mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-22 23:23:02 +01:00
554 lines
25 KiB
C
554 lines
25 KiB
C
/* ------------------------------------------------------------------ */
|
|
/* Decimal 128-bit format module */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. */
|
|
/* */
|
|
/* This software is made available under the terms of the */
|
|
/* ICU License -- ICU 1.8.1 and later. */
|
|
/* */
|
|
/* The description and User's Guide ("The decNumber C Library") for */
|
|
/* this software is called decNumber.pdf. This document is */
|
|
/* available, together with arithmetic and format specifications, */
|
|
/* testcases, and Web links, on the General Decimal Arithmetic page. */
|
|
/* */
|
|
/* Please send comments, suggestions, and corrections to the author: */
|
|
/* mfc@uk.ibm.com */
|
|
/* Mike Cowlishaw, IBM Fellow */
|
|
/* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This module comprises the routines for decimal128 format numbers. */
|
|
/* Conversions are supplied to and from decNumber and String. */
|
|
/* */
|
|
/* This is used when decNumber provides operations, either for all */
|
|
/* operations or as a proxy between decNumber and decSingle. */
|
|
/* */
|
|
/* Error handling is the same as decNumber (qv.). */
|
|
/* ------------------------------------------------------------------ */
|
|
#include <string.h> // [for memset/memcpy]
|
|
#include <stdio.h> // [for printf]
|
|
|
|
#define DECNUMDIGITS 34 // make decNumbers with space for 34
|
|
#include "decNumber.h" // base number library
|
|
#include "decNumberLocal.h" // decNumber local types, etc.
|
|
#include "decimal128.h" // our primary include
|
|
|
|
/* Utility routines and tables [in decimal64.c] */
|
|
// DPD2BIN and the reverse are renamed to prevent link-time conflict
|
|
// if decQuad is also built in the same executable
|
|
#define DPD2BIN DPD2BINx
|
|
#define BIN2DPD BIN2DPDx
|
|
extern const uInt COMBEXP[32], COMBMSD[32];
|
|
extern const uShort DPD2BIN[1024];
|
|
extern const uShort BIN2DPD[1000]; // [not used]
|
|
extern const uByte BIN2CHAR[4001];
|
|
|
|
extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
|
|
extern void decDigitsToDPD(const decNumber *, uInt *, Int);
|
|
|
|
#if DECTRACE || DECCHECK
|
|
void decimal128Show(const decimal128 *); // for debug
|
|
extern void decNumberShow(const decNumber *); // ..
|
|
#endif
|
|
|
|
/* Useful macro */
|
|
// Clear a structure (e.g., a decNumber)
|
|
#define DEC_clear(d) memset(d, 0, sizeof(*d))
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decimal128FromNumber -- convert decNumber to decimal128 */
|
|
/* */
|
|
/* ds is the target decimal128 */
|
|
/* dn is the source number (assumed valid) */
|
|
/* set is the context, used only for reporting errors */
|
|
/* */
|
|
/* The set argument is used only for status reporting and for the */
|
|
/* rounding mode (used if the coefficient is more than DECIMAL128_Pmax*/
|
|
/* digits or an overflow is detected). If the exponent is out of the */
|
|
/* valid range then Overflow or Underflow will be raised. */
|
|
/* After Underflow a subnormal result is possible. */
|
|
/* */
|
|
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
|
|
/* by reducing its exponent and multiplying the coefficient by a */
|
|
/* power of ten, or if the exponent on a zero had to be clamped. */
|
|
/* ------------------------------------------------------------------ */
|
|
decimal128 * decimal128FromNumber(decimal128 *d128, const decNumber *dn,
|
|
decContext *set) {
|
|
uInt status=0; // status accumulator
|
|
Int ae; // adjusted exponent
|
|
decNumber dw; // work
|
|
decContext dc; // ..
|
|
uInt comb, exp; // ..
|
|
uInt uiwork; // for macros
|
|
uInt targar[4]={0,0,0,0}; // target 128-bit
|
|
#define targhi targar[3] // name the word with the sign
|
|
#define targmh targar[2] // name the words
|
|
#define targml targar[1] // ..
|
|
#define targlo targar[0] // ..
