mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-29 06:43:03 +01:00
3108 lines
88 KiB
C++
3108 lines
88 KiB
C++
/*
|
|
* PROGRAM: Client/Server Common Code
|
|
* MODULE: Optimizer.cpp
|
|
* DESCRIPTION: Optimizer
|
|
*
|
|
* The contents of this file are subject to the Initial
|
|
* Developer's Public License Version 1.0 (the "License");
|
|
* you may not use this file except in compliance with the
|
|
* License. You may obtain a copy of the License at
|
|
* http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_idpl.
|
|
*
|
|
* Software distributed under the License is distributed AS IS,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing rights
|
|
* and limitations under the License.
|
|
*
|
|
* The Original Code was created by Arno Brinkman
|
|
* for the Firebird Open Source RDBMS project.
|
|
*
|
|
* Copyright (c) 2004 Arno Brinkman <firebird@abvisie.nl>
|
|
* and all contributors signed below.
|
|
*
|
|
* All Rights Reserved.
|
|
* Contributor(s): ______________________________________.
|
|
* Adriano dos Santos Fernandes
|
|
*
|
|
*/
|
|
|
|
#include "firebird.h"
|
|
|
|
#include "../jrd/jrd.h"
|
|
#include "../jrd/exe.h"
|
|
#include "../jrd/btr.h"
|
|
#include "../jrd/intl.h"
|
|
#include "../jrd/Collation.h"
|
|
#include "../jrd/rse.h"
|
|
#include "../jrd/ods.h"
|
|
#include "../jrd/Optimizer.h"
|
|
#include "../jrd/RecordSourceNodes.h"
|
|
#include "../jrd/recsrc/RecordSource.h"
|
|
#include "../dsql/BoolNodes.h"
|
|
#include "../dsql/ExprNodes.h"
|
|
#include "../dsql/StmtNodes.h"
|
|
|
|
#include "../jrd/btr_proto.h"
|
|
#include "../jrd/cch_proto.h"
|
|
#include "../jrd/cmp_proto.h"
|
|
#include "../jrd/dpm_proto.h"
|
|
#include "../jrd/exe_proto.h"
|
|
#include "../jrd/ext_proto.h"
|
|
#include "../jrd/intl_proto.h"
|
|
#include "../jrd/met_proto.h"
|
|
#include "../jrd/mov_proto.h"
|
|
#include "../jrd/par_proto.h"
|
|
|
|
using namespace Firebird;
|
|
|
|
namespace Jrd {
|
|
|
|
|
|
// Check the index for being an expression one and
|
|
// matching both the given stream and the given expression tree
|
|
bool checkExpressionIndex(const index_desc* idx, ValueExprNode* node, StreamType stream)
|
|
{
|
|
fb_assert(idx);
|
|
|
|
if (idx->idx_expression)
|
|
{
|
|
// The desired expression can be hidden inside a derived expression node,
|
|
// so try to recover it (see CORE-4118).
|
|
while (!idx->idx_expression->sameAs(node, true))
|
|
{
|
|
DerivedExprNode* const derivedExpr = node->as<DerivedExprNode>();
|
|
CastNode* const cast = node->as<CastNode>();
|
|
|
|
if (derivedExpr)
|
|
node = derivedExpr->arg;
|
|
else if (cast && cast->artificial)
|
|
node = cast->source;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
SortedStreamList exprStreams, nodeStreams;
|
|
idx->idx_expression->collectStreams(exprStreams);
|
|
node->collectStreams(nodeStreams);
|
|
|
|
if (exprStreams.getCount() == 1 && exprStreams[0] == 0 &&
|
|
nodeStreams.getCount() == 1 && nodeStreams[0] == stream)
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
string OPT_make_alias(thread_db* tdbb, const CompilerScratch* csb,
|
|
const CompilerScratch::csb_repeat* base_tail)
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a k e _ a l i a s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Make an alias string suitable for printing
|
|
* as part of the plan. For views, this means
|
|
* multiple aliases to distinguish the base
|
|
* table.
