25 00:43:03 +01:00
firebird-mirror/extern/icu/source/tools/genrb/reslist.c
2005-05-27 22:45:31 +00:00

1027 lines
29 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2000-2004, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
*
* File reslist.c
*
* Modification History:
*
* Date Name Description
* 02/21/00 weiv Creation.
*******************************************************************************
*/
#include <assert.h>
#include <stdio.h>
#include "reslist.h"
#include "unewdata.h"
#include "unicode/ures.h"
#include "errmsg.h"
#define BIN_ALIGNMENT 16
static UBool gIncludeCopyright = FALSE;
uint32_t res_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status);
static const UDataInfo dataInfo= {
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
sizeof(UChar),
0,
{0x52, 0x65, 0x73, 0x42}, /* dataFormat="resb" */
{1, 1, 0, 0}, /* formatVersion */
{1, 4, 0, 0} /* dataVersion take a look at version inside parsed resb*/
};
static uint8_t calcPadding(uint32_t size) {
/* returns space we need to pad */
return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0);
}
void setIncludeCopyright(UBool val){
gIncludeCopyright=val;
}
UBool getIncludeCopyright(void){
return gIncludeCopyright;
}
/* Writing Functions */
static uint32_t string_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
udata_write32(mem, res->u.fString.fLength);
udata_writeUString(mem, res->u.fString.fChars, res->u.fString.fLength + 1);
udata_writePadding(mem, calcPadding(res->fSize));
return usedOffset;
}
/* Writing Functions */
static uint32_t alias_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
udata_write32(mem, res->u.fString.fLength);
udata_writeUString(mem, res->u.fString.fChars, res->u.fString.fLength + 1);
udata_writePadding(mem, calcPadding(res->fSize));
return usedOffset;
}
static uint32_t array_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
uint32_t *resources = NULL;
uint32_t i = 0;
struct SResource *current = NULL;
if (U_FAILURE(*status)) {
return 0;
}
if (res->u.fArray.fCount > 0) {
resources = (uint32_t *) uprv_malloc(sizeof(uint32_t) * res->u.fArray.fCount);
if (resources == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
current = res->u.fArray.fFirst;
i = 0;
while (current != NULL) {
if (current->fType == URES_INT) {
resources[i] = (current->fType << 28) | (current->u.fIntValue.fValue & 0xFFFFFFF);
} else if (current->fType == URES_BINARY) {
uint32_t uo = usedOffset;
usedOffset = res_write(mem, current, usedOffset, status);
resources[i] = (current->fType << 28) | (usedOffset >> 2);
usedOffset += current->fSize + calcPadding(current->fSize) - (usedOffset - uo);
} else {
usedOffset = res_write(mem, current, usedOffset, status);
resources[i] = (current->fType << 28) | (usedOffset >> 2);
usedOffset += current->fSize + calcPadding(current->fSize);
}
i++;
current = current->fNext;
}
/* usedOffset += res->fSize + pad; */
udata_write32(mem, res->u.fArray.fCount);
udata_writeBlock(mem, resources, sizeof(uint32_t) * res->u.fArray.fCount);
uprv_free(resources);
} else {
/* array is empty */
udata_write32(mem, 0);
}
return usedOffset;
}
static uint32_t intvector_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
uint32_t i = 0;
udata_write32(mem, res->u.fIntVector.fCount);
for(i = 0; i<res->u.fIntVector.fCount; i++) {
udata_write32(mem, res->u.fIntVector.fArray[i]);
}
return usedOffset;
}
static uint32_t bin_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
uint32_t pad = 0;
uint32_t extrapad = calcPadding(res->fSize);
uint32_t dataStart = usedOffset + sizeof(res->u.fBinaryValue.fLength);
if (dataStart % BIN_ALIGNMENT) {
pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
udata_writePadding(mem, pad);
usedOffset += pad;
}
udata_write32(mem, res->u.fBinaryValue.fLength);
if (res->u.fBinaryValue.fLength > 0) {
udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength);
}
udata_writePadding(mem, (BIN_ALIGNMENT - pad + extrapad));
return usedOffset;
}
static uint32_t int_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
return usedOffset;
}
static uint32_t table_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
uint8_t pad = 0;
uint32_t i = 0;
uint16_t *keys16 = NULL;
int32_t *keys32 = NULL;
uint32_t *resources = NULL;
struct SResource *current = NULL;
if (U_FAILURE(*status)) {
return 0;
}
pad = calcPadding(res->fSize);
if (res->u.fTable.fCount > 0) {
if(res->fType == URES_TABLE) {
keys16 = (uint16_t *) uprv_malloc(sizeof(uint16_t) * res->u.fTable.fCount);
if (keys16 == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
} else {