|
|
|
|
// If the number has too many digits, or the exponent could be
|
|
// out of range then reduce the number under the appropriate
|
|
// constraints. This could push the number to Infinity or zero,
|
|
// so this check and rounding must be done before generating the
|
|
// decimal128]
|
|
ae=dn->exponent+dn->digits-1; // [0 if special]
|
|
if (dn->digits>DECIMAL128_Pmax // too many digits
|
|
|| ae>DECIMAL128_Emax // likely overflow
|
|
|| ae<DECIMAL128_Emin) { // likely underflow
|
|
decContextDefault(&dc, DEC_INIT_DECIMAL128); // [no traps]
|
|
dc.round=set->round; // use supplied rounding
|
|
decNumberPlus(&dw, dn, &dc); // (round and check)
|
|
// [this changes -0 to 0, so enforce the sign...]
|
|
dw.bits|=dn->bits&DECNEG;
|
|
status=dc.status; // save status
|
|
dn=&dw; // use the work number
|
|
} // maybe out of range
|
|
|
|
if (dn->bits&DECSPECIAL) { // a special value
|
|
if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
|
|
else { // sNaN or qNaN
|
|
if ((*dn->lsu!=0 || dn->digits>1) // non-zero coefficient
|
|
&& (dn->digits<DECIMAL128_Pmax)) { // coefficient fits
|
|
decDigitsToDPD(dn, targar, 0);
|
|
}
|
|
if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
|
|
else targhi|=DECIMAL_sNaN<<24;
|
|
} // a NaN
|
|
} // special
|
|
|
|
else { // is finite
|
|
if (decNumberIsZero(dn)) { // is a zero
|
|
// set and clamp exponent
|
|
if (dn->exponent<-DECIMAL128_Bias) {
|
|
exp=0; // low clamp
|
|
status|=DEC_Clamped;
|
|
}
|
|
else {
|
|
exp=dn->exponent+DECIMAL128_Bias; // bias exponent
|
|
if (exp>DECIMAL128_Ehigh) { // top clamp
|
|
exp=DECIMAL128_Ehigh;
|
|
status|=DEC_Clamped;
|
|
}
|
|
}
|
|
comb=(exp>>9) & 0x18; // msd=0, exp top 2 bits ..
|
|
}
|
|
else { // non-zero finite number
|
|
uInt msd; // work
|
|
Int pad=0; // coefficient pad digits
|
|
|
|
// the dn is known to fit, but it may need to be padded
|
|
exp=(uInt)(dn->exponent+DECIMAL128_Bias); // bias exponent
|
|
if (exp>DECIMAL128_Ehigh) { // fold-down case
|
|
pad=exp-DECIMAL128_Ehigh;
|
|
exp=DECIMAL128_Ehigh; // [to maximum]
|
|
status|=DEC_Clamped;
|
|
}
|
|
|
|
// [fastpath for common case is not a win, here]
|
|
decDigitsToDPD(dn, targar, pad);
|
|
// save and clear the top digit
|
|
msd=targhi>>14;
|
|
targhi&=0x00003fff;
|
|
|
|
// create the combination field
|
|
if (msd>=8) comb=0x18 | ((exp>>11) & 0x06) | (msd & 0x01);
|
|
else comb=((exp>>9) & 0x18) | msd;
|
|
}
|
|
targhi|=comb<<26; // add combination field ..