|
|
*
|
|
**************************************/
|
|
DEV_BLKCHK(csb, type_csb);
|
|
SET_TDBB(tdbb);
|
|
|
|
string alias;
|
|
|
|
if (base_tail->csb_view || base_tail->csb_alias)
|
|
{
|
|
ObjectsArray<string> alias_list;
|
|
|
|
for (const CompilerScratch::csb_repeat* csb_tail = base_tail; ;
|
|
csb_tail = &csb->csb_rpt[csb_tail->csb_view_stream])
|
|
{
|
|
if (csb_tail->csb_alias)
|
|
{
|
|
alias_list.push(*csb_tail->csb_alias);
|
|
}
|
|
else if (csb_tail->csb_relation)
|
|
{
|
|
alias_list.push(csb_tail->csb_relation->rel_name.c_str());
|
|
}
|
|
|
|
if (!csb_tail->csb_view)
|
|
break;
|
|
|
|
}
|
|
|
|
while (alias_list.getCount())
|
|
{
|
|
alias += alias_list.pop();
|
|
|
|
if (alias_list.getCount())
|
|
{
|
|
alias += ' ';
|
|
}
|
|
}
|
|
}
|
|
else if (base_tail->csb_relation)
|
|
{
|
|
alias = base_tail->csb_relation->rel_name.c_str();
|
|
}
|
|
else if (base_tail->csb_procedure)
|
|
{
|
|
alias = base_tail->csb_procedure->getName().toString();
|
|
}
|
|
else
|
|
{
|
|
fb_assert(false);
|
|
}
|
|
|
|
return alias;
|
|
}
|
|
|
|
|
|
IndexScratchSegment::IndexScratchSegment(MemoryPool& p) :
|
|
matches(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n d e x S c r a t c h S e g m e n t
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
lowerValue = NULL;
|
|
upperValue = NULL;
|
|
excludeLower = false;
|
|
excludeUpper = false;
|
|
scope = 0;
|
|
scanType = segmentScanNone;
|
|
}
|
|
|
|
IndexScratchSegment::IndexScratchSegment(MemoryPool& p, IndexScratchSegment* segment) :
|
|
matches(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n d e x S c r a t c h S e g m e n t
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
lowerValue = segment->lowerValue;
|
|
upperValue = segment->upperValue;
|
|
excludeLower = segment->excludeLower;
|
|
excludeUpper = segment->excludeUpper;
|
|
scope = segment->scope;
|
|
scanType = segment->scanType;
|
|
|
|
for (FB_SIZE_T i = 0; i < segment->matches.getCount(); i++) {
|
|
matches.add(segment->matches[i]);
|
|
}
|
|
}
|
|
|
|
IndexScratch::IndexScratch(MemoryPool& p, thread_db* tdbb, index_desc* ix,
|
|
CompilerScratch::csb_repeat* csb_tail) :
|
|
idx(ix), segments(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n d e x S c r a t c h
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
// Allocate needed segments
|
|
selectivity = MAXIMUM_SELECTIVITY;
|
|
candidate = false;
|
|
scopeCandidate = false;
|
|
lowerCount = 0;
|
|
upperCount = 0;
|
|
nonFullMatchedSegments = 0;
|
|
fuzzy = false;
|
|
|
|
segments.grow(idx->idx_count);
|
|
|
|
IndexScratchSegment** segment = segments.begin();
|
|
for (FB_SIZE_T i = 0; i < segments.getCount(); i++) {
|
|
segment[i] = FB_NEW_POOL(p) IndexScratchSegment(p);
|
|
}
|
|
|
|
const int length = ROUNDUP(BTR_key_length(tdbb, csb_tail->csb_relation, idx), sizeof(SLONG));
|
|
|
|
// AB: Calculate the cardinality which should reflect the total number
|
|
// of index pages for this index.
|
|
// We assume that the average index-key can be compressed by a factor 0.5
|
|
// In the future the average key-length should be stored and retrieved
|
|
// from a system table (RDB$INDICES for example).
|
|
// Multiplying the selectivity with this cardinality gives the estimated
|
|
// number of index pages that are read for the index retrieval.
|
|
double factor = 0.5;
|
|
if (segments.getCount() > 1)
|
|
{
|
|
// Compound indexes are generally less compressed.