keys32 = (int32_t *) uprv_malloc(sizeof(int32_t) * res->u.fTable.fCount);
if (keys32 == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
}
resources = (uint32_t *) uprv_malloc(sizeof(uint32_t) * res->u.fTable.fCount);
if (resources == NULL) {
uprv_free(keys16);
uprv_free(keys32);
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
current = res->u.fTable.fFirst;
i = 0;
while (current != NULL) {
assert(i < res->u.fTable.fCount);
/* where the key is */
if(res->fType == URES_TABLE) {
keys16[i] = (uint16_t) current->fKey;
} else {
keys32[i] = current->fKey;
}
if (current->fType == URES_INT) {
resources[i] = (current->fType << 28) | (current->u.fIntValue.fValue & 0xFFFFFFF);
} else if (current->fType == URES_BINARY) {
uint32_t uo = usedOffset;
usedOffset = res_write(mem, current, usedOffset, status);
resources[i] = (current->fType << 28) | (usedOffset >> 2);
usedOffset += current->fSize + calcPadding(current->fSize) - (usedOffset - uo);
} else {
usedOffset = res_write(mem, current, usedOffset, status);
resources[i] = (current->fType << 28) | (usedOffset >> 2);
usedOffset += current->fSize + calcPadding(current->fSize);
}
i++;
current = current->fNext;
}
if(res->fType == URES_TABLE) {
udata_write16(mem, (uint16_t)res->u.fTable.fCount);
udata_writeBlock(mem, keys16, sizeof(uint16_t) * res->u.fTable.fCount);
udata_writePadding(mem, pad);
} else {
udata_write32(mem, res->u.fTable.fCount);
udata_writeBlock(mem, keys32, sizeof(int32_t) * res->u.fTable.fCount);
}
udata_writeBlock(mem, resources, sizeof(uint32_t) * res->u.fTable.fCount);
uprv_free(keys16);
uprv_free(keys32);
uprv_free(resources);
} else {
/* table is empty */
if(res->fType == URES_TABLE) {
udata_write16(mem, 0);
udata_writePadding(mem, pad);
} else {
udata_write32(mem, 0);
}
}
return usedOffset;
}
uint32_t res_write(UNewDataMemory *mem, struct SResource *res,
uint32_t usedOffset, UErrorCode *status) {
if (U_FAILURE(*status)) {
return 0;
}
if (res != NULL) {
switch (res->fType) {
case URES_STRING:
return string_write (mem, res, usedOffset, status);
case URES_ALIAS:
return alias_write (mem, res, usedOffset, status);
case URES_INT_VECTOR:
return intvector_write (mem, res, usedOffset, status);
case URES_BINARY:
return bin_write (mem, res, usedOffset, status);
case URES_INT:
return int_write (mem, res, usedOffset, status);
case URES_ARRAY:
return array_write (mem, res, usedOffset, status);
case URES_TABLE:
case URES_TABLE32:
return table_write (mem, res, usedOffset, status);
default:
break;
}
}
*status = U_INTERNAL_PROGRAM_ERROR;
return 0;
}
void bundle_write(struct SRBRoot *bundle, const char *outputDir, const char *outputPkg, char *writtenFilename, int writtenFilenameLen, UErrorCode *status) {
UNewDataMemory *mem = NULL;
uint8_t pad = 0;
uint32_t root = 0;
uint32_t usedOffset = 0;
uint32_t top, size;
char dataName[1024];
int32_t indexes[URES_INDEX_TOP];
if (writtenFilename && writtenFilenameLen) {
*writtenFilename = 0;
}
if (U_FAILURE(*status)) {
return;
}
if (writtenFilename) {
int32_t off = 0, len = 0;
if (outputDir) {
len = (int32_t)uprv_strlen(outputDir);
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename, outputDir, len);
}
if (writtenFilenameLen -= len) {
off += len;
writtenFilename[off] = U_FILE_SEP_CHAR;
if (--writtenFilenameLen) {
++off;
if(outputPkg != NULL)
{
uprv_strcpy(writtenFilename+off, outputPkg);
off += (int32_t)uprv_strlen(outputPkg);
writtenFilename[off] = '_';
++off;
}
len = (int32_t)uprv_strlen(bundle->fLocale);
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename + off, bundle->fLocale, len);
if (writtenFilenameLen -= len) {
off += len;
len = 5;
if (len > writtenFilenameLen) {
len = writtenFilenameLen;
}
uprv_strncpy(writtenFilename + off, ".res", len);
}
}
}
}
if(outputPkg)
{
uprv_strcpy(dataName, outputPkg);
uprv_strcat(dataName, "_");
uprv_strcat(dataName, bundle->fLocale);
}
else
{
uprv_strcpy(dataName, bundle->fLocale);
}
mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status);
if(U_FAILURE(*status)){
return;
}
pad = calcPadding(bundle->fKeyPoint);
usedOffset = bundle->fKeyPoint + pad ; /* top of the strings */
/* we're gonna put the main table at the end */
top = usedOffset + bundle->fRoot->u.fTable.fChildrenSize;
root = (top) >> 2 | (bundle->fRoot->fType << 28);
/* write the root item */
udata_write32(mem, root);
/* add to top the size of the root item */
top += bundle->fRoot->fSize;
top += calcPadding(top);
/*
* formatVersion 1.1 (ICU 2.8):
* write int32_t indexes[] after root and before the strings
* to make it easier to parse resource bundles in icuswap or from Java etc.
