8
0
mirror of https://github.com/FirebirdSQL/firebird.git synced 2025-01-31 15:23:03 +01:00
firebird-mirror/src/jrd/isc_sync.cpp

3652 lines
81 KiB
C++

/*
* PROGRAM: JRD Access Method
* MODULE: isc_sync.cpp
* DESCRIPTION: General purpose but non-user routines.
*
* The contents of this file are subject to the Interbase Public
* License Version 1.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy
* of the License at http://www.Inprise.com/IPL.html
*
* Software distributed under the License is distributed on an
* "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express
* or implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The Original Code was created by Inprise Corporation
* and its predecessors. Portions created by Inprise Corporation are
* Copyright (C) Inprise Corporation.
*
* All Rights Reserved.
* Contributor(s): ______________________________________.
*
* 2002.02.15 Sean Leyne - Code Cleanup, removed obsolete "XENIX" port
* 2002.02.15 Sean Leyne - Code Cleanup, removed obsolete "DELTA" port
* 2002.02.15 Sean Leyne - Code Cleanup, removed obsolete "IMP" port
*
* 2002-02-23 Sean Leyne - Code Cleanup, removed old M88K and NCR3000 port
*
* 2002.10.27 Sean Leyne - Completed removal of obsolete "DG_X86" port
* 2002.10.27 Sean Leyne - Completed removal of obsolete "M88K" port
*
* 2002.10.28 Sean Leyne - Completed removal of obsolete "DGUX" port
* 2002.10.28 Sean Leyne - Code cleanup, removed obsolete "DecOSF" port
* 2002.10.28 Sean Leyne - Code cleanup, removed obsolete "SGI" port
*
* 2002.10.29 Sean Leyne - Removed obsolete "Netware" port
*
*/
#include "firebird.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef SOLARIS
#include "../jrd/gdsassert.h"
#endif
#ifdef HPUX
#include <sys/pstat.h>
#endif
//#include "../common/classes/timestamp.h"
#include "../jrd/common.h"
#include "gen/iberror.h"
#include "../jrd/gds_proto.h"
#include "../jrd/isc_proto.h"
#include "../jrd/os/isc_i_proto.h"
#include "../jrd/os/os_utils.h"
#include "../jrd/isc_s_proto.h"
#include "../jrd/file_params.h"
#include "../jrd/gdsassert.h"
#include "../jrd/jrd.h"
#include "../jrd/err_proto.h"
#include "../jrd/thread_proto.h"
#include "../common/classes/fb_tls.h"
#include "../common/config/config.h"
#include "../common/utils_proto.h"
#include "../common/StatusArg.h"
#include "../jrd/jrd_pwd.h"
#ifdef UNIX
#include <setjmp.h>
#endif
static int process_id;
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
// Unix specific stuff
#ifdef UNIX
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#ifdef HAVE_SYS_SIGNAL_H
#include <sys/signal.h>
#endif
#include <errno.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef USE_SYS5SEMAPHORE
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include <sys/mman.h>
#define FTOK_KEY 15
#define PRIV 0666
//#ifndef SHMEM_DELTA
//#define SHMEM_DELTA (1 << 22)
//#endif
//#ifndef SIGURG
//#define SIGURG SIGINT
//#endif
#ifndef HAVE_SEMUN
union semun
{
int val;
struct semid_ds *buf;
ushort *array;
};
#endif
#endif // UNIX
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#ifndef HAVE_GETPAGESIZE
static size_t getpagesize()
{
return PAGESIZE;
}
#endif
#ifdef DEBUG_IPC
#define IPC_TRACE(x) { /*time_t t; time(&t); printf("%s", ctime(&t) ); printf x; fflush (stdout);*/ gds__log x; }
#else
#define IPC_TRACE(x)
#endif
// Windows NT
#ifdef WIN_NT
#include <process.h>
#include <windows.h>
#endif
using namespace Jrd;
using namespace Firebird;
static void error(Arg::StatusVector&, const TEXT*, ISC_STATUS);
static bool event_blocked(const event_t* event, const SLONG value);
#ifdef UNIX
#ifdef __cplusplus
extern "C" {
#endif
static void longjmp_sig_handler(int);
#ifdef __cplusplus
}
#endif
static void longjmp_sig_handler(int);
static GlobalPtr<Mutex> openFdInit;
namespace {
// File lock holder
class FileLock
{
public:
enum LockLevel {LCK_NONE, LCK_SHARED, LCK_EXCL};
enum DtorMode {CLOSED, OPENED, LOCKED};
FileLock(Arg::StatusVector& aStatusVector, int pFd, DtorMode pMode = CLOSED)
: statusVector(aStatusVector), level(LCK_NONE), fd(pFd), dtorMode(pMode)
{ }
~FileLock()
{
switch (dtorMode)
{
case LOCKED:
break;
case OPENED:
unlock();
break;
case CLOSED:
unlock();
close(fd);
break;
}
}
// unlocking can only put error into log file - we can't throw in dtors
void unlock()
{
if (level == LCK_NONE)
{
return;
}
#ifdef HAVE_FLOCK
if (flock(fd, LOCK_UN))
#else
struct flock lock;
lock.l_type = F_UNLCK;
lock.l_whence = 0;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(fd, F_SETLK, &lock) == -1)
#endif
{
Arg::StatusVector local;
error(local, NAME, errno);
iscLogStatus("Unlock error", local.value());
}
level = LCK_NONE;
}
// Call it to keep file locked & opened after dtor is called
void setDtorMode(DtorMode mode) throw()
{
dtorMode = mode;
}
// Call when using already locked file in ctor
void setLevel(LockLevel l)
{
level = l;
}
// All lock methods return true on success, false on error
bool exclusive()
{
return doLock(false, true);
}
bool tryExclusive()
{
return doLock(false, false);
}
bool shared()
{
return doLock(true, true);
}
bool tryShared()
{
return doLock(true, false);
}
private:
Arg::StatusVector& statusVector;
LockLevel level;
int fd;
DtorMode dtorMode;
static const char* NAME;
private:
bool doLock(bool shared, bool wait)
{
const LockLevel newLevel = shared ? LCK_SHARED : LCK_EXCL;
if (newLevel == level)
{
return true;
}
if (level != LCK_NONE)
{
unlock();
}
#ifdef HAVE_FLOCK
if (flock(fd, (shared ? LOCK_SH : LOCK_EX) | (wait ? 0 : LOCK_NB)))
#else //use FCNTL
struct flock lock;
lock.l_type = shared ? F_RDLCK : F_WRLCK;
lock.l_whence = 0;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(fd, wait ? F_SETLKW : F_SETLK, &lock) == -1)
#endif
{
error(statusVector, NAME, errno);
return false;
}
level = newLevel;
return true;
}
};
const char* FileLock::NAME =
#ifdef HAVE_FLOCK
"flock";
#else //use FCNTL
"fcntl";
#endif
}
#ifdef USE_SYS5SEMAPHORE
static SLONG create_semaphores(Arg::StatusVector&, SLONG, int);
namespace {
int fdSem = -1;
int sharedCount = 0;
int fd_init = -1;
// this class is mapped into shared file
class SemTable
{
public:
const static int N_FILES = 8;
const static int N_SETS = 256;
#ifdef DEV_BUILD
const static int SEM_PER_SET = 4; // force multiple sets allocation
#else
const static int SEM_PER_SET = 31; // hard limit for some old systems, might set to 32
#endif
const static unsigned char CURRENT_VERSION = 1;
unsigned char version;
private:
int lastSet;
struct
{
char name[MAXPATHLEN];
} filesTable[N_FILES];
struct
{
key_t semKey;
int fileNum;
SLONG mask;
int get(int fNum)
{
if (fileNum == fNum && mask != 0)
{
for (int bit = 0; bit < SEM_PER_SET; ++bit)
{
if (mask & (1 << bit))
{
mask &= ~(1 << bit);
return bit;
}
}
// bad bits in mask ?
mask = 0;
}
return -1;
}
int create(int fNum)
{
fileNum = fNum;
mask = 1 << SEM_PER_SET;
--mask;
mask &= ~1;
return 0;
}
void put(int bit)
{
// fb_assert(!(mask & (1 << bit)));
mask |= (1 << bit);
}
} set[N_SETS];
public:
void cleanup(int fNum, bool release);
key_t getKey(int semSet) const
{
fb_assert(semSet >= 0 && semSet < lastSet);
return set[semSet].semKey;
}
void init()
{
if (sharedCount)
{
return;
}
ftruncate(fdSem, sizeof(*this));
for (int i = 0; i < N_SETS; ++i)
{
if (set[i].fileNum > 0)
{
// may be some old data about really active semaphore sets?
if (version == CURRENT_VERSION)
{
const int semId = semget(set[i].semKey, SEM_PER_SET, 0);
if (semId > 0)
{
semctl(semId, 0, IPC_RMID);
}
}
set[i].fileNum = 0;
}
}
for (int i = 0; i < N_FILES; ++i)
{
filesTable[i].name[0] = 0;
}
version = CURRENT_VERSION;
lastSet = 0;
}
bool get(int fileNum, Sys5Semaphore* sem)
{
// try to locate existing set
int n;
for (n = 0; n < lastSet; ++n)
{
const int semNum = set[n].get(fileNum);
if (semNum >= 0)
{
sem->semSet = n;
sem->semNum = semNum;
return true;
}
}
// create new set
for (n = 0; n < lastSet; ++n)
{
if (set[n].fileNum <= 0)
{
break;
}
}
if (n >= N_SETS)
{
return false;
}
if (n >= lastSet)
{
lastSet = n + 1;
}
set[n].semKey = ftok(filesTable[fileNum - 1].name, n);
sem->semSet = n;
sem->semNum = set[n].create(fileNum);
return true;
}
void put(Sys5Semaphore* sem)
{
fb_assert(sem->semSet >= 0 && sem->semSet < N_SETS);
set[sem->semSet].put(sem->semNum);
}
int findFileByName(const PathName& name) const
{
// Get a file ID in filesTable.
for (int fileId = 0; fileId < N_FILES; ++fileId)
{
if (name == filesTable[fileId].name)
{
return fileId + 1;
}
}
// not found
return 0;
}
int addFileByName(const PathName& name)
{
int id = findFileByName(name);
if (id > 0)
{
return id;
}
// Get a file ID in filesTable.