|
|
factor = 0.7;
|
|
}
|
|
|
|
const Database* const dbb = tdbb->getDatabase();
|
|
cardinality = (csb_tail->csb_cardinality * (2 + (length * factor))) / (dbb->dbb_page_size - BTR_SIZE);
|
|
cardinality = MAX(cardinality, MINIMUM_CARDINALITY);
|
|
}
|
|
|
|
IndexScratch::IndexScratch(MemoryPool& p, const IndexScratch& scratch) :
|
|
segments(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n d e x S c r a t c h
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
selectivity = scratch.selectivity;
|
|
cardinality = scratch.cardinality;
|
|
candidate = scratch.candidate;
|
|
scopeCandidate = scratch.scopeCandidate;
|
|
lowerCount = scratch.lowerCount;
|
|
upperCount = scratch.upperCount;
|
|
nonFullMatchedSegments = scratch.nonFullMatchedSegments;
|
|
fuzzy = scratch.fuzzy;
|
|
idx = scratch.idx;
|
|
|
|
// Allocate needed segments
|
|
segments.grow(scratch.segments.getCount());
|
|
|
|
IndexScratchSegment* const* scratchSegment = scratch.segments.begin();
|
|
IndexScratchSegment** segment = segments.begin();
|
|
for (FB_SIZE_T i = 0; i < segments.getCount(); i++) {
|
|
segment[i] = FB_NEW_POOL(p) IndexScratchSegment(p, scratchSegment[i]);
|
|
}
|
|
}
|
|
|
|
IndexScratch::~IndexScratch()
|
|
{
|
|
/**************************************
|
|
*
|
|
* ~I n d e x S c r a t c h
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
IndexScratchSegment** segment = segments.begin();
|
|
for (FB_SIZE_T i = 0; i < segments.getCount(); i++) {
|
|
delete segment[i];
|
|
}
|
|
}
|
|
|
|
InversionCandidate::InversionCandidate(MemoryPool& p) :
|
|
matches(p), dependentFromStreams(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n v e r s i o n C a n d i d a t e
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
selectivity = MAXIMUM_SELECTIVITY;
|
|
cost = 0;
|
|
indexes = 0;
|
|
dependencies = 0;
|
|
nonFullMatchedSegments = MAX_INDEX_SEGMENTS + 1;
|
|
matchedSegments = 0;
|
|
boolean = NULL;
|
|
condition = NULL;
|
|
inversion = NULL;
|
|
scratch = NULL;
|
|
used = false;
|
|
unique = false;
|
|
navigated = false;
|
|
}
|
|
|
|
OptimizerRetrieval::OptimizerRetrieval(MemoryPool& p, OptimizerBlk* opt,
|
|
StreamType streamNumber, bool outer,
|
|
bool inner, SortNode* sortNode)
|
|
: pool(p), alias(p), indexScratches(p), inversionCandidates(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* O p t i m i z e r R e t r i e v a l
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
createIndexScanNodes = false;
|
|
setConjunctionsMatched = false;
|
|
|
|
tdbb = NULL;
|
|
SET_TDBB(tdbb);
|
|
|
|
this->database = tdbb->getDatabase();
|
|
this->stream = streamNumber;
|
|
this->optimizer = opt;
|
|
this->csb = this->optimizer->opt_csb;
|
|
this->innerFlag = inner;
|
|
this->outerFlag = outer;
|
|
this->sort = sortNode;
|
|
this->navigationCandidate = NULL;
|
|
CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[this->stream];
|
|
relation = csb_tail->csb_relation;
|
|
|
|
// Allocate needed indexScratches
|
|
|
|
index_desc* idx = csb_tail->csb_idx->items;
|
|
for (int i = 0; i < csb_tail->csb_indices; ++i, ++idx)
|
|
indexScratches.add(IndexScratch(p, tdbb, idx, csb_tail));
|
|
}
|
|
|
|
OptimizerRetrieval::~OptimizerRetrieval()
|
|
{
|
|
/**************************************
|
|
*
|
|
* ~O p t i m i z e r R e t r i e v a l
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
|
|
for (FB_SIZE_T i = 0; i < inversionCandidates.getCount(); ++i)
|
|
delete inversionCandidates[i];
|
|
}
|
|
|
|
InversionNode* OptimizerRetrieval::composeInversion(InversionNode* node1, InversionNode* node2,
|
|
InversionNode::Type node_type) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* c o m p o s e I n v e r s i o n
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Melt two inversions together by the
|
|
* type given in node_type.