|
|
targhi|=(exp&0xfff)<<14; // .. and exponent continuation
|
|
} // finite
|
|
|
|
if (dn->bits&DECNEG) targhi|=0x80000000; // add sign bit
|
|
|
|
// now write to storage; this is endian
|
|
if (DECLITEND) {
|
|
// lo -> hi
|
|
UBFROMUI(d128->bytes, targlo);
|
|
UBFROMUI(d128->bytes+4, targml);
|
|
UBFROMUI(d128->bytes+8, targmh);
|
|
UBFROMUI(d128->bytes+12, targhi);
|
|
}
|
|
else {
|
|
// hi -> lo
|
|
UBFROMUI(d128->bytes, targhi);
|
|
UBFROMUI(d128->bytes+4, targmh);
|
|
UBFROMUI(d128->bytes+8, targml);
|
|
UBFROMUI(d128->bytes+12, targlo);
|
|
}
|
|
|
|
if (status!=0) decContextSetStatus(set, status); // pass on status
|
|
// decimal128Show(d128);
|
|
return d128;
|
|
} // decimal128FromNumber
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decimal128ToNumber -- convert decimal128 to decNumber */
|
|
/* d128 is the source decimal128 */
|
|
/* dn is the target number, with appropriate space */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
decNumber * decimal128ToNumber(const decimal128 *d128, decNumber *dn) {
|
|
uInt msd; // coefficient MSD
|
|
uInt exp; // exponent top two bits
|
|
uInt comb; // combination field
|
|
Int need; // work
|
|
uInt uiwork; // for macros
|
|
uInt sourar[4]; // source 128-bit
|
|
#define sourhi sourar[3] // name the word with the sign
|
|
#define sourmh sourar[2] // and the mid-high word
|
|
#define sourml sourar[1] // and the mod-low word
|
|
#define sourlo sourar[0] // and the lowest word
|
|
|
|
// load source from storage; this is endian
|
|
if (DECLITEND) {
|
|
sourlo=UBTOUI(d128->bytes ); // directly load the low int
|
|
sourml=UBTOUI(d128->bytes+4 ); // then the mid-low
|
|
sourmh=UBTOUI(d128->bytes+8 ); // then the mid-high
|
|
sourhi=UBTOUI(d128->bytes+12); // then the high int
|
|
}
|
|
else {
|
|
sourhi=UBTOUI(d128->bytes ); // directly load the high int
|
|
sourmh=UBTOUI(d128->bytes+4 ); // then the mid-high
|
|
sourml=UBTOUI(d128->bytes+8 ); // then the mid-low
|
|
sourlo=UBTOUI(d128->bytes+12); // then the low int
|
|
}
|
|
|
|
comb=(sourhi>>26)&0x1f; // combination field
|
|
|
|
decNumberZero(dn); // clean number
|
|
if (sourhi&0x80000000) dn->bits=DECNEG; // set sign if negative
|
|
|
|
msd=COMBMSD[comb]; // decode the combination field
|
|
exp=COMBEXP[comb]; // ..
|
|
|
|
if (exp==3) { // is a special
|
|
if (msd==0) {
|
|
dn->bits|=DECINF;
|
|
return dn; // no coefficient needed
|
|
}
|
|
else if (sourhi&0x02000000) dn->bits|=DECSNAN;
|
|
else dn->bits|=DECNAN;
|
|
msd=0; // no top digit
|
|
}
|
|
else { // is a finite number
|
|
dn->exponent=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; // unbiased
|
|
}
|
|
|
|
// get the coefficient
|
|
sourhi&=0x00003fff; // clean coefficient continuation
|
|
if (msd) { // non-zero msd
|
|
sourhi|=msd<<14; // prefix to coefficient
|
|
need=12; // process 12 declets
|
|
}
|
|
else { // msd=0
|
|
if (sourhi) need=11; // declets to process
|
|
else if (sourmh) need=10;
|
|
else if (sourml) need=7;
|
|
else if (sourlo) need=4;
|
|
else return dn; // easy: coefficient is 0
|
|
} //msd=0
|
|
|
|
decDigitsFromDPD(dn, sourar, need); // process declets
|
|
// decNumberShow(dn);
|
|
return dn;
|
|
} // decimal128ToNumber
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* to-scientific-string -- conversion to numeric string */
|
|
/* to-engineering-string -- conversion to numeric string */
|
|
/* */
|
|
/* decimal128ToString(d128, string); */
|
|
/* decimal128ToEngString(d128, string); */
|
|
/* */
|
|
/* d128 is the decimal128 format number to convert */
|
|
/* string is the string where the result will be laid out */
|
|
/* */
|
|
/* string must be at least 24 characters */
|
|
/* */
|
|
/* No error is possible, and no status can be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
char * decimal128ToEngString(const decimal128 *d128, char *string){
|
|
decNumber dn; // work
|
|
decimal128ToNumber(d128, &dn);
|
|
decNumberToEngString(&dn, string);
|
|
return string;
|
|
} // decimal128ToEngString
|
|
|
|
char * decimal128ToString(const decimal128 *d128, char *string){
|
|
uInt msd; // coefficient MSD
|
|
Int exp; // exponent top two bits or full
|
|
uInt comb; // combination field
|
|
char *cstart; // coefficient start
|
|
char *c; // output pointer in string
|
|
const uByte *u; // work
|
|
char *s, *t; // .. (source, target)
|
|
Int dpd; // ..