*/
indexes[URES_INDEX_LENGTH]= URES_INDEX_TOP;
indexes[URES_INDEX_STRINGS_TOP]= (int32_t)(usedOffset>>2);
indexes[URES_INDEX_RESOURCES_TOP]= (int32_t)(top>>2);
indexes[URES_INDEX_BUNDLE_TOP]= indexes[URES_INDEX_RESOURCES_TOP];
indexes[URES_INDEX_MAX_TABLE_LENGTH]= bundle->fMaxTableLength;
/* write the indexes[] */
udata_writeBlock(mem, indexes, sizeof(indexes));
/* write the table key strings */
udata_writeBlock(mem, bundle->fKeys+URES_STRINGS_BOTTOM,
bundle->fKeyPoint-URES_STRINGS_BOTTOM);
/* write the padding bytes after the table key strings */
udata_writePadding(mem, pad);
/* write all of the bundle contents: the root item and its children */
usedOffset = res_write(mem, bundle->fRoot, usedOffset, status);
size = udata_finish(mem, status);
if(top != size) {
fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n",
(int)size, (int)top);
*status = U_INTERNAL_PROGRAM_ERROR;
}
}
/* Opening Functions */
struct SResource* res_open(const struct UString* comment, UErrorCode* status){
struct SResource *res;
if (U_FAILURE(*status)) {
return NULL;
}
res = (struct SResource *) uprv_malloc(sizeof(struct SResource));
if (res == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memset(res, 0, sizeof(struct SResource));
res->fComment = NULL;
if(comment != NULL){
res->fComment = (struct UString *) uprv_malloc(sizeof(struct UString));
if(res->fComment == NULL){
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
ustr_init(res->fComment);
ustr_cpy(res->fComment, comment, status);
}
return res;
}
struct SResource* table_open(struct SRBRoot *bundle, char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
/*
* always open a table not a table32 in case it remains empty -
* try to use table32 only when necessary
*/
res->fType = URES_TABLE;
res->fSize = sizeof(uint16_t);
res->u.fTable.fCount = 0;
res->u.fTable.fChildrenSize = 0;
res->u.fTable.fFirst = NULL;
res->u.fTable.fRoot = bundle;
return res;
}
struct SResource* array_open(struct SRBRoot *bundle, char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_ARRAY;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
res->fSize = sizeof(int32_t);
res->u.fArray.fCount = 0;
res->u.fArray.fChildrenSize = 0;
res->u.fArray.fFirst = NULL;
res->u.fArray.fLast = NULL;
return res;
}
struct SResource *string_open(struct SRBRoot *bundle, char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_STRING;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
res->u.fString.fLength = len;
res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
if (res->u.fString.fChars == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1));
res->fSize = sizeof(int32_t) + sizeof(UChar) * (len+1);
return res;
}
/* TODO: make alias_open and string_open use the same code */
struct SResource *alias_open(struct SRBRoot *bundle, char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_ALIAS;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
res->u.fString.fLength = len;
res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
if (res->u.fString.fChars == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1));
res->fSize = sizeof(int32_t) + sizeof(UChar) * (len + 1);
return res;
}
struct SResource* intvector_open(struct SRBRoot *bundle, char *tag, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_INT_VECTOR;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
res->fSize = sizeof(int32_t);
res->u.fIntVector.fCount = 0;
res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR);
if (res->u.fIntVector.fArray == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
return res;
}
struct SResource *int_open(struct SRBRoot *bundle, char *tag, int32_t value, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_INT;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fSize = 0;
res->fNext = NULL;
res->u.fIntValue.fValue = value;
return res;
}
struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) {
struct SResource *res = res_open(comment, status);
if (U_FAILURE(*status)) {
return NULL;
}
res->fType = URES_BINARY;
res->fKey = bundle_addtag(bundle, tag, status);
if (U_FAILURE(*status)) {
uprv_free(res->fComment);
uprv_free(res);
return NULL;