|
|
*
|
|
**************************************/
|
|
|
|
if (!node2)
|
|
return node1;
|
|
|
|
if (!node1)
|
|
return node2;
|
|
|
|
if (node_type == InversionNode::TYPE_OR)
|
|
{
|
|
if (node1->type == InversionNode::TYPE_INDEX &&
|
|
node2->type == InversionNode::TYPE_INDEX &&
|
|
node1->retrieval->irb_index == node2->retrieval->irb_index)
|
|
{
|
|
node_type = InversionNode::TYPE_IN;
|
|
}
|
|
else if (node1->type == InversionNode::TYPE_IN &&
|
|
node2->type == InversionNode::TYPE_INDEX &&
|
|
node1->node2->retrieval->irb_index == node2->retrieval->irb_index)
|
|
{
|
|
node_type = InversionNode::TYPE_IN;
|
|
}
|
|
}
|
|
|
|
return FB_NEW_POOL(pool) InversionNode(node_type, node1, node2);
|
|
}
|
|
|
|
const string& OptimizerRetrieval::getAlias()
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e t A l i a s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
if (alias.isEmpty())
|
|
{
|
|
const CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[this->stream];
|
|
alias = OPT_make_alias(tdbb, csb, csb_tail);
|
|
}
|
|
return alias;
|
|
}
|
|
|
|
InversionCandidate* OptimizerRetrieval::generateInversion()
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e n e r a t e I n v e r s i o n
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
OptimizerBlk::opt_conjunct* const opt_begin =
|
|
optimizer->opt_conjuncts.begin() + (outerFlag ? optimizer->opt_base_parent_conjuncts : 0);
|
|
|
|
const OptimizerBlk::opt_conjunct* const opt_end =
|
|
innerFlag ? optimizer->opt_conjuncts.begin() + optimizer->opt_base_missing_conjuncts :
|
|
optimizer->opt_conjuncts.end();
|
|
|
|
InversionCandidate* invCandidate = NULL;
|
|
|
|
if (relation && !relation->rel_file && !relation->isVirtual())
|
|
{
|
|
InversionCandidateList inversions;
|
|
|
|
// Check for any DB_KEY comparisons
|
|
for (OptimizerBlk::opt_conjunct* tail = opt_begin; tail < opt_end; tail++)
|
|
{
|
|
BoolExprNode* const node = tail->opt_conjunct_node;
|
|
|
|
if (!(tail->opt_conjunct_flags & opt_conjunct_used) && node)
|
|
{
|
|
invCandidate = matchDbKey(node);
|
|
|
|
if (invCandidate)
|
|
inversions.add(invCandidate);
|
|
}
|
|
}
|
|
|
|
// First, handle "AND" comparisons (all nodes except OR)
|
|
for (OptimizerBlk::opt_conjunct* tail = opt_begin; tail < opt_end; tail++)
|
|
{
|
|
BoolExprNode* const node = tail->opt_conjunct_node;
|
|
BinaryBoolNode* booleanNode = node->as<BinaryBoolNode>();
|
|
|
|
if (!(tail->opt_conjunct_flags & opt_conjunct_used) && node &&
|
|
(!booleanNode || booleanNode->blrOp != blr_or))
|
|
{
|
|
matchOnIndexes(&indexScratches, node, 1);
|
|
}
|
|
}
|
|
|
|
getInversionCandidates(&inversions, &indexScratches, 1);
|
|
|
|
// Second, handle "OR" comparisons
|
|
for (OptimizerBlk::opt_conjunct* tail = opt_begin; tail < opt_end; tail++)
|
|
{
|
|
BoolExprNode* const node = tail->opt_conjunct_node;
|
|
BinaryBoolNode* booleanNode = node->as<BinaryBoolNode>();
|
|
|
|
if (!(tail->opt_conjunct_flags & opt_conjunct_used) && node &&
|
|
(booleanNode && booleanNode->blrOp == blr_or))
|
|
{
|
|
invCandidate = matchOnIndexes(&indexScratches, node, 1);
|
|
|
|
if (invCandidate)
|
|
{
|
|
invCandidate->boolean = node;
|
|
inversions.add(invCandidate);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sort)
|
|
analyzeNavigation();
|
|
|
|
#ifdef OPT_DEBUG_RETRIEVAL
|
|
// Debug
|
|
printCandidates(&inversions);
|
|
#endif
|
|
|
|
invCandidate = makeInversion(&inversions);
|
|
|
|
// Clean up inversion list
|
|
InversionCandidate** inversion = inversions.begin();
|
|
for (FB_SIZE_T i = 0; i < inversions.getCount(); i++)
|
|
delete inversion[i];
|
|
}
|
|
|
|
if (!invCandidate)
|
|
{
|
|
// No index will be used, thus create a dummy inversion candidate
|
|
// representing the natural table access. All the necessary properties
|
|
// (selectivity: 1.0, cost: 0, unique: false) are set up by the constructor.