for (int fileId = 0; fileId < SemTable::N_FILES; ++fileId)
{
if (filesTable[fileId].name[0] == 0)
{
name.copyTo(filesTable[fileId].name, sizeof(filesTable[fileId].name));
return fileId + 1;
}
}
// not found
fb_assert(false);
return 0;
}
};
SemTable* semTable = NULL;
class SharedFile
{
public:
SharedFile(const char* pName, void* address, int length)
: fileNum(semTable->addFileByName(pName)), from((UCHAR*) address), to(from + length)
{ }
SharedFile() : fileNum(0), from(0), to(0) { }
int getNum() const { return fileNum; }
static SharedFile* locate(void* s)
{
const int n = getByAddress((UCHAR*) s);
return n >= 0 ? &sharedFiles[n] : 0;
}
static void push(const SharedFile& sf)
{
MutexLockGuard guard(mutex);
IPC_TRACE(("+add SF with %p %p\n", sf.from, sf.to));
sharedFiles.push(sf);
}
static void pop()
{
MutexLockGuard guard(mutex);
SharedFile sf = sharedFiles.pop();
IPC_TRACE(("-pop SF with %p %p\n", sf.from, sf.to));
}
static void remove(void* s)
{
MutexLockGuard guard(mutex);
int n = getByAddress((UCHAR*) s);
if (n >= 0)
{
IPC_TRACE(("-rem SF with %p %p\n", sharedFiles[n].from, sharedFiles[n].to));
sharedFiles.remove(n);
}
else {
IPC_TRACE(("-rem SF Failedp\n"));
}
}
static void remap(void* const f, void* const to, int newLength)
{
MutexLockGuard guard(mutex);
UCHAR* const from = (UCHAR*) f;
for (unsigned int n = 0; n < sharedFiles.getCount(); ++n)
{
if (from == sharedFiles[n].from)
{
sharedFiles[n].from = (UCHAR*) to;
sharedFiles[n].to = sharedFiles[n].from + newLength;
return;
}
}
}
typedef Vector<SharedFile, SemTable::N_FILES> Storage;
private:
int fileNum;
const UCHAR* from;
const UCHAR* to;
static Storage sharedFiles;
static GlobalPtr<Mutex> mutex;
static int getByAddress(UCHAR* const s)
{
MutexLockGuard guard(mutex);
for (unsigned int n = 0; n < sharedFiles.getCount(); ++n)
{
if (s >= sharedFiles[n].from && s < sharedFiles[n].to)
{
return n;
}
}
return -1;
}
};
SharedFile::Storage SharedFile::sharedFiles;
GlobalPtr<Mutex> SharedFile::mutex;
int idCache[SemTable::N_SETS];
GlobalPtr<Mutex> idCacheMutex;
void initCache()
{
MutexLockGuard guard(idCacheMutex);
memset(idCache, 0xff, sizeof idCache);
}
void SemTable::cleanup(int fNum, bool release)
{
fb_assert(fNum > 0 && fNum <= N_FILES);
if (release)
{
filesTable[fNum - 1].name[0] = 0;
}
MutexLockGuard guard(idCacheMutex);
for (int n = 0; n < lastSet; ++n)
{
if (set[n].fileNum == fNum)
{
if (release)
{
Sys5Semaphore sem;
sem.semSet = n;
int id = sem.getId();
if (id >= 0)
{
semctl(id, 0, IPC_RMID);
}
}
idCache[n] = -1;
}
}
}
bool getSem5(Sys5Semaphore* sem)
{
Arg::StatusVector status;
// Lock init file.
FileLock initLock(status, fd_init, FileLock::OPENED);
if (!initLock.exclusive())
return false;
// Find out what file does it belong to.
SharedFile* sf = SharedFile::locate(sem);
if (!sf)
{
return false;
}
return semTable->get(sf->getNum(), sem);
}
void freeSem5(Sys5Semaphore* sem)
{
Arg::StatusVector status;
// Lock init file.
FileLock initLock(status, fd_init, FileLock::OPENED);
if (!initLock.exclusive())
{
iscLogStatus("freeSem5 failed to lock init file", status.value());
return;
}
semTable->put(sem);
}
}
int Sys5Semaphore::getId()
{
MutexLockGuard guard(idCacheMutex);
fb_assert(semSet >= 0 && semSet < SemTable::N_SETS);
int id = idCache[semSet];
if (id < 0)
{
Arg::StatusVector status;
id = create_semaphores(status, semTable->getKey(semSet), SemTable::SEM_PER_SET);
if (id >= 0)
{
idCache[semSet] = id;
}
else
{
iscLogStatus("create_semaphores failed:", status.value());
}
}
return id;
}
#endif // USE_SYS5SEMAPHORE
#endif // UNIX
#if defined(WIN_NT)
static bool make_object_name(TEXT*, size_t, const TEXT*, const TEXT*);
#endif
#if defined FREEBSD || defined NETBSD || defined DARWIN || defined HPUX
#define sigset signal
#endif
static bool event_blocked(const event_t* event, const SLONG value)
{
/**************************************
*
* e v e n t _ b l o c k e d
*
**************************************
*
* Functional description
* If a wait would block, return true.
*
**************************************/
if (event->event_count >= value)
{
#ifdef DEBUG_ISC_SYNC
printf("event_blocked: FALSE (eg something to report)\n");
fflush(stdout);
#endif
return false;
}
#ifdef DEBUG_ISC_SYNC
printf("event_blocked: TRUE (eg nothing happened yet)\n");
fflush(stdout);
#endif
return true;
}
#ifdef USE_POSIX_THREADS
#ifdef USE_SYS5SEMAPHORE
namespace {
GlobalPtr<Mutex> timerAccess;
GlobalPtr<Semaphore> timerWakeup, timerFini;
void stopTimers(void*);
bool stopThread = false;
struct TimerEntry
{
SINT64 fireTime;
int semId;
USHORT semNum;
static const SINT64& generate(const void* /*sender*/, const TimerEntry& item) { return item.fireTime; }
static THREAD_ENTRY_DECLARE timeThread(THREAD_ENTRY_PARAM);
static void init()
{
int rc = gds__thread_start(timeThread, 0, 0, 0, 0);
if (rc != 0)
{
fatal_exception::raiseFmt("Error starting timer thread");
}
gds__register_cleanup(stopTimers, 0);
}
static void cleanup()
{
stopThread = true;
timerWakeup->release();
timerFini->enter();
}
};
typedef SortedArray<TimerEntry, InlineStorage<TimerEntry, 64>, SINT64, TimerEntry> TimerQueue;
GlobalPtr<TimerQueue> timerQueue;
InitMutex<TimerEntry> timerHolder;
SINT64 curTime()
{
struct timeval cur_time;
struct timezone tzUnused;
if (gettimeofday(&cur_time, &tzUnused) != 0)
{
system_call_failed::raise("gettimeofday");
}
SINT64 timeout = ((SINT64) cur_time.tv_sec) * 1000000 + cur_time.tv_usec;
return timeout;
}
SINT64 addTimer(Sys5Semaphore* sem, int microSeconds)
{
timerHolder.init();
TimerEntry newTimer;
newTimer.fireTime = curTime() + microSeconds;
newTimer.semId = sem->getId();
newTimer.semNum = sem->semNum;
MutexLockGuard guard(timerAccess);
timerQueue->add(newTimer);
timerWakeup->release();
return newTimer.fireTime;
}
void delTimer(Sys5Semaphore* sem)
{
const int id = sem->getId();
MutexLockGuard guard(timerAccess);
for (unsigned int i = 0; i < timerQueue->getCount(); ++i)
{
const TimerEntry& e(timerQueue->operator[](i));
if (e.semNum == sem->semNum && e.semId == id)
{
timerQueue->remove(i);
return;
}
}
}
void stopTimers(void*)
{
timerHolder.cleanup();
}
THREAD_ENTRY_DECLARE TimerEntry::timeThread(THREAD_ENTRY_PARAM)
{
while (!stopThread)
{
int microSeconds = 0;
{
MutexLockGuard guard(timerAccess);
const SINT64 cur = curTime();
while (timerQueue->getCount() > 0)
{
const TimerEntry& e(timerQueue->operator[](0));
if (e.fireTime <= cur)
{
for (;;)
{
union semun arg;
arg.val = 0;
int ret = semctl(e.semId, e.semNum, SETVAL, arg);
if (ret != -1)
break;
if (!SYSCALL_INTERRUPTED(errno))
{
break;
}
}
timerQueue->remove((size_t) 0);
}
else
{
microSeconds = e.fireTime - cur;
break;
}
}
}
if (microSeconds)
{
timerWakeup->tryEnter(0, microSeconds / 1000);
}
else
{
timerWakeup->enter();
}
}
timerFini->release();
return 0;
}
} // namespace
SLONG ISC_event_clear(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ c l e a r ( S Y S V )
*
**************************************
*
* Functional description
* Clear an event preparatory to waiting on it. The order of
* battle for event synchronization is:
*
* 1. Clear event.
* 2. Test data structure for event already completed
* 3. Wait on event.timerQueue[0].
*
**************************************/
union semun arg;
arg.val = 1;
if (semctl(event->getId(), event->semNum, SETVAL, arg) < 0)
{
iscLogStatus("event_clear()",
(Arg::Gds(isc_sys_request) << Arg::Str("semctl") << SYS_ERR(errno)).value());
}
return (event->event_count + 1);
}
void ISC_event_fini(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ f i n i ( S Y S V )
*
**************************************
*
* Functional description
* Discard an event object.
*
**************************************/
IPC_TRACE(("ISC_event_fini set=%d num=%d\n", event->semSet, event->semNum));
freeSem5(event);
}
int ISC_event_init(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ i n i t ( S Y S V )
*
**************************************
*
* Functional description
* Prepare an event object for use.
*
**************************************/
event->event_count = 0;
if (!getSem5(event))
{
IPC_TRACE(("ISC_event_init failed get sem %p\n", event));
return FB_FAILURE;
}
IPC_TRACE(("ISC_event_init set=%d num=%d\n", event->semSet, event->semNum));
union semun arg;
arg.val = 0;
if (semctl(event->getId(), event->semNum, SETVAL, arg) < 0)
{
iscLogStatus("event_init()",
(Arg::Gds(isc_sys_request) << Arg::Str("semctl") << SYS_ERR(errno)).value());
return FB_FAILURE;
}
return FB_SUCCESS;
}
int ISC_event_post(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ p o s t ( S Y S V )
*
**************************************
*
* Functional description
* Post an event to wake somebody else up.
*
**************************************/
union semun arg;
++event->event_count;
for (;;)
{
arg.val = 0;
int ret = semctl(event->getId(), event->semNum, SETVAL, arg);
if (ret != -1)
break;
if (!SYSCALL_INTERRUPTED(errno))
{
gds__log("ISC_event_post: semctl failed with errno = %d", errno);
return FB_FAILURE;
}
}
return FB_SUCCESS;
}
int ISC_event_wait(event_t* event, SLONG value, const SLONG micro_seconds)
{
/**************************************
*
* I S C _ e v e n t _ w a i t ( S Y S V )
*
**************************************
*
* Functional description
* Wait on an event. If timeout limit specified, return
* anyway after the timeout even if no event has
* happened. If returning due to timeout, return
* FB_FAILURE else return FB_SUCCESS.