|
|
Int pre, e; // ..
|
|
uInt uiwork; // for macros
|
|
|
|
uInt sourar[4]; // source 128-bit
|
|
#define sourhi sourar[3] // name the word with the sign
|
|
#define sourmh sourar[2] // and the mid-high word
|
|
#define sourml sourar[1] // and the mod-low word
|
|
#define sourlo sourar[0] // and the lowest word
|
|
|
|
// load source from storage; this is endian
|
|
if (DECLITEND) {
|
|
sourlo=UBTOUI(d128->bytes ); // directly load the low int
|
|
sourml=UBTOUI(d128->bytes+4 ); // then the mid-low
|
|
sourmh=UBTOUI(d128->bytes+8 ); // then the mid-high
|
|
sourhi=UBTOUI(d128->bytes+12); // then the high int
|
|
}
|
|
else {
|
|
sourhi=UBTOUI(d128->bytes ); // directly load the high int
|
|
sourmh=UBTOUI(d128->bytes+4 ); // then the mid-high
|
|
sourml=UBTOUI(d128->bytes+8 ); // then the mid-low
|
|
sourlo=UBTOUI(d128->bytes+12); // then the low int
|
|
}
|
|
|
|
c=string; // where result will go
|
|
if (((Int)sourhi)<0) *c++='-'; // handle sign
|
|
|
|
comb=(sourhi>>26)&0x1f; // combination field
|
|
msd=COMBMSD[comb]; // decode the combination field
|
|
exp=COMBEXP[comb]; // ..
|
|
|
|
if (exp==3) {
|
|
if (msd==0) { // infinity
|
|
strcpy(c, "Inf");
|
|
strcpy(c+3, "inity");
|
|
return string; // easy
|
|
}
|
|
if (sourhi&0x02000000) *c++='s'; // sNaN
|
|
strcpy(c, "NaN"); // complete word
|
|
c+=3; // step past
|
|
if (sourlo==0 && sourml==0 && sourmh==0
|
|
&& (sourhi&0x0003ffff)==0) return string; // zero payload
|
|
// otherwise drop through to add integer; set correct exp
|
|
exp=0; msd=0; // setup for following code
|
|
}
|
|
else exp=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; // unbiased
|
|
|
|
// convert 34 digits of significand to characters
|
|
cstart=c; // save start of coefficient
|
|
if (msd) *c++='0'+(char)msd; // non-zero most significant digit
|
|
|
|
// Now decode the declets. After extracting each one, it is
|
|
// decoded to binary and then to a 4-char sequence by table lookup;
|
|
// the 4-chars are a 1-char length (significant digits, except 000
|
|
// has length 0). This allows us to left-align the first declet
|
|
// with non-zero content, then remaining ones are full 3-char
|
|
// length. We use fixed-length memcpys because variable-length
|
|
// causes a subroutine call in GCC. (These are length 4 for speed
|
|
// and are safe because the array has an extra terminator byte.)
|
|
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
|
|
if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
|
|
else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
|
|
dpd=(sourhi>>4)&0x3ff; // declet 1
|
|
dpd2char;
|
|
dpd=((sourhi&0xf)<<6) | (sourmh>>26); // declet 2
|
|
dpd2char;
|
|
dpd=(sourmh>>16)&0x3ff; // declet 3
|
|
dpd2char;
|
|
dpd=(sourmh>>6)&0x3ff; // declet 4
|
|
dpd2char;
|
|
dpd=((sourmh&0x3f)<<4) | (sourml>>28); // declet 5
|
|
dpd2char;
|
|
dpd=(sourml>>18)&0x3ff; // declet 6
|
|
dpd2char;
|
|
dpd=(sourml>>8)&0x3ff; // declet 7
|
|
dpd2char;
|
|
dpd=((sourml&0xff)<<2) | (sourlo>>30); // declet 8
|
|
dpd2char;
|
|
dpd=(sourlo>>20)&0x3ff; // declet 9
|
|
dpd2char;
|
|
dpd=(sourlo>>10)&0x3ff; // declet 10
|
|
dpd2char;
|
|
dpd=(sourlo)&0x3ff; // declet 11
|
|
dpd2char;
|
|
|
|
if (c==cstart) *c++='0'; // all zeros -- make 0
|
|
|
|
if (exp==0) { // integer or NaN case -- easy
|
|
*c='\0'; // terminate
|
|
return string;
|
|
}
|
|
|
|
/* non-0 exponent */
|
|
e=0; // assume no E
|
|
pre=c-cstart+exp;
|
|
// [here, pre-exp is the digits count (==1 for zero)]
|
|
if (exp>0 || pre<-5) { // need exponential form
|
|
e=pre-1; // calculate E value
|
|
pre=1; // assume one digit before '.'