|
|
invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
}
|
|
|
|
if (invCandidate->unique)
|
|
{
|
|
// Set up the unique retrieval cost to be fixed and not dependent on
|
|
// possibly outdated statistics. It includes N index scans plus one data page fetch.
|
|
invCandidate->cost = DEFAULT_INDEX_COST * invCandidate->indexes + 1;
|
|
}
|
|
else
|
|
{
|
|
// Add the records retrieval cost to the priorly calculated index scan cost
|
|
invCandidate->cost += csb->csb_rpt[stream].csb_cardinality * invCandidate->selectivity;
|
|
}
|
|
|
|
// Adjust the effective selectivity by treating computable conjunctions as filters
|
|
for (const OptimizerBlk::opt_conjunct* tail = optimizer->opt_conjuncts.begin();
|
|
tail < optimizer->opt_conjuncts.end(); tail++)
|
|
{
|
|
BoolExprNode* const node = tail->opt_conjunct_node;
|
|
|
|
if (!(tail->opt_conjunct_flags & opt_conjunct_used) &&
|
|
node->computable(csb, stream, true) &&
|
|
!invCandidate->matches.exist(node))
|
|
{
|
|
const ComparativeBoolNode* const cmpNode = node->as<ComparativeBoolNode>();
|
|
|
|
const double factor = (cmpNode && cmpNode->blrOp == blr_eql) ?
|
|
REDUCE_SELECTIVITY_FACTOR_EQUALITY : REDUCE_SELECTIVITY_FACTOR_INEQUALITY;
|
|
invCandidate->selectivity *= factor;
|
|
}
|
|
}
|
|
|
|
// Add the streams where this stream is depending on.
|
|
for (FB_SIZE_T i = 0; i < invCandidate->matches.getCount(); i++)
|
|
invCandidate->matches[i]->findDependentFromStreams(this, &invCandidate->dependentFromStreams);
|
|
|
|
if (setConjunctionsMatched)
|
|
{
|
|
SortedArray<BoolExprNode*> matches;
|
|
|
|
// AB: Putting a unsorted array in a sorted array directly by join isn't
|
|
// very safe at the moment, but in our case Array holds a sorted list.
|
|
// However SortedArray class should be updated to handle join right!
|
|
|
|
matches.join(invCandidate->matches);
|
|
|
|
for (OptimizerBlk::opt_conjunct* tail = opt_begin; tail < opt_end; tail++)
|
|
{
|
|
if (!(tail->opt_conjunct_flags & opt_conjunct_used))
|
|
{
|
|
if (matches.exist(tail->opt_conjunct_node))
|
|
tail->opt_conjunct_flags |= opt_conjunct_matched;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef OPT_DEBUG_RETRIEVAL
|
|
// Debug
|
|
printFinalCandidate(invCandidate);
|
|
#endif
|
|
|
|
return invCandidate;
|
|
}
|
|
|
|
IndexTableScan* OptimizerRetrieval::getNavigation()
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e t N a v i g a t i o n
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
if (!navigationCandidate)
|
|
return NULL;
|
|
|
|
// Looks like we can do a navigational walk. Flag that
|
|
// we have used this index for navigation, and allocate
|
|
// a navigational rsb for it.