*
**************************************/
//sigset_t mask, oldmask;
// If we're not blocked, the rest is a gross waste of time
if (!event_blocked(event, value))
return FB_SUCCESS;
// Set up timers if a timeout period was specified.
//struct itimerval user_timer;
//struct sigaction user_handler;
//struct timeval cur_time;
//struct timezone tzUnused;
SINT64 timeout = 0;
if (micro_seconds > 0)
{
timeout = addTimer(event, micro_seconds);
}
// Go into wait loop
int ret = FB_SUCCESS;
for (;;)
{
if (!event_blocked(event, value))
break;
struct sembuf sb;
sb.sem_op = 0;
sb.sem_flg = 0;
sb.sem_num = event->semNum;
int rc = semop(event->getId(), &sb, 1);
if (rc == -1 && !SYSCALL_INTERRUPTED(errno))
{
gds__log("ISC_event_wait: semop failed with errno = %d", errno);
}
if (micro_seconds > 0)
{
// distinguish between timeout and actually happened event
if (! event_blocked(event, value))
break;
// had timeout expired?
if (curTime() >= timeout) // really expired
{
ret = FB_FAILURE;
break;
}
}
}
// Cancel the handler. We only get here if a timeout was specified.
if (micro_seconds > 0)
{
delTimer(event);
}
return ret;
}
#else //not USE_SYS5SEMAPHORE
namespace {
int isPthreadError(int rc, const char* function)
{
if (rc == 0)
return 0;
iscLogStatus("Pthread Error",
(Arg::Gds(isc_sys_request) << Arg::Str(function) << Arg::Unix(rc)).value());
return rc;
}
}
#define PTHREAD_ERROR(x) if (isPthreadError((x), #x)) return FB_FAILURE
#define PTHREAD_ERRNO(x) { int tmpState = (x); if (isPthreadError(tmpState, #x)) return tmpState; }
#define LOG_PTHREAD_ERROR(x) isPthreadError((x), #x)
SLONG ISC_event_clear(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ c l e a r ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Clear an event preparatory to waiting on it. The order of
* battle for event synchronization is:
*
* 1. Clear event.
* 2. Test data structure for event already completed
* 3. Wait on event.
*
**************************************/
LOG_PTHREAD_ERROR(pthread_mutex_lock(event->event_mutex));
const SLONG ret = event->event_count + 1;
LOG_PTHREAD_ERROR(pthread_mutex_unlock(event->event_mutex));
return ret;
}
void ISC_event_fini(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ f i n i ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Discard an event object.
*
**************************************/
if (event->pid == getpid())
{
LOG_PTHREAD_ERROR(pthread_mutex_destroy(event->event_mutex));
LOG_PTHREAD_ERROR(pthread_cond_destroy(event->event_cond));
}
}
int ISC_event_init(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ i n i t ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Prepare an event object for use.
*
**************************************/
event->event_count = 0;
event->pid = getpid();
// Prepare an Inter-Process event block
pthread_mutexattr_t mattr;
pthread_condattr_t cattr;
PTHREAD_ERROR(pthread_mutexattr_init(&mattr));
PTHREAD_ERROR(pthread_condattr_init(&cattr));
#ifdef PTHREAD_PROCESS_SHARED
PTHREAD_ERROR(pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED));
PTHREAD_ERROR(pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED));
#else
#error Your system must support PTHREAD_PROCESS_SHARED to use firebird.
#endif
PTHREAD_ERROR(pthread_mutex_init(event->event_mutex, &mattr));
PTHREAD_ERROR(pthread_cond_init(event->event_cond, &cattr));
PTHREAD_ERROR(pthread_mutexattr_destroy(&mattr));
PTHREAD_ERROR(pthread_condattr_destroy(&cattr));
return FB_SUCCESS;
}
int ISC_event_post(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ p o s t ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Post an event to wake somebody else up.
*
**************************************/
PTHREAD_ERROR(pthread_mutex_lock(event->event_mutex));
++event->event_count;
const int ret = pthread_cond_broadcast(event->event_cond);
PTHREAD_ERROR(pthread_mutex_unlock(event->event_mutex));
if (ret)
{
gds__log ("ISC_event_post: pthread_cond_broadcast failed with errno = %d", ret);
return FB_FAILURE;
}
return FB_SUCCESS;
}
int ISC_event_wait(event_t* event, const SLONG value, const SLONG micro_seconds)
{
/**************************************
*
* I S C _ e v e n t _ w a i t ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Wait on an event. If timeout limit specified, return
* anyway after the timeout even if no event has
* happened. If returning due to timeout, return
* FB_FAILURE else return FB_SUCCESS.
*
**************************************/
// If we're not blocked, the rest is a gross waste of time
if (!event_blocked(event, value))
return FB_SUCCESS;
// Set up timers if a timeout period was specified.
struct timespec timer;
if (micro_seconds > 0)
{
timer.tv_sec = time(NULL);
timer.tv_sec += micro_seconds / 1000000;
timer.tv_nsec = 1000 * (micro_seconds % 1000000);
}
int ret = FB_SUCCESS;
pthread_mutex_lock(event->event_mutex);
for (;;)
{
if (!event_blocked(event, value))
{
ret = FB_SUCCESS;
break;
}
// The Posix pthread_cond_wait & pthread_cond_timedwait calls
// atomically release the mutex and start a wait.
// The mutex is reacquired before the call returns.
if (micro_seconds > 0)
{
ret = pthread_cond_timedwait(event->event_cond, event->event_mutex, &timer);
#if (defined LINUX || defined DARWIN || defined HP11 || defined FREEBSD)
if (ret == ETIMEDOUT)
#else
if (ret == ETIME)
#endif
{
// The timer expired - see if the event occurred and return
// FB_SUCCESS or FB_FAILURE accordingly.
if (event_blocked(event, value))
ret = FB_FAILURE;
else
ret = FB_SUCCESS;
break;
}
}
else
ret = pthread_cond_wait(event->event_cond, event->event_mutex);
}
pthread_mutex_unlock(event->event_mutex);
return ret;
}
#endif // USE_SYS5SEMAPHORE
#endif // USE_POSIX_THREADS
#ifdef WIN_NT
SLONG ISC_event_clear(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ c l e a r ( W I N _ N T )
*
**************************************
*
* Functional description
* Clear an event preparatory to waiting on it. The order of
* battle for event synchronization is:
*
* 1. Clear event.
* 2. Test data structure for event already completed
* 3. Wait on event.
*
**************************************/
ResetEvent((HANDLE) event->event_handle);
return event->event_count + 1;
}
void ISC_event_fini(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ f i n i ( W I N _ N T )
*
**************************************
*
* Functional description
* Discard an event object.
*
**************************************/
if (event->event_pid == process_id)
{
CloseHandle((HANDLE) event->event_handle);
}
}
int ISC_event_init(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ i n i t ( W I N _ N T )
*
**************************************
*
* Functional description
* Prepare an event object for use.
*
**************************************/
#ifdef SUPERSERVER
event->event_id = 0;
#else
static int idCounter = 0; // Should it be AtomicCounter? AP-2008
event->event_id = ++idCounter;
#endif
event->event_pid = process_id = getpid();
event->event_count = 0;
event->event_handle = ISC_make_signal(true, true, process_id, event->event_id);
return (event->event_handle) ? FB_SUCCESS : FB_FAILURE;
}
int ISC_event_post(event_t* event)
{
/**************************************
*
* I S C _ e v e n t _ p o s t ( W I N _ N T )
*
**************************************
*
* Functional description
* Post an event to wake somebody else up.
*
**************************************/
++event->event_count;
if (event->event_pid != process_id)
return ISC_kill(event->event_pid, event->event_id, event->event_handle);
return SetEvent((HANDLE) event->event_handle) ? FB_SUCCESS : FB_FAILURE;
}
int ISC_event_wait(event_t* event, const SLONG value, const SLONG micro_seconds)
{
/**************************************
*
* I S C _ e v e n t _ w a i t ( W I N _ N T )
*
**************************************
*
* Functional description
* Wait on an event.
*
**************************************/
// If we're not blocked, the rest is a gross waste of time
if (!event_blocked(event, value)) {
return FB_SUCCESS;
}
// Go into wait loop
const DWORD timeout = (micro_seconds > 0) ? micro_seconds / 1000 : INFINITE;
for (;;)
{
if (!event_blocked(event, value)) {
return FB_SUCCESS;
}
const DWORD status = WaitForSingleObject(event->event_handle, timeout);
if (status != WAIT_OBJECT_0)
{
return FB_FAILURE;
}
}
}
#endif // WIN_NT
#ifdef UNIX
ULONG ISC_exception_post(ULONG sig_num, const TEXT* err_msg)
{
/**************************************
*
* I S C _ e x c e p t i o n _ p o s t ( U N I X )
*
**************************************
*
* Functional description
* When we got a sync exception, fomulate the error code
* write it to the log file, and abort.
*
* 08-Mar-2004, Nickolay Samofatov.
* This function is dangerous and requires rewrite using signal-safe operations only.
* Main problem is that we call a lot of signal-unsafe functions from this signal handler,
* examples are gds__alloc, gds__log, etc... sprintf is safe on some BSD platforms,
* but not on Linux. This may result in lock-up during signal handling.
*
**************************************/
// If there's no err_msg, we asumed the switch() finds no case or we crash.
// Too much goodwill put on the caller. Weak programming style.
// Therefore, lifted this safety net from the NT version.
if (!err_msg)
{
err_msg = "";
}
TEXT* const log_msg = (TEXT *) gds__alloc(strlen(err_msg) + 256);
// NOMEM: crash!
log_msg[0] = '\0';
switch (sig_num)
{
case SIGSEGV:
sprintf(log_msg, "%s Segmentation Fault.\n"
"\t\tThe code attempted to access memory\n"
"\t\twithout privilege to do so.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case SIGBUS:
sprintf(log_msg, "%s Bus Error.\n"
"\t\tThe code caused a system bus error.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case SIGILL:
sprintf(log_msg, "%s Illegal Instruction.\n"
"\t\tThe code attempted to perfrom an\n"
"\t\tillegal operation."
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case SIGFPE:
sprintf(log_msg, "%s Floating Point Error.\n"
"\t\tThe code caused an arithmetic exception\n"
"\t\tor floating point exception."
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
default:
sprintf(log_msg, "%s Unknown Exception.\n"
"\t\tException number %"ULONGFORMAT"."