|
|
} // exponential form
|
|
|
|
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
|
|
s=c-1; // source (LSD)
|
|
if (pre>0) { // ddd.ddd (plain), perhaps with E
|
|
char *dotat=cstart+pre;
|
|
if (dotat<c) { // if embedded dot needed...
|
|
t=c; // target
|
|
for (; s>=dotat; s--, t--) *t=*s; // open the gap; leave t at gap
|
|
*t='.'; // insert the dot
|
|
c++; // length increased by one
|
|
}
|
|
|
|
// finally add the E-part, if needed; it will never be 0, and has
|
|
// a maximum length of 4 digits
|
|
if (e!=0) {
|
|
*c++='E'; // starts with E
|
|
*c++='+'; // assume positive
|
|
if (e<0) {
|
|
*(c-1)='-'; // oops, need '-'
|
|
e=-e; // uInt, please
|
|
}
|
|
if (e<1000) { // 3 (or fewer) digits case
|
|
u=&BIN2CHAR[e*4]; // -> length byte
|
|
memcpy(c, u+4-*u, 4); // copy fixed 4 characters [is safe]
|
|
c+=*u; // bump pointer appropriately
|
|
}
|
|
else { // 4-digits
|
|
Int thou=((e>>3)*1049)>>17; // e/1000
|
|
Int rem=e-(1000*thou); // e%1000
|
|
*c++='0'+(char)thou;
|
|
u=&BIN2CHAR[rem*4]; // -> length byte
|
|
memcpy(c, u+1, 4); // copy fixed 3+1 characters [is safe]
|
|
c+=3; // bump pointer, always 3 digits
|
|
}
|
|
}
|
|
*c='\0'; // add terminator
|
|
//printf("res %s\n", string);
|
|
return string;
|
|
} // pre>0
|
|
|
|
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
|
|
t=c+1-pre;
|
|
*(t+1)='\0'; // can add terminator now
|
|
for (; s>=cstart; s--, t--) *t=*s; // shift whole coefficient right
|
|
c=cstart;
|
|
*c++='0'; // always starts with 0.
|
|
*c++='.';
|
|
for (; pre<0; pre++) *c++='0'; // add any 0's after '.'
|
|
//printf("res %s\n", string);
|
|
return string;
|
|
} // decimal128ToString
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* to-number -- conversion from numeric string */
|
|
/* */
|
|
/* decimal128FromString(result, string, set); */
|
|
/* */
|
|
/* result is the decimal128 format number which gets the result of */
|
|
/* the conversion */
|
|
/* *string is the character string which should contain a valid */
|
|
/* number (which may be a special value) */
|
|
/* set is the context */
|
|
/* */
|
|
/* The context is supplied to this routine is used for error handling */
|
|
/* (setting of status and traps) and for the rounding mode, only. */
|
|
/* If an error occurs, the result will be a valid decimal128 NaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
decimal128 * decimal128FromString(decimal128 *result, const char *string,
|
|
decContext *set) {
|
|
decContext dc; // work
|
|
decNumber dn; // ..
|
|
|
|
decContextDefault(&dc, DEC_INIT_DECIMAL128); // no traps, please
|
|
dc.round=set->round; // use supplied rounding
|
|
|
|
decNumberFromString(&dn, string, &dc); // will round if needed
|
|
decimal128FromNumber(result, &dn, &dc);
|
|
if (dc.status!=0) { // something happened
|
|
decContextSetStatus(set, dc.status); // .. pass it on
|
|
}
|
|
return result;
|
|
} // decimal128FromString
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decimal128IsCanonical -- test whether encoding is canonical */
|
|
/* d128 is the source decimal128 */
|
|
/* returns 1 if the encoding of d128 is canonical, 0 otherwise */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
uInt decimal128IsCanonical(const decimal128 *d128) {
|
|
decNumber dn; // work
|
|
decimal128 canon; // ..