|
|
navigationCandidate->idx->idx_runtime_flags |= idx_navigate;
|
|
|
|
const USHORT key_length =
|
|
ROUNDUP(BTR_key_length(tdbb, relation, navigationCandidate->idx), sizeof(SLONG));
|
|
|
|
InversionNode* const index_node = makeIndexScanNode(navigationCandidate);
|
|
|
|
return FB_NEW_POOL(*tdbb->getDefaultPool())
|
|
IndexTableScan(csb, getAlias(), stream, relation, index_node, key_length);
|
|
}
|
|
|
|
void OptimizerRetrieval::analyzeNavigation()
|
|
{
|
|
/**************************************
|
|
*
|
|
* a n a l y z e N a v i g a t i o n
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
fb_assert(sort);
|
|
|
|
for (FB_SIZE_T i = 0; i < indexScratches.getCount(); ++i)
|
|
{
|
|
IndexScratch* const indexScratch = &indexScratches[i];
|
|
const index_desc* const idx = indexScratch->idx;
|
|
|
|
// if the number of fields in the sort is greater than the number of
|
|
// fields in the index, the index will not be used to optimize the
|
|
// sort--note that in the case where the first field is unique, this
|
|
// could be optimized, since the sort will be performed correctly by
|
|
// navigating on a unique index on the first field--deej
|
|
if (sort->expressions.getCount() > idx->idx_count)
|
|
continue;
|
|
|
|
// if the user-specified access plan for this request didn't
|
|
// mention this index, forget it
|
|
if ((idx->idx_runtime_flags & idx_plan_dont_use) &&
|
|
!(idx->idx_runtime_flags & idx_plan_navigate))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// only a single-column ORDER BY clause can be mapped to
|
|
// an expression index
|
|
if (idx->idx_flags & idx_expressn)
|
|
{
|
|
if (sort->expressions.getCount() != 1)
|
|
continue;
|
|
}
|
|
|
|
// check to see if the fields in the sort match the fields in the index
|
|
// in the exact same order
|
|
|
|
const IndexScratchSegment* const* segment = indexScratch->segments.begin();
|
|
const IndexScratchSegment* const* const end_segment =
|
|
segment + MIN(indexScratch->lowerCount, indexScratch->upperCount);
|
|
int equalSegments = 0;
|
|
|
|
for (; segment < end_segment; segment++)
|
|
{
|
|
if ((*segment)->scanType == segmentScanEqual ||
|
|
(*segment)->scanType == segmentScanEquivalent ||
|
|
(*segment)->scanType == segmentScanMissing)
|
|
{
|
|
equalSegments++;
|
|
}
|
|
}
|
|
|
|
bool usableIndex = true;
|
|
const index_desc::idx_repeat* idx_tail = idx->idx_rpt;
|
|
const index_desc::idx_repeat* const idx_end = idx_tail + idx->idx_count;
|
|
NestConst<ValueExprNode>* ptr = sort->expressions.begin();
|
|
const bool* descending = sort->descending.begin();
|
|
const int* nullOrder = sort->nullOrder.begin();
|
|
|
|
for (const NestConst<ValueExprNode>* const end = sort->expressions.end();
|
|
ptr != end;
|
|
++ptr, ++descending, ++nullOrder, ++idx_tail)
|
|
{
|
|
ValueExprNode* const node = *ptr;
|
|
FieldNode* fieldNode;
|
|
|
|
if (idx->idx_flags & idx_expressn)
|
|
{
|
|
if (!checkExpressionIndex(idx, node, stream))
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
}
|
|
else if (!(fieldNode = node->as<FieldNode>()) || fieldNode->fieldStream != stream)
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
for (; idx_tail < idx_end && fieldNode->fieldId != idx_tail->idx_field; idx_tail++)
|
|
{
|
|
const int segmentNumber = idx_tail - idx->idx_rpt;
|
|
|
|
if (segmentNumber >= equalSegments)
|
|