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg, sig_num);
break;
}
if (err_msg)
{
gds__log(log_msg);
gds__free(log_msg);
}
abort();
return 0; // compiler silencer
}
#endif // UNIX
#ifdef WIN_NT
ULONG ISC_exception_post(ULONG except_code, const TEXT* err_msg)
{
/**************************************
*
* I S C _ e x c e p t i o n _ p o s t ( W I N _ N T )
*
**************************************
*
* Functional description
* When we got a sync exception, fomulate the error code
* write it to the log file, and abort. Note: We can not
* actually call "abort" since in windows this will cause
* a dialog to appear stating the obvious! Since on NT we
* would not get a core file, there is actually no difference
* between abort() and exit(3).
*
**************************************/
ULONG result = 0;
bool is_critical = true;
if (!err_msg)
{
err_msg = "";
}
TEXT* log_msg = (TEXT*) gds__alloc(strlen(err_msg) + 256);
// NOMEM: crash!
log_msg[0] = '\0';
switch (except_code)
{
case EXCEPTION_ACCESS_VIOLATION:
sprintf(log_msg, "%s Access violation.\n"
"\t\tThe code attempted to access a virtual\n"
"\t\taddress without privilege to do so.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_DATATYPE_MISALIGNMENT:
sprintf(log_msg, "%s Datatype misalignment.\n"
"\t\tThe attempted to read or write a value\n"
"\t\tthat was not stored on a memory boundary.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
sprintf(log_msg, "%s Array bounds exceeded.\n"
"\t\tThe code attempted to access an array\n"
"\t\telement that is out of bounds.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_DENORMAL_OPERAND:
sprintf(log_msg, "%s Float denormal operand.\n"
"\t\tOne of the floating-point operands is too\n"
"\t\tsmall to represent as a standard floating-point\n"
"\t\tvalue.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
sprintf(log_msg, "%s Floating-point divide by zero.\n"
"\t\tThe code attempted to divide a floating-point\n"
"\t\tvalue by a floating-point divisor of zero.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_INEXACT_RESULT:
sprintf(log_msg, "%s Floating-point inexact result.\n"
"\t\tThe result of a floating-point operation cannot\n"
"\t\tbe represented exactly as a decimal fraction.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_INVALID_OPERATION:
sprintf(log_msg, "%s Floating-point invalid operand.\n"
"\t\tAn indeterminant error occurred during a\n"
"\t\tfloating-point operation.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_OVERFLOW:
sprintf(log_msg, "%s Floating-point overflow.\n"
"\t\tThe exponent of a floating-point operation\n"
"\t\tis greater than the magnitude allowed.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_STACK_CHECK:
sprintf(log_msg, "%s Floating-point stack check.\n"
"\t\tThe stack overflowed or underflowed as the\n"
"result of a floating-point operation.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_FLT_UNDERFLOW:
sprintf(log_msg, "%s Floating-point underflow.\n"
"\t\tThe exponent of a floating-point operation\n"
"\t\tis less than the magnitude allowed.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_INT_DIVIDE_BY_ZERO:
sprintf(log_msg, "%s Integer divide by zero.\n"
"\t\tThe code attempted to divide an integer value\n"
"\t\tby an integer divisor of zero.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_INT_OVERFLOW:
sprintf(log_msg, "%s Interger overflow.\n"
"\t\tThe result of an integer operation caused the\n"
"\t\tmost significant bit of the result to carry.\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg);
break;
case EXCEPTION_STACK_OVERFLOW:
Firebird::status_exception::raise(Firebird::Arg::Gds(isc_exception_stack_overflow));
// This will never be called, but to be safe it's here
result = (ULONG) EXCEPTION_CONTINUE_EXECUTION;
is_critical = false;
break;
case EXCEPTION_BREAKPOINT:
case EXCEPTION_SINGLE_STEP:
case EXCEPTION_NONCONTINUABLE_EXCEPTION:
case EXCEPTION_INVALID_DISPOSITION:
case EXCEPTION_PRIV_INSTRUCTION:
case EXCEPTION_IN_PAGE_ERROR:
case EXCEPTION_ILLEGAL_INSTRUCTION:
case EXCEPTION_GUARD_PAGE:
// Pass these exception on to someone else, probably the OS or the debugger,
// since there isn't a dam thing we can do with them
result = EXCEPTION_CONTINUE_SEARCH;
is_critical = false;
break;
case 0xE06D7363: // E == Exception. 0x6D7363 == "msc". Intel and Borland use the same code to be compatible
// If we've caught our own software exception,
// continue rewinding the stack to properly handle it
// and deliver an error information to the client side
result = EXCEPTION_CONTINUE_SEARCH;
is_critical = false;
break;
default:
sprintf (log_msg, "%s An exception occurred that does\n"
"\t\tnot have a description. Exception number %"XLONGFORMAT".\n"
"\tThis exception will cause the Firebird server\n"
"\tto terminate abnormally.", err_msg, except_code);
break;
}
if (is_critical)
{
gds__log(log_msg);
}
gds__free(log_msg);
if (is_critical)
{
if (Config::getBugcheckAbort())
{
// Pass exception to outer handler in case debugger is present to collect memory dump
return EXCEPTION_CONTINUE_SEARCH;
}
// Silently exit so guardian or service manager can restart the server.
// If exception is getting out of the application Windows displays a message
// asking if you want to send report to Microsoft or attach debugger,
// application is not terminated until you press some button on resulting window.
// This happens even if you run application as non-interactive service on
// "server" OS like Windows Server 2003.
exit(3);
}
return result;
}
#endif // WIN_NT
void SharedMemoryBase::removeMapFile()
{
#ifndef WIN_NT
TEXT expanded_filename[MAXPATHLEN];
gds__prefix_lock(expanded_filename, sh_mem_name);
// We can't do much (specially in dtors) when it fails
// therefore do not check for errors - at least it's just /tmp.
unlink(expanded_filename);
#endif // WIN_NT
}
#ifdef UNIX
bool SharedMemoryBase::mapFile(Firebird::Arg::StatusVector& statusVector,
const TEXT* filename, ULONG length)
{
/**************************************
*
* I S C _ m a p _ f i l e ( U N I X - m m a p )
*
**************************************
*
* Functional description
* Try to map a given file. If we are the first (i.e. only)
* process to map the file, call a given initialization
* routine (if given) or punt (leaving the file unmapped).
*
**************************************/
setHeader(NULL);
TEXT expanded_filename[MAXPATHLEN];
gds__prefix_lock(expanded_filename, filename);
// make the complete filename for the init file this file is to be used as a
// master lock to eliminate possible race conditions with just a single file
// locking. The race condition is caused as the conversion of a EXCLUSIVE
// lock to a LCK_SHARED lock is not atomic
TEXT init_filename[MAXPATHLEN];
gds__prefix_lock(init_filename, INIT_FILE);
const bool trunc_flag = (length != 0);
// open the init lock file
MutexLockGuard guard(openFdInit);
#ifdef USE_SYS5SEMAPHORE
if (fd_init < 0)
#else
int
#endif
fd_init = os_utils::openCreateSharedFile(init_filename, 0);
if (fd_init == -1)
{
error(statusVector, "open", errno);
return false;
}
// get an exclusive lock on the INIT file with blocking
FileLock initLock(statusVector, fd_init);
#ifdef USE_SYS5SEMAPHORE
initLock.setDtorMode(FileLock::OPENED);
#endif
if (!initLock.exclusive())
{
return false;
}
// init file is locked - no races possible later in this function
#ifdef USE_SYS5SEMAPHORE
if (fdSem < 0)
{
TEXT sem_filename[MAXPATHLEN];
gds__prefix_lock(sem_filename, SEM_FILE);
const int f = os_utils::openCreateSharedFile(sem_filename, 0);
if (f == -1)
{
error(statusVector, "open", errno);
return false;
}
void* sTab = mmap(0, sizeof(SemTable), PROT_READ | PROT_WRITE, MAP_SHARED, f, 0);
if ((U_IPTR) sTab == (U_IPTR) -1)
{
error(statusVector, "mmap", errno);
return false;
}
fdSem = f;
semTable = (SemTable*) sTab;
initCache();
}
fb_assert(semTable);
FileLock semLock(statusVector, fdSem, FileLock::OPENED);
if (semLock.tryExclusive())
{
semTable->init();
}
if (!semLock.shared())
{
return false;
}
#endif
// open the file to be inited
const int fd = os_utils::openCreateSharedFile(expanded_filename, 0);
if (fd == -1)
{
error(statusVector, "open", errno);
return false;
}
// create lock in order to have file autoclosed on error
FileLock mainLock(statusVector, fd);
if (length == 0)
{
// Get and use the existing length of the shared segment
struct stat file_stat;
if (fstat(fd, &file_stat) == -1)
{
error(statusVector, "fstat", errno);
return false;
}
length = file_stat.st_size;
if (length == 0)
{
// keep old text of message here - will be assigned a bit later
error(statusVector, "shmem_data->sh_mem_length_mapped is 0", 0);
return false;
}
}
// map file to memory
void* const address = mmap(0, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ((U_IPTR) address == (U_IPTR) -1)
{
error(statusVector, "mmap", errno);
return false;
}
#ifdef USE_SYS5SEMAPHORE
// register mapped file
// this class is needed to auto-unregister it in case of failure
class sfHolder
{
public:
explicit sfHolder(const SharedFile& sf) : pop(true)
{
SharedFile::push(sf);
}
void materialize()
{
pop = false;
}
~sfHolder()
{
if (pop)
{
SharedFile::pop();
}
}
private:
bool pop;
};
sfHolder holder(SharedFile(expanded_filename, address, length));
#endif
MemoryHeader* hdr = (MemoryHeader*) address;
setHeader(hdr);
sh_mem_length_mapped = length;
sh_mem_handle = fd;
strcpy(sh_mem_name, filename);
#if defined(HAVE_OBJECT_MAP) && (!defined(USE_SYS5SEMAPHORE))
sh_mem_mutex = (mtx*) mapObject(statusVector, OFFSET(MemoryHeader*, mhb_mutex), sizeof(mtx));
if (!sh_mem_mutex)
{
munmap(address, length);
setHeader(NULL);
return false;
}
#else
sh_mem_mutex = &hdr->mhb_mutex;
#endif
// Try to get an exclusive lock on the lock file. This will
// fail if somebody else has the exclusive or shared lock
if (mainLock.tryExclusive())
{
if (trunc_flag)
ftruncate(fd, length);
if (initialize(true))
{
int mtxState = ISC_mutex_init(sh_mem_mutex);
if (mtxState != 0)
{
mutexBug(mtxState, "ISC_init_mutex");
}
if (!mainLock.tryShared())
{
munmap(address, length);
setHeader(NULL);
return false;
}
}
}
else
{
if (initialize(false))
{
if (!mainLock.tryShared())
{
munmap(address, length);
setHeader(NULL);
return false;
}
}
}
// keep opened the shared file_decriptor
mainLock.setDtorMode(FileLock::LOCKED);
#ifdef USE_SYS5SEMAPHORE
// keep shared lock before last shared memory region unmapped
semLock.setDtorMode(FileLock::LOCKED);
++sharedCount;
// keep registered mapped file permanently
holder.materialize();
#endif
return true;
}
#endif // UNIX
#ifdef WIN_NT
bool SharedMemoryBase::mapFile(Firebird::Arg::StatusVector& statusVector,
const TEXT* filename, ULONG length)
{
/**************************************
*
* I S C _ m a p _ f i l e ( W I N _ N T )
*
**************************************
*
* Functional description
* Try to map a given file. If we are the first (i.e. only)
* process to map the file, call a given initialization
* routine (if given) or punt (leaving the file unmapped).