|
|
decContext dc; // ..
|
|
decContextDefault(&dc, DEC_INIT_DECIMAL128);
|
|
decimal128ToNumber(d128, &dn);
|
|
decimal128FromNumber(&canon, &dn, &dc);// canon will now be canonical
|
|
return memcmp(d128, &canon, DECIMAL128_Bytes)==0;
|
|
} // decimal128IsCanonical
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decimal128Canonical -- copy an encoding, ensuring it is canonical */
|
|
/* d128 is the source decimal128 */
|
|
/* result is the target (may be the same decimal128) */
|
|
/* returns result */
|
|
/* No error is possible. */
|
|
/* ------------------------------------------------------------------ */
|
|
decimal128 * decimal128Canonical(decimal128 *result, const decimal128 *d128) {
|
|
decNumber dn; // work
|
|
decContext dc; // ..
|
|
decContextDefault(&dc, DEC_INIT_DECIMAL128);
|
|
decimal128ToNumber(d128, &dn);
|
|
decimal128FromNumber(result, &dn, &dc);// result will now be canonical
|
|
return result;
|
|
} // decimal128Canonical
|
|
|
|
#if DECTRACE || DECCHECK
|
|
/* Macros for accessing decimal128 fields. These assume the argument
|
|
is a reference (pointer) to the decimal128 structure, and the
|
|
decimal128 is in network byte order (big-endian) */
|
|
// Get sign
|
|
#define decimal128Sign(d) ((unsigned)(d)->bytes[0]>>7)
|
|
|
|
// Get combination field
|
|
#define decimal128Comb(d) (((d)->bytes[0] & 0x7c)>>2)
|
|
|
|
// Get exponent continuation [does not remove bias]
|
|
#define decimal128ExpCon(d) ((((d)->bytes[0] & 0x03)<<10) \
|
|
| ((unsigned)(d)->bytes[1]<<2) \
|
|
| ((unsigned)(d)->bytes[2]>>6))
|
|
|
|
// Set sign [this assumes sign previously 0]
|
|
#define decimal128SetSign(d, b) { \
|
|
(d)->bytes[0]|=((unsigned)(b)<<7);}
|
|
|
|
// Set exponent continuation [does not apply bias]
|
|
// This assumes range has been checked and exponent previously 0;
|
|
// type of exponent must be unsigned
|
|
#define decimal128SetExpCon(d, e) { \
|
|
(d)->bytes[0]|=(uByte)((e)>>10); \
|
|
(d)->bytes[1] =(uByte)(((e)&0x3fc)>>2); \
|
|
(d)->bytes[2]|=(uByte)(((e)&0x03)<<6);}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decimal128Show -- display a decimal128 in hexadecimal [debug aid] */
|
|
/* d128 -- the number to show */
|
|
/* ------------------------------------------------------------------ */
|
|
// Also shows sign/cob/expconfields extracted
|
|
void decimal128Show(const decimal128 *d128) {
|
|
char buf[DECIMAL128_Bytes*2+1];
|
|
Int i, j=0;
|
|
|
|
if (DECLITEND) {
|
|
for (i=0; i<DECIMAL128_Bytes; i++, j+=2) {
|
|
sprintf(&buf[j], "%02x", d128->bytes[15-i]);
|
|
}
|
|
printf(" D128> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
|
|
d128->bytes[15]>>7, (d128->bytes[15]>>2)&0x1f,
|
|
((d128->bytes[15]&0x3)<<10)|(d128->bytes[14]<<2)|
|
|
(d128->bytes[13]>>6));
|
|
}
|
|
else {
|
|
for (i=0; i<DECIMAL128_Bytes; i++, j+=2) {
|
|
sprintf(&buf[j], "%02x", d128->bytes[i]);
|
|
}
|
|
printf(" D128> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
|
|
decimal128Sign(d128), decimal128Comb(d128),
|
|
decimal128ExpCon(d128));
|
|
}
|
|
} // decimal128Show
|
|
#endif
|