}
res->fNext = NULL;
res->u.fBinaryValue.fLength = length;
res->u.fBinaryValue.fFileName = NULL;
if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){
res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1));
uprv_strcpy(res->u.fBinaryValue.fFileName,fileName);
}
if (length > 0) {
res->u.fBinaryValue.fData = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length);
if (res->u.fBinaryValue.fData == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(res);
return NULL;
}
uprv_memcpy(res->u.fBinaryValue.fData, data, length);
}
else {
res->u.fBinaryValue.fData = NULL;
}
res->fSize = sizeof(int32_t) + sizeof(uint8_t) * length + BIN_ALIGNMENT;
return res;
}
struct SRBRoot *bundle_open(const struct UString* comment, UErrorCode *status) {
struct SRBRoot *bundle = NULL;
if (U_FAILURE(*status)) {
return NULL;
}
bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot));
if (bundle == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return 0;
}
uprv_memset(bundle, 0, sizeof(struct SRBRoot));
bundle->fLocale = NULL;
bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE);
bundle->fKeysCapacity = KEY_SPACE_SIZE;
if(comment != NULL){
}
if (bundle->fKeys == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
uprv_free(bundle);
return NULL;
}
/* formatVersion 1.1: start fKeyPoint after the root item and indexes[] */
bundle->fKeyPoint = URES_STRINGS_BOTTOM;
uprv_memset(bundle->fKeys, 0, URES_STRINGS_BOTTOM);
bundle->fCount = 0;
bundle->fRoot = table_open(bundle, NULL, comment, status);
if (bundle->fRoot == NULL || U_FAILURE(*status)) {
if (U_SUCCESS(*status)) {
*status = U_MEMORY_ALLOCATION_ERROR;
}
uprv_free(bundle->fKeys);
uprv_free(bundle);
return NULL;
}
return bundle;
}
/* Closing Functions */
void table_close(struct SResource *table, UErrorCode *status) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
current = table->u.fTable.fFirst;
while (current != NULL) {
prev = current;
current = current->fNext;
res_close(prev, status);
}
table->u.fTable.fFirst = NULL;
}
void array_close(struct SResource *array, UErrorCode *status) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
current = array->u.fArray.fFirst;
while (current != NULL) {
prev = current;
current = current->fNext;
res_close(prev, status);
}
array->u.fArray.fFirst = NULL;
}
void string_close(struct SResource *string, UErrorCode *status) {
if (string->u.fString.fChars != NULL) {
uprv_free(string->u.fString.fChars);
string->u.fString.fChars =NULL;
}
}
void alias_close(struct SResource *alias, UErrorCode *status) {
if (alias->u.fString.fChars != NULL) {
uprv_free(alias->u.fString.fChars);
alias->u.fString.fChars =NULL;
}
}
void intvector_close(struct SResource *intvector, UErrorCode *status) {
if (intvector->u.fIntVector.fArray != NULL) {
uprv_free(intvector->u.fIntVector.fArray);
intvector->u.fIntVector.fArray =NULL;
}
}
void int_close(struct SResource *intres, UErrorCode *status) {
/* Intentionally left blank */
}
void bin_close(struct SResource *binres, UErrorCode *status) {
if (binres->u.fBinaryValue.fData != NULL) {
uprv_free(binres->u.fBinaryValue.fData);
binres->u.fBinaryValue.fData = NULL;
}
}
void res_close(struct SResource *res, UErrorCode *status) {
if (res != NULL) {
switch(res->fType) {
case URES_STRING:
string_close(res, status);
break;
case URES_ALIAS:
alias_close(res, status);
break;
case URES_INT_VECTOR:
intvector_close(res, status);
break;
case URES_BINARY:
bin_close(res, status);
break;
case URES_INT:
int_close(res, status);
break;
case URES_ARRAY:
array_close(res, status);
break;
case URES_TABLE:
case URES_TABLE32:
table_close(res, status);
break;
default:
/* Shouldn't happen */
break;
}
uprv_free(res);
}
}
void bundle_close(struct SRBRoot *bundle, UErrorCode *status) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
if (bundle->fRoot != NULL) {
current = bundle->fRoot->u.fTable.fFirst;
while (current != NULL) {
prev = current;
current = current->fNext;
res_close(prev, status);
}
uprv_free(bundle->fRoot);
}
if (bundle->fLocale != NULL) {
uprv_free(bundle->fLocale);
}
if (bundle->fKeys != NULL) {
uprv_free(bundle->fKeys);
}
uprv_free(bundle);
}