*
**************************************/
setHeader(NULL);
ISC_mutex_init(&sh_mem_winMutex, filename);
sh_mem_mutex = &sh_mem_winMutex;
HANDLE file_handle;
HANDLE event_handle = 0;
int retry_count = 0;
TEXT expanded_filename[MAXPATHLEN];
gds__prefix_lock(expanded_filename, filename);
const bool trunc_flag = (length != 0);
bool init_flag = false;
// retry to attach to mmapped file if the process initializing dies during initialization.
retry:
if (retry_count++ > 0)
THREAD_SLEEP(10);
file_handle = CreateFile(expanded_filename,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
DWORD err = GetLastError();
if (file_handle == INVALID_HANDLE_VALUE)
{
if (err == ERROR_SHARING_VIOLATION)
goto retry;
error(statusVector, "CreateFile", GetLastError());
return false;
}
// Check if file already exists
const bool file_exists = (err == ERROR_ALREADY_EXISTS);
// Create an event that can be used to determine if someone has already
// initialized shared memory.
TEXT object_name[MAXPATHLEN];
if (!make_object_name(object_name, sizeof(object_name), filename, "_event"))
{
error(statusVector, "make_object_name", GetLastError());
CloseHandle(file_handle);
return false;
}
if (!init_flag)
{
event_handle = CreateEvent(ISC_get_security_desc(), TRUE, FALSE, object_name);
if (!event_handle)
{
error(statusVector, "CreateEvent", GetLastError());
CloseHandle(file_handle);
return false;
}
init_flag = (GetLastError() != ERROR_ALREADY_EXISTS);
if (init_flag && false)
{
CloseHandle(event_handle);
CloseHandle(file_handle);
statusVector << Arg::Gds(isc_unavailable);
return false;
}
}
if (length == 0)
{
// Get and use the existing length of the shared segment
if ((length = GetFileSize(file_handle, NULL)) == -1)
{
error(statusVector, "GetFileSize", GetLastError());
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
}
// All but the initializer will wait until the event is set. That
// is done after initialization is complete.
// Close the file and wait for the event to be set or time out.
// The file may be truncated.
CloseHandle(file_handle);
if (!init_flag)
{
// Wait for 10 seconds. Then retry
const DWORD ret_event = WaitForSingleObject(event_handle, 10000);
// If we timed out, just retry. It is possible that the
// process doing the initialization died before setting the event.
if (ret_event == WAIT_TIMEOUT)
{
CloseHandle(event_handle);
if (retry_count > 10)
{
error(statusVector, "WaitForSingleObject", 0);
return false;
}
goto retry;
}
}
DWORD fdw_create;
if (init_flag && file_exists && trunc_flag)
fdw_create = TRUNCATE_EXISTING;
else
fdw_create = OPEN_ALWAYS;
file_handle = CreateFile(expanded_filename,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
fdw_create,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (file_handle == INVALID_HANDLE_VALUE)
{
const DWORD err = GetLastError();
if ((err == ERROR_SHARING_VIOLATION) || (err == ERROR_FILE_NOT_FOUND && fdw_create == TRUNCATE_EXISTING))
{
if (!init_flag) {
CloseHandle(event_handle);
}
goto retry;
}
if (err == ERROR_USER_MAPPED_FILE && init_flag && file_exists && trunc_flag)
statusVector << Arg::Gds(isc_instance_conflict);
else
error(statusVector, "CreateFile", err);
CloseHandle(event_handle);
return false;
}
// Create a file mapping object that will be used to make remapping possible.
// The current length of real mapped file and its name are saved in it.
if (!make_object_name(object_name, sizeof(object_name), filename, "_mapping"))
{
error(statusVector, "make_object_name", GetLastError());
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
HANDLE header_obj = CreateFileMapping(INVALID_HANDLE_VALUE,
ISC_get_security_desc(),
PAGE_READWRITE,
0, 2 * sizeof(ULONG),
object_name);
if (header_obj == NULL)
{
error(statusVector, "CreateFileMapping", GetLastError());
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
if (!init_flag && GetLastError() != ERROR_ALREADY_EXISTS)
{
// We have made header_obj but we are not initializing.
// Previous owner is closed and clear all header_data.
// One need to retry.
CloseHandle(header_obj);
CloseHandle(event_handle);
CloseHandle(file_handle);
goto retry;
}
ULONG* const header_address = (ULONG*) MapViewOfFile(header_obj, FILE_MAP_WRITE, 0, 0, 0);
if (header_address == NULL)
{
error(statusVector, "MapViewOfFile", GetLastError());
CloseHandle(header_obj);
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
// Set or get the true length of the file depending on whether or not we are the first user.
if (init_flag)
{
header_address[0] = length;
header_address[1] = 0;
}
else
length = header_address[0];
// Create the real file mapping object.
TEXT mapping_name[64]; // enough for int32 as text
sprintf(mapping_name, "_mapping_%"ULONGFORMAT, header_address[1]);
if (!make_object_name(object_name, sizeof(object_name), filename, mapping_name))
{
error(statusVector, "make_object_name", GetLastError());
UnmapViewOfFile(header_address);
CloseHandle(header_obj);
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
HANDLE file_obj = CreateFileMapping(file_handle,
ISC_get_security_desc(),
PAGE_READWRITE,
0, length,
object_name);
if (file_obj == NULL)
{
error(statusVector, "CreateFileMapping", GetLastError());
UnmapViewOfFile(header_address);
CloseHandle(header_obj);
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
UCHAR* const address = (UCHAR*) MapViewOfFile(file_obj, FILE_MAP_WRITE, 0, 0, 0);
if (address == NULL)
{
error(statusVector, "MapViewOfFile", GetLastError());
CloseHandle(file_obj);
UnmapViewOfFile(header_address);
CloseHandle(header_obj);
CloseHandle(event_handle);
CloseHandle(file_handle);
return false;
}
MemoryHeader* hdr = (MemoryHeader*) address;
setHeader(hdr);
sh_mem_length_mapped = length;
if (!sh_mem_length_mapped)
{
error(statusVector, "sh_mem_length_mapped is 0", 0);
return false;
}
sh_mem_handle = file_handle;
sh_mem_object = file_obj;
sh_mem_interest = event_handle;
sh_mem_hdr_object = header_obj;
sh_mem_hdr_address = header_address;
strcpy(sh_mem_name, filename);
initialize(init_flag);
if (init_flag)
{
FlushViewOfFile(address, 0);
SetEvent(event_handle);
if (SetFilePointer(sh_mem_handle, length, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER ||
!SetEndOfFile(sh_mem_handle) ||
!FlushViewOfFile(address, 0))
{
error(statusVector, "SetFilePointer", GetLastError());
return false;
}
}
return true;
}
#endif
#ifdef HAVE_MMAP
UCHAR* SharedMemoryBase::mapObject(Arg::StatusVector& statusVector, ULONG object_offset, ULONG object_length)
{
/**************************************
*
* I S C _ m a p _ o b j e c t
*
**************************************
*
* Functional description
* Try to map an object given a file mapping.
*
**************************************/
// Get system page size as this is the unit of mapping.
#ifdef SOLARIS
const long ps = sysconf(_SC_PAGESIZE);
if (ps == -1)
{
error(statusVector, "sysconf", errno);
return NULL;
}
#else
const int ps = getpagesize();
if (ps == -1)
{
error(statusVector, "getpagesize", errno);
return NULL;
}
#endif
const ULONG page_size = (ULONG) ps;
// Compute the start and end page-aligned offsets which contain the object being mapped.
const ULONG start = (object_offset / page_size) * page_size;
const ULONG end = FB_ALIGN(object_offset + object_length, page_size);
const ULONG length = end - start;
int fd = sh_mem_handle;
UCHAR* address = (UCHAR*) mmap(0, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, start);
if ((U_IPTR) address == (U_IPTR) -1)
{
error(statusVector, "mmap", errno);
return NULL;
}
// Return the virtual address of the mapped object.
IPC_TRACE(("ISC_map_object in %p to %p %p\n", shmem_data->sh_mem_address, address, address + length));
return address + (object_offset - start);
}
void SharedMemoryBase::unmapObject(Arg::StatusVector& statusVector, UCHAR** object_pointer, ULONG object_length)
{
/**************************************
*
* I S C _ u n m a p _ o b j e c t
*
**************************************
*
* Functional description
* Try to unmap an object given a file mapping.
* Zero the object pointer after a successful unmap.
*
**************************************/
// Get system page size as this is the unit of mapping.
#ifdef SOLARIS
const long ps = sysconf(_SC_PAGESIZE);
if (ps == -1)
{
error(statusVector, "sysconf", errno);
return;
}
#else
const int ps = getpagesize();
if (ps == -1)
{
error(statusVector, "getpagesize", errno);
return;
}
#endif
const ULONG page_size = (ULONG) ps;
// Compute the start and end page-aligned addresses which contain the mapped object.
UCHAR* const start = (UCHAR *) ((U_IPTR) * object_pointer & ~(page_size - 1));
const UCHAR* end =
(UCHAR*) ((U_IPTR) ((*object_pointer + object_length) + (page_size - 1)) & ~(page_size - 1));
const ULONG length = end - start;
if (munmap((char *) start, length) == -1)
{
error(statusVector, "munmap", errno);
return; // false;
}
*object_pointer = NULL;
return; // true;
}
#endif // HAVE_MMAP
#ifdef WIN_NT
UCHAR* SharedMemoryBase::mapObject(Arg::StatusVector& statusVector,
ULONG object_offset,
ULONG object_length)
{
/**************************************
*
* I S C _ m a p _ o b j e c t
*
**************************************
*
* Functional description
* Try to map an object given a file mapping.
*
**************************************/
SYSTEM_INFO sys_info;
GetSystemInfo(&sys_info);
const ULONG page_size = sys_info.dwAllocationGranularity;
// Compute the start and end page-aligned offsets which
// contain the object being mapped.
const ULONG start = (object_offset / page_size) * page_size;
const ULONG end = FB_ALIGN(object_offset + object_length, page_size);
const ULONG length = end - start;
const HANDLE handle = sh_mem_object;
UCHAR* address = (UCHAR*) MapViewOfFile(handle, FILE_MAP_WRITE, 0, start, length);
if (address == NULL)
{
error(statusVector, "MapViewOfFile", GetLastError());
return NULL;
}
// Return the virtual address of the mapped object.
return (address + (object_offset - start));
}
void SharedMemoryBase::unmapObject(Arg::StatusVector& statusVector,
UCHAR** object_pointer, ULONG object_length)
{
/**************************************
*
* I S C _ u n m a p _ o b j e c t
*
**************************************
*
* Functional description
* Try to unmap an object given a file mapping.
* Zero the object pointer after a successful unmap.
*
**************************************/
SYSTEM_INFO sys_info;
GetSystemInfo(&sys_info);
const ULONG page_size = sys_info.dwAllocationGranularity;
// Compute the start and end page-aligned offsets which
// contain the object being mapped.
const UCHAR* start = (UCHAR*) ((U_IPTR) *object_pointer & ~(page_size - 1));
if (!UnmapViewOfFile(start))
{
error(statusVector, "UnmapViewOfFile", GetLastError());
return;
}
*object_pointer = NULL;
}
#endif
#ifdef USE_POSIX_THREADS
#ifdef USE_SYS5SEMAPHORE
int ISC_mutex_init(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ i n i t ( S Y S V )
*
**************************************
*
* Functional description
* Initialize a mutex.
*
**************************************/
if (!getSem5(mutex))
{
return FB_FAILURE;
}
union semun arg;
arg.val = 1;
int state = semctl(mutex->getId(), mutex->semNum, SETVAL, arg);
if (state == -1)
{
return errno;
}
return 0;
}
int ISC_mutex_lock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k ( S Y S V )
*
**************************************
*
* Functional description
* Seize a mutex.
*
**************************************/
struct sembuf sop;
sop.sem_num = mutex->semNum;
sop.sem_op = -1;
sop.sem_flg = SEM_UNDO;
for (;;)
{
int state = semop(mutex->getId(), &sop, 1);
if (state != -1)
break;
if (!SYSCALL_INTERRUPTED(errno))
return errno;
}
return 0;
}
int ISC_mutex_lock_cond(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k _ c o n d ( S Y S V )
*
**************************************
*
* Functional description
* Conditionally seize a mutex.
*
**************************************/
struct sembuf sop;
sop.sem_num = mutex->semNum;
sop.sem_op = -1;
sop.sem_flg = SEM_UNDO | IPC_NOWAIT;
for (;;)
{
int state = semop(mutex->getId(), &sop, 1);
if (state != -1)
break;
if (!SYSCALL_INTERRUPTED(errno))
return errno;
}
return 0;
}
int ISC_mutex_unlock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ u n l o c k ( S Y S V )
*
**************************************
*
* Functional description
* Release a mutex.
*
**************************************/
struct sembuf sop;
sop.sem_num = mutex->semNum;
sop.sem_op = 1;
sop.sem_flg = SEM_UNDO;
for (;;)
{
int state = semop(mutex->getId(), &sop, 1);
if (state != -1)
break;
if (!SYSCALL_INTERRUPTED(errno))
return errno;
}
return 0;
}
#else // not USE_SYS5SEMAPHORE
#if (defined(HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL) || defined(USE_ROBUST_MUTEX)) && defined(LINUX)
// glibc in linux does not conform to the posix standard. When there is no RT kernel,
// ENOTSUP is returned not by pthread_mutexattr_setprotocol(), but by
// pthread_mutex_init(). Here is a hack to deal with this broken error reporting.
#define BUGGY_LINUX_MUTEX
#endif
#ifdef BUGGY_LINUX_MUTEX
static volatile bool staticBugFlag = false;
#endif
int ISC_mutex_init(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ i n i t ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Initialize a mutex.
*
**************************************/
#ifdef BUGGY_LINUX_MUTEX
do
{
bool bugFlag = staticBugFlag;
#endif
pthread_mutexattr_t mattr;
PTHREAD_ERRNO(pthread_mutexattr_init(&mattr));
#ifdef PTHREAD_PROCESS_SHARED
PTHREAD_ERRNO(pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED));
#else
#error Your system must support PTHREAD_PROCESS_SHARED to use Firebird.
#endif
#ifdef HAVE_PTHREAD_MUTEXATTR_SETPROTOCOL
#ifdef BUGGY_LINUX_MUTEX
if (!bugFlag)
{
#endif
int protocolRc = pthread_mutexattr_setprotocol(&mattr, PTHREAD_PRIO_INHERIT);
if (protocolRc && (protocolRc != ENOTSUP))
{
iscLogStatus("Pthread Error", (Arg::Gds(isc_sys_request) <<
"pthread_mutexattr_setprotocol" << Arg::Unix(protocolRc)).value());
}
#ifdef BUGGY_LINUX_MUTEX
}
#endif
#endif
#ifdef USE_ROBUST_MUTEX
#ifdef BUGGY_LINUX_MUTEX
if (!bugFlag)
{
#endif
LOG_PTHREAD_ERROR(pthread_mutexattr_setrobust_np(&mattr, PTHREAD_MUTEX_ROBUST_NP));
#ifdef BUGGY_LINUX_MUTEX
}
#endif
#endif
memset(mutex->mtx_mutex, 0, sizeof(pthread_mutex_t));
//int state = LOG_PTHREAD_ERROR(pthread_mutex_init(mutex->mtx_mutex, &mattr));
int state = pthread_mutex_init(mutex->mtx_mutex, &mattr);
if (state
#ifdef BUGGY_LINUX_MUTEX
&& (state != ENOTSUP || bugFlag)
#endif
)
{
iscLogStatus("Pthread Error", (Arg::Gds(isc_sys_request) <<
"pthread_mutex_init" << Arg::Unix(state)).value());
}
LOG_PTHREAD_ERROR(pthread_mutexattr_destroy(&mattr));
#ifdef BUGGY_LINUX_MUTEX
if (state == ENOTSUP && !bugFlag)
{
staticBugFlag = true;
continue;
}
return state; // To avoid declaring 'state' out of loop
} while (false);
return 0; // compiler warning silencer
#else
return state;
#endif
}
int ISC_mutex_lock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Seize a mutex.
*
**************************************/
int state = pthread_mutex_lock(mutex->mtx_mutex);
#ifdef USE_ROBUST_MUTEX
if (state == EOWNERDEAD)
{
// We always perform check for dead process
// Therefore may safely mark mutex as recovered
LOG_PTHREAD_ERROR(pthread_mutex_consistent_np(mutex->mtx_mutex));
state = 0;
}
#endif
return state;
}
int ISC_mutex_lock_cond(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k _ c o n d ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Conditionally seize a mutex.
*
**************************************/
return pthread_mutex_trylock(mutex->mtx_mutex);
}
int ISC_mutex_unlock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ u n l o c k ( P O S I X _ T H R E A D S )
*
**************************************
*
* Functional description
* Release a mutex.
*
**************************************/
return pthread_mutex_unlock(mutex->mtx_mutex);
}
#endif // USE_SYS5SEMAPHORE
#endif // USE_POSIX_THREADS
#ifdef WIN_NT
static const LPCSTR FAST_MUTEX_EVT_NAME = "%s_FM_EVT";
static const LPCSTR FAST_MUTEX_MAP_NAME = "%s_FM_MAP";
static const int DEFAULT_INTERLOCKED_SPIN_COUNT = 0;
static const int DEFAULT_INTERLOCKED_SPIN_COUNT_SMP = 200;
typedef WINBASEAPI BOOL (WINAPI *pfnSwitchToThread) ();
static inline BOOL switchToThread()
{
static pfnSwitchToThread fnSwitchToThread = NULL;
static bool bInit = false;
if (!bInit)
{
HMODULE hLib = GetModuleHandle("kernel32.dll");
if (hLib) {
fnSwitchToThread = (pfnSwitchToThread) GetProcAddress(hLib, "SwitchToThread");
}
bInit = true;
}
BOOL res = FALSE;
if (fnSwitchToThread)
{
#if !defined SUPERSERVER
const HANDLE hThread = GetCurrentThread();
SetThreadPriority(hThread, THREAD_PRIORITY_ABOVE_NORMAL);
#endif
res = (*fnSwitchToThread)();
#if !defined SUPERSERVER
SetThreadPriority(hThread, THREAD_PRIORITY_NORMAL);
#endif
}
return res;
}
// MinGW has the wrong declaration for the operating system function.