/* Adding Functions */
void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) {
struct SResource *current = NULL;
struct SResource *prev = NULL;
struct SResTable *list;
if (U_FAILURE(*status)) {
return;
}
/* remember this linenumber to report to the user if there is a duplicate key */
res->line = linenumber;
/* here we need to traverse the list */
list = &(table->u.fTable);
if(table->fType == URES_TABLE && res->fKey > 0xffff) {
/* this table straddles the 64k strings boundary, update to a table32 */
table->fType = URES_TABLE32;
/*
* increase the size because count and each string offset
* increase from uint16_t to int32_t
*/
table->fSize += (1 + list->fCount) * 2;
}
++(list->fCount);
if(list->fCount > (uint32_t)list->fRoot->fMaxTableLength) {
list->fRoot->fMaxTableLength = list->fCount;
}
/*
* URES_TABLE: 6 bytes = 1 uint16_t key string offset + 1 uint32_t Resource
* URES_TABLE32: 8 bytes = 1 int32_t key string offset + 1 uint32_t Resource
*/
table->fSize += table->fType == URES_TABLE ? 6 : 8;
table->u.fTable.fChildrenSize += res->fSize + calcPadding(res->fSize);
if (res->fType == URES_TABLE || res->fType == URES_TABLE32) {
table->u.fTable.fChildrenSize += res->u.fTable.fChildrenSize;
} else if (res->fType == URES_ARRAY) {
table->u.fTable.fChildrenSize += res->u.fArray.fChildrenSize;
}
/* is list still empty? */
if (list->fFirst == NULL) {
list->fFirst = res;
res->fNext = NULL;
return;
}
current = list->fFirst;
while (current != NULL) {
if (uprv_strcmp(((list->fRoot->fKeys) + (current->fKey)), ((list->fRoot->fKeys) + (res->fKey))) < 0) {
prev = current;
current = current->fNext;
} else if (uprv_strcmp(((list->fRoot->fKeys) + (current->fKey)), ((list->fRoot->fKeys) + (res->fKey))) > 0) {
/* we're either in front of list, or in middle */
if (prev == NULL) {
/* front of the list */
list->fFirst = res;
} else {
/* middle of the list */
prev->fNext = res;
}
res->fNext = current;
return;
} else {
/* Key already exists! ERROR! */
error(linenumber, "duplicate key '%s' in table, first appeared at line %d", list->fRoot->fKeys + current->fKey, current->line);
*status = U_UNSUPPORTED_ERROR;
return;
}
}
/* end of list */
prev->fNext = res;
res->fNext = NULL;
}
void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) {
if (U_FAILURE(*status)) {
return;
}
if (array->u.fArray.fFirst == NULL) {
array->u.fArray.fFirst = res;
array->u.fArray.fLast = res;
} else {
array->u.fArray.fLast->fNext = res;
array->u.fArray.fLast = res;
}
(array->u.fArray.fCount)++;
array->fSize += sizeof(uint32_t);
array->u.fArray.fChildrenSize += res->fSize + calcPadding(res->fSize);
if (res->fType == URES_TABLE || res->fType == URES_TABLE32) {
array->u.fArray.fChildrenSize += res->u.fTable.fChildrenSize;
} else if (res->fType == URES_ARRAY) {
array->u.fArray.fChildrenSize += res->u.fArray.fChildrenSize;
}
}
void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) {
if (U_FAILURE(*status)) {
return;
}
*(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value;
intvector->u.fIntVector.fCount++;
intvector->fSize += sizeof(uint32_t);
}
/* Misc Functions */
void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) {
if(U_FAILURE(*status)) {
return;
}
if (bundle->fLocale!=NULL) {
uprv_free(bundle->fLocale);
}
bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1));
if(bundle->fLocale == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
/*u_strcpy(bundle->fLocale, locale);*/
u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1);
}
int32_t
bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) {
int32_t keypos, length;
if (U_FAILURE(*status)) {
return -1;
}
if (tag == NULL) {
/* do not set an error: the root table has a NULL tag */
return -1;
}
keypos = bundle->fKeyPoint;
bundle->fKeyPoint += length = (int32_t) (uprv_strlen(tag) + 1);
if (bundle->fKeyPoint >= bundle->fKeysCapacity) {
/* overflow - resize the keys buffer */
bundle->fKeysCapacity += KEY_SPACE_SIZE;
bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity);
if(bundle->fKeys == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return -1;
}
}
uprv_memcpy(bundle->fKeys + keypos, tag, length);
return keypos;
}