#if defined __GNUC__
// Cast away volatile
#define FIX_TYPE(arg) const_cast<LPLONG>(arg)
#else
#define FIX_TYPE(arg) arg
#endif
static inline void lockSharedSection(volatile FAST_MUTEX_SHARED_SECTION* lpSect, ULONG SpinCount)
{
while (InterlockedExchange(FIX_TYPE(&lpSect->lSpinLock), 1) != 0)
{
ULONG j = SpinCount;
while (j != 0)
{
if (lpSect->lSpinLock == 0)
goto next;
j--;
}
switchToThread();
next:;
}
}
static inline bool tryLockSharedSection(volatile FAST_MUTEX_SHARED_SECTION* lpSect)
{
return (InterlockedExchange(FIX_TYPE(&lpSect->lSpinLock), 1) == 0);
}
static inline void unlockSharedSection(volatile FAST_MUTEX_SHARED_SECTION* lpSect)
{
InterlockedExchange(FIX_TYPE(&lpSect->lSpinLock), 0);
}
static DWORD enterFastMutex(FAST_MUTEX* lpMutex, DWORD dwMilliseconds)
{
volatile FAST_MUTEX_SHARED_SECTION* lpSect = lpMutex->lpSharedInfo;
while (true)
{
if (dwMilliseconds == 0)
{
if (!tryLockSharedSection(lpSect))
return WAIT_TIMEOUT;
}
else {
lockSharedSection(lpSect, lpMutex->lSpinCount);
}
if (lpSect->lAvailable > 0)
{
lpSect->lAvailable--;
#ifdef _DEBUG
lpSect->dwThreadId = GetCurrentThreadId();
#endif
unlockSharedSection(lpSect);
return WAIT_OBJECT_0;
}
#ifdef _DEBUG
if (lpSect->dwThreadId == GetCurrentThreadId())
DebugBreak();
#endif
if (dwMilliseconds == 0)
{
unlockSharedSection(lpSect);
return WAIT_TIMEOUT;
}
InterlockedIncrement(FIX_TYPE(&lpSect->lThreadsWaiting));
unlockSharedSection(lpSect);
// TODO actual timeout can be of any length
const DWORD dwResult = WaitForSingleObject(lpMutex->hEvent, dwMilliseconds);
InterlockedDecrement(FIX_TYPE(&lpSect->lThreadsWaiting));
if (dwResult != WAIT_OBJECT_0)
return dwResult;
}
}
static bool leaveFastMutex(FAST_MUTEX* lpMutex)
{
volatile FAST_MUTEX_SHARED_SECTION* lpSect = lpMutex->lpSharedInfo;
lockSharedSection(lpSect, lpMutex->lSpinCount);
if (lpSect->lAvailable >= 1)
{
unlockSharedSection(lpSect);
SetLastError(ERROR_INVALID_PARAMETER);
return false;
}
lpSect->lAvailable++;
if (lpSect->lThreadsWaiting)
SetEvent(lpMutex->hEvent);
unlockSharedSection(lpSect);
return true;
}
static inline void deleteFastMutex(FAST_MUTEX* lpMutex)
{
UnmapViewOfFile((FAST_MUTEX_SHARED_SECTION*)lpMutex->lpSharedInfo);
CloseHandle(lpMutex->hFileMap);
CloseHandle(lpMutex->hEvent);
}
static inline void setupMutex(FAST_MUTEX* lpMutex)
{
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwNumberOfProcessors > 1)
lpMutex->lSpinCount = DEFAULT_INTERLOCKED_SPIN_COUNT_SMP;
else
lpMutex->lSpinCount = DEFAULT_INTERLOCKED_SPIN_COUNT;
}
static bool initializeFastMutex(FAST_MUTEX* lpMutex, LPSECURITY_ATTRIBUTES lpAttributes,
BOOL bInitialState, LPCSTR lpName)
{
LPCSTR name = lpName;
if (strlen(lpName) + strlen(FAST_MUTEX_EVT_NAME) - 2 >= MAXPATHLEN)
{
// this is the same error which CreateEvent will return for long name
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;
}
setupMutex(lpMutex);
char sz[MAXPATHLEN];
if (lpName)
{
sprintf(sz, FAST_MUTEX_EVT_NAME, lpName);
name = sz;
}
lpMutex->hEvent = CreateEvent(lpAttributes, FALSE, FALSE, name);
DWORD dwLastError = GetLastError();
if (lpMutex->hEvent)
{
if (lpName)
sprintf(sz, FAST_MUTEX_MAP_NAME, lpName);
lpMutex->hFileMap = CreateFileMapping(
INVALID_HANDLE_VALUE,
lpAttributes,
PAGE_READWRITE,
0,
sizeof(FAST_MUTEX_SHARED_SECTION),
name);
dwLastError = GetLastError();
if (lpMutex->hFileMap)
{
lpMutex->lpSharedInfo = (FAST_MUTEX_SHARED_SECTION*)
MapViewOfFile(lpMutex->hFileMap, FILE_MAP_WRITE, 0, 0, 0);
if (lpMutex->lpSharedInfo)
{
if (dwLastError != ERROR_ALREADY_EXISTS)
{
lpMutex->lpSharedInfo->lSpinLock = 0;
lpMutex->lpSharedInfo->lThreadsWaiting = 0;
lpMutex->lpSharedInfo->lAvailable = bInitialState ? 0 : 1;
InterlockedExchange(FIX_TYPE(&lpMutex->lpSharedInfo->fInitialized), 1);
}
else
{
while (!lpMutex->lpSharedInfo->fInitialized)
switchToThread();
}
SetLastError(dwLastError);
return true;
}
CloseHandle(lpMutex->hFileMap);
}
CloseHandle(lpMutex->hEvent);
}
SetLastError(dwLastError);
return false;
}
#ifdef NOT_USED_OR_REPLACED
static bool openFastMutex(FAST_MUTEX* lpMutex, DWORD DesiredAccess, LPCSTR lpName)
{
LPCSTR name = lpName;
if (strlen(lpName) + strlen(FAST_MUTEX_EVT_NAME) - 2 >= MAXPATHLEN)
{
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;
}
setupMutex(lpMutex);
char sz[MAXPATHLEN];
if (lpName)
{
sprintf(sz, FAST_MUTEX_EVT_NAME, lpName);
name = sz;
}
lpMutex->hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, name);
DWORD dwLastError = GetLastError();
if (lpMutex->hEvent)
{
if (lpName)
sprintf(sz, FAST_MUTEX_MAP_NAME, lpName);
lpMutex->hFileMap = OpenFileMapping(FILE_MAP_ALL_ACCESS, FALSE, name);
dwLastError = GetLastError();
if (lpMutex->hFileMap)
{
lpMutex->lpSharedInfo = (FAST_MUTEX_SHARED_SECTION*)
MapViewOfFile(lpMutex->hFileMap, FILE_MAP_WRITE, 0, 0, 0);
if (lpMutex->lpSharedInfo)
return true;
CloseHandle(lpMutex->hFileMap);
}
CloseHandle(lpMutex->hEvent);
}
SetLastError(dwLastError);
return false;
}
#endif
static inline void setFastMutexSpinCount(FAST_MUTEX* lpMutex, ULONG SpinCount)
{
lpMutex->lSpinCount = SpinCount;
}
int ISC_mutex_init(struct mtx* mutex, const TEXT* mutex_name)
{
/**************************************
*
* I S C _ m u t e x _ i n i t ( W I N _ N T )
*
**************************************
*
* Functional description
* Initialize a mutex.
*
**************************************/
char name_buffer[MAXPATHLEN];
if (!make_object_name(name_buffer, sizeof(name_buffer), mutex_name, "_mutex"))
{
return FB_FAILURE;
}
if (initializeFastMutex(&mutex->mtx_fast, ISC_get_security_desc(), FALSE, name_buffer))
return FB_SUCCESS;
fb_assert(GetLastError() != 0);
return GetLastError();
}
void ISC_mutex_fini(struct mtx *mutex)
{
/**************************************
*
* m u t e x _ f i n i ( W I N _ N T )
*
**************************************
*
* Functional description
* Destroy a mutex.
*
**************************************/
if (mutex->mtx_fast.lpSharedInfo)
deleteFastMutex(&mutex->mtx_fast);
}
int ISC_mutex_lock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k ( W I N _ N T )
*
**************************************
*
* Functional description
* Seize a mutex.
*
**************************************/
const DWORD status = (mutex->mtx_fast.lpSharedInfo) ?
enterFastMutex(&mutex->mtx_fast, INFINITE) :
WaitForSingleObject(mutex->mtx_fast.hEvent, INFINITE);
return (status == WAIT_OBJECT_0 || status == WAIT_ABANDONED) ? FB_SUCCESS : FB_FAILURE;
}
int ISC_mutex_lock_cond(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ l o c k _ c o n d ( W I N _ N T )
*
**************************************
*
* Functional description
* Conditionally seize a mutex.
*
**************************************/
const DWORD status = (mutex->mtx_fast.lpSharedInfo) ?
enterFastMutex(&mutex->mtx_fast, 0) : WaitForSingleObject(mutex->mtx_fast.hEvent, 0L);
return (status == WAIT_OBJECT_0 || status == WAIT_ABANDONED) ? FB_SUCCESS : FB_FAILURE;
}
int ISC_mutex_unlock(struct mtx* mutex)
{
/**************************************
*
* I S C _ m u t e x _ u n l o c k ( W I N _ N T )
*
**************************************
*
* Functional description
* Release a mutex.
*
**************************************/
if (mutex->mtx_fast.lpSharedInfo) {
return !leaveFastMutex(&mutex->mtx_fast);
}
return !ReleaseMutex(mutex->mtx_fast.hEvent);
}
void ISC_mutex_set_spin_count (struct mtx *mutex, ULONG spins)
{
if (mutex->mtx_fast.lpSharedInfo)
setFastMutexSpinCount(&mutex->mtx_fast, spins);
}
#endif // WIN_NT
#ifdef UNIX
#ifdef HAVE_MMAP
#define ISC_REMAP_FILE_DEFINED
bool SharedMemoryBase::remapFile(Arg::StatusVector& statusVector, ULONG new_length, bool flag)
{
/**************************************
*
* I S C _ r e m a p _ f i l e ( U N I X - m m a p )
*
**************************************
*
* Functional description
* Try to re-map a given file.
*
**************************************/
if (!new_length)
{
error(statusVector, "Zero new_length is requested", 0);
return false;
}
if (flag)
ftruncate(sh_mem_handle, new_length);
MemoryHeader* const address = (MemoryHeader*)
mmap(0, new_length, PROT_READ | PROT_WRITE, MAP_SHARED, sh_mem_handle, 0);
if ((U_IPTR) address == (U_IPTR) -1)
{
error(statusVector, "mmap() failed", errno);
return false;
}
munmap((char *) getHeader(), sh_mem_length_mapped);
#ifdef USE_SYS5SEMAPHORE
SharedFile::remap(getHeader(), address, new_length);
#endif
IPC_TRACE(("ISC_remap_file %p to %p %d\n", getHeader(), address, new_length));
setHeader(address);
sh_mem_length_mapped = new_length;
#if (!defined(HAVE_OBJECT_MAP)) || defined(USE_SYS5SEMAPHORE)
sh_mem_mutex = &getHeader()->mhb_mutex;
#endif
return address;
}
#endif // HAVE_MMAP
#endif // UNIX
#ifdef WIN_NT
#define ISC_REMAP_FILE_DEFINED
bool SharedMemoryBase::remapFile(Arg::StatusVector& statusVector,
ULONG new_length, bool flag)
{
/**************************************
*
* I S C _ r e m a p _ f i l e ( W I N _ N T )
*
**************************************
*
* Functional description
* Try to re-map a given file.
*
**************************************/
if (flag)
{
if (SetFilePointer(sh_mem_handle, new_length, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER ||
!SetEndOfFile(sh_mem_handle) ||
!FlushViewOfFile(getHeader(), 0))
{
error(statusVector, "SetFilePointer", GetLastError());
return NULL;
}
}
/* If the remap file exists, remap does not occur correctly.
* The file number is local to the process and when it is
* incremented and a new filename is created, that file may
* already exist. In that case, the file is not expanded.
* This will happen when the file is expanded more than once
* by concurrently running processes.
*
* The problem will be fixed by making sure that a new file name
* is generated with the mapped file is created.
*/
HANDLE file_obj = NULL;
while (true)
{
TEXT mapping_name[64]; // enough for int32 as text
sprintf(mapping_name, "_mapping_%"ULONGFORMAT, sh_mem_hdr_address[1] + 1);
TEXT object_name[MAXPATHLEN];
if (!make_object_name(object_name, sizeof(object_name), sh_mem_name, mapping_name))
break;
file_obj = CreateFileMapping(sh_mem_handle,
ISC_get_security_desc(),
PAGE_READWRITE,
0, new_length,
object_name);
if (!(GetLastError() == ERROR_ALREADY_EXISTS && flag))
break;
CloseHandle(file_obj);
file_obj = NULL;
sh_mem_hdr_address[1]++;
}
if (file_obj == NULL)
{
error(statusVector, "CreateFileMapping", GetLastError());
return NULL;
}
MemoryHeader* const address = (MemoryHeader*) MapViewOfFile(file_obj, FILE_MAP_WRITE, 0, 0, 0);
if (address == NULL)
{
error(statusVector, "MapViewOfFile", GetLastError());
CloseHandle(file_obj);
return NULL;
}
if (flag)
{
sh_mem_hdr_address[0] = new_length;
sh_mem_hdr_address[1]++;
}
UnmapViewOfFile(getHeader());
CloseHandle(sh_mem_object);
setHeader(address);
sh_mem_length_mapped = new_length;
sh_mem_object = file_obj;
if (!sh_mem_length_mapped)
{
error(statusVector, "sh_mem_length_mapped is 0", 0);
return NULL;
}
return (address);
}
#endif
#ifndef ISC_REMAP_FILE_DEFINED
bool SharedMemoryBase::remapFile(Firebird::Arg::StatusVector& statusVector, ULONG, bool)
{
/**************************************
*
* I S C _ r e m a p _ f i l e ( G E N E R I C )
*
**************************************
*
* Functional description
* Try to re-map a given file.
*
**************************************/
statusVector << Arg::Gds(isc_unavailable) <<
Arg::Gds(isc_random) << "SharedMemory::remapFile";
return NULL;
}
#endif
#ifdef UNIX
static TLS_DECLARE(sigjmp_buf*, sigjmp_ptr);
void ISC_sync_signals_set(void* arg)
{
/**************************************
*
* I S C _ s y n c _ s i g n a l s _ s e t ( U N I X )
*
**************************************
*
* Functional description
* Set all the synchronous signals for a particular thread
*
**************************************/
sigjmp_buf* const sigenv = static_cast<sigjmp_buf*>(arg);
TLS_SET(sigjmp_ptr, sigenv);
sigset(SIGILL, longjmp_sig_handler);
sigset(SIGFPE, longjmp_sig_handler);
sigset(SIGBUS, longjmp_sig_handler);
sigset(SIGSEGV, longjmp_sig_handler);
}
void ISC_sync_signals_reset()
{
/**************************************
*
* I S C _ s y n c _ s i g n a l s _ r e s e t ( U N I X )
*
**************************************
*
* Functional description
* Reset all the synchronous signals for a particular thread
* to default.
*
**************************************/
sigset(SIGILL, SIG_DFL);
sigset(SIGFPE, SIG_DFL);
sigset(SIGBUS, SIG_DFL);
sigset(SIGSEGV, SIG_DFL);
}
#endif // UNIX
#ifdef UNIX
void SharedMemoryBase::unmapFile(Arg::StatusVector& statusVector)
{
/**************************************
*
* I S C _ u n m a p _ f i l e ( U N I X - m m a p )
*
**************************************
*
* Functional description
* Unmap a given file.
*
**************************************/
#ifdef USE_SYS5SEMAPHORE
// Lock init file.
FileLock initLock(statusVector, fd_init, FileLock::OPENED);
if (!initLock.exclusive())
{
iscLogStatus("ISC_unmap_file failed to lock init file", statusVector.value());
}
else
{
SharedFile* sf = SharedFile::locate(getHeader());
FileLock lock(statusVector, sh_mem_handle);
lock.setLevel(FileLock::LCK_SHARED);
semTable->cleanup(sf->getNum(), lock.tryExclusive());
SharedFile::remove(getHeader());
}
--sharedCount;
#endif
#if defined(HAVE_OBJECT_MAP) && (!defined(USE_SYS5SEMAPHORE))
unmapObject(statusVector, (UCHAR**) sh_mem_mutex, sizeof(mtx));
#endif
munmap((char *) getHeader(), sh_mem_length_mapped);
setHeader(NULL);
close(sh_mem_handle);
}
#endif
#ifdef WIN_NT
void SharedMemoryBase::unmapFile(Arg::StatusVector& statusVector)
{
/**************************************
*
* I S C _ u n m a p _ f i l e ( W I N _ N T )
*
**************************************
*
* Functional description
* Detach from the shared memory.
*
**************************************/
CloseHandle(sh_mem_interest);
if (!UnmapViewOfFile(getHeader()))
{
error(statusVector, "UnmapViewOfFile", GetLastError());
return;
}
CloseHandle(sh_mem_object);
CloseHandle(sh_mem_handle);
if (!UnmapViewOfFile(sh_mem_hdr_address))
{
error(statusVector, "UnmapViewOfFile", GetLastError());
return;
}
CloseHandle(sh_mem_hdr_object);
TEXT expanded_filename[MAXPATHLEN];
gds__prefix_lock(expanded_filename, sh_mem_name);
// Delete file only if it is not used by anyone else
HANDLE hFile = CreateFile(expanded_filename,
DELETE,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_DELETE_ON_CLOSE,
NULL);
if (hFile != INVALID_HANDLE_VALUE)
CloseHandle(hFile);
#ifdef WIN_NT
ISC_mutex_fini(&sh_mem_winMutex);
sh_mem_mutex = NULL;
#endif
setHeader(NULL);
}
#endif
static void error(Arg::StatusVector& statusVector, const TEXT* string, ISC_STATUS status)
{
/**************************************
*
* e r r o r
*
**************************************
*
* Functional description
* We've encountered an error, report it.
*
**************************************/
statusVector << Arg::Gds(isc_sys_request) << Arg::Str(string) << SYS_ERR(status);
statusVector.makePermanent();
}
#ifdef UNIX
#ifdef USE_SYS5SEMAPHORE
static SLONG create_semaphores(Arg::StatusVector& statusVector, SLONG key, int semaphores)
{
/**************************************
*
* c r e a t e _ s e m a p h o r e s ( U N I X )
*
**************************************
*
* Functional description
* Create or find a block of semaphores.
*
**************************************/
while (true)
{
// Try to open existing semaphore set
SLONG semid = semget(key, 0, 0);
if (semid == -1)
{
if (errno != ENOENT)
{
error(statusVector, "semget", errno);
return -1;
}
}
else
{
union semun arg;
semid_ds buf;
arg.buf = &buf;
// Get number of semaphores in opened set
if (semctl(semid, 0, IPC_STAT, arg) == -1)
{
error(statusVector, "semctl", errno);
return -1;
}
if ((int) buf.sem_nsems >= semaphores)
return semid;
// Number of semaphores in existing set is too small. Discard it.
if (semctl(semid, 0, IPC_RMID) == -1)
{
error(statusVector, "semctl", errno);
return -1;
}
}
// Try to create new semaphore set
semid = semget(key, semaphores, IPC_CREAT | IPC_EXCL | PRIV);
if (semid != -1)
{
// We want to limit access to semaphores, created here
// Reasonable access rights to them - exactly like security database has
char secDb[MAXPATHLEN];
Auth::SecurityDatabase::getPath(secDb);
struct stat st;
if (stat(secDb, &st) == 0)
{
union semun arg;
semid_ds ds;
arg.buf = &ds;
ds.sem_perm.uid = geteuid() == 0 ? st.st_uid : geteuid();
ds.sem_perm.gid = st.st_gid;
ds.sem_perm.mode = st.st_mode;
semctl(semid, 0, IPC_SET, arg);
}
return semid;
}
if (errno != EEXIST)
{
error(statusVector, "semget", errno);
return -1;
}
}
}
#endif // USE_SYS5SEMAPHORE
void longjmp_sig_handler(int sig_num)
{
/**************************************
*
* l o n g j m p _ s i g _ h a n d l e r
*
**************************************
*
* Functional description
* The generic signal handler for all signals in a thread.
*
**************************************/
siglongjmp(*TLS_GET(sigjmp_ptr), sig_num);
}
#endif // UNIX
#ifdef WIN_NT
static bool make_object_name(TEXT* buffer, size_t bufsize,
const TEXT* object_name,
const TEXT* object_type)
{
/**************************************
*
* m a k e _ o b j e c t _ n a m e ( W I N _ N T )
*
**************************************
*
* Functional description
* Create an object name from a name and type.
* Also replace the file separator with "_".
*
**************************************/
char hostname[64];
const int rc = snprintf(buffer, bufsize, object_name, ISC_get_host(hostname, sizeof(hostname)));
if (size_t(rc) == bufsize || rc <= 0)
{
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;
}
char& limit = buffer[bufsize - 1];
limit = 0;
char* p;
char c;
for (p = buffer; c = *p; p++)
{
if (c == '/' || c == '\\' || c == ':')
*p = '_';
}
// We either append the full object type or produce failure.
if (p >= &limit || p + strlen(object_type) > &limit)
{
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;
}
strcpy(p, object_type);
// hvlad: windows file systems use case-insensitive file names
// while kernel objects such as events use case-sensitive names.
// Since we use root directory as part of kernel objects names
// we must use lower (or upper) register for object name to avoid
// misunderstanding between processes
strlwr(buffer);
// CVC: I'm not convinced that if this call has no space to put the prefix,
// we can ignore that fact, hence I changed that signature, too.
if (!fb_utils::prefix_kernel_object_name(buffer, bufsize))
{
SetLastError(ERROR_FILENAME_EXCED_RANGE);
return false;
}
return true;
}
#endif // WIN_NT
void SharedMemoryBase::mutexLock()
{
int state = ISC_mutex_lock(sh_mem_mutex);
if (state != 0)
{
mutexBug(state, "ISC_mutex_lock");
}
}
bool SharedMemoryBase::mutexLockCond()
{
return ISC_mutex_lock_cond(sh_mem_mutex) == 0;
}
void SharedMemoryBase::mutexUnlock()
{
int state = ISC_mutex_unlock(sh_mem_mutex);
if (state != 0)
{
mutexBug(state, "ISC_mutex_unlock");
}
}
SharedMemoryBase::SharedMemoryBase()
: sh_mem_mutex(0), sh_mem_length_mapped(0),
#ifdef WIN_NT
sh_mem_handle(0), sh_mem_object(0), sh_mem_interest(0), sh_mem_hdr_object(0),
sh_mem_hdr_address(0)
#else
sh_mem_handle(-1)
#endif
{
sh_mem_name[0] = '\0';
}
SharedMemoryBase::~SharedMemoryBase()
{
}
void SharedMemoryBase::logError(const char* text, const Firebird::Arg::StatusVector& status)
{
iscLogStatus(text, status.value());
}