break;
|
|
}
|
|
|
|
if (idx_tail >= idx_end || fieldNode->fieldId != idx_tail->idx_field)
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((*descending && !(idx->idx_flags & idx_descending)) ||
|
|
(!*descending && (idx->idx_flags & idx_descending)) ||
|
|
((*nullOrder == rse_nulls_first && *descending) ||
|
|
(*nullOrder == rse_nulls_last && !*descending)))
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
|
|
dsc desc;
|
|
node->getDesc(tdbb, csb, &desc);
|
|
|
|
// ASF: "desc.dsc_ttype() > ttype_last_internal" is to avoid recursion
|
|
// when looking for charsets/collations
|
|
|
|
if (DTYPE_IS_TEXT(desc.dsc_dtype) && desc.dsc_ttype() > ttype_last_internal)
|
|
{
|
|
const TextType* const tt = INTL_texttype_lookup(tdbb, desc.dsc_ttype());
|
|
|
|
if (idx->idx_flags & idx_unique)
|
|
{
|
|
if (tt->getFlags() & TEXTTYPE_UNSORTED_UNIQUE)
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// ASF: We currently can't use non-unique index for GROUP BY and DISTINCT with
|
|
// multi-level and insensitive collation. In NAV, keys are verified with memcmp
|
|
// but there we don't know length of each level.
|
|
if (sort->unique && (tt->getFlags() & TEXTTYPE_SEPARATE_UNIQUE))
|
|
{
|
|
usableIndex = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!usableIndex)
|
|
continue;
|
|
|
|
// Looks like we can do a navigational walk. Remember this candidate
|
|
// and compare it against other possible candidates.
|
|
|
|
if (!navigationCandidate)
|
|
navigationCandidate = indexScratch;
|
|
else
|
|
{
|
|
int count1 = MAX(indexScratch->lowerCount, indexScratch->upperCount);
|
|
int count2 = MAX(navigationCandidate->lowerCount, navigationCandidate->upperCount);
|
|
|
|
if (count1 > count2)
|
|
navigationCandidate = indexScratch;
|
|
else if (count1 == count2)
|
|
{
|
|
count1 = (int) indexScratch->segments.getCount();
|
|
count2 = (int) navigationCandidate->segments.getCount();
|
|
|
|
if (count1 < count2)
|
|
navigationCandidate = indexScratch;
|
|
else if (count1 == count2)
|
|
{
|
|
count1 = BTR_key_length(tdbb, relation, indexScratch->idx);
|
|
count2 = BTR_key_length(tdbb, relation, navigationCandidate->idx);
|
|
|
|
if (count1 < count2)
|
|
navigationCandidate = indexScratch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void OptimizerRetrieval::getInversionCandidates(InversionCandidateList* inversions,
|
|
IndexScratchList* fromIndexScratches, USHORT scope) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e t I n v e r s i o n C a n d i d a t e s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
const double cardinality = csb->csb_rpt[stream].csb_cardinality;
|
|
|
|
// Walk through indexes to calculate selectivity / candidate
|
|
Array<BoolExprNode*> matches;
|
|
FB_SIZE_T i = 0;
|
|
|
|
for (i = 0; i < fromIndexScratches->getCount(); i++)
|
|
{
|
|
IndexScratch& scratch = (*fromIndexScratches)[i];
|
|
scratch.scopeCandidate = false;
|
|
scratch.lowerCount = 0;
|
|
scratch.upperCount = 0;
|
|
scratch.nonFullMatchedSegments = MAX_INDEX_SEGMENTS + 1;
|
|
scratch.fuzzy = false;
|
|
|
|
if (scratch.candidate)
|
|
{
|
|
matches.clear();
|
|
scratch.selectivity = MAXIMUM_SELECTIVITY;
|
|
|
|
bool unique = false;
|
|
|
|
for (int j = 0; j < scratch.idx->idx_count; j++)
|
|
{
|
|
const IndexScratchSegment* const segment = scratch.segments[j];
|
|
|
|
if (segment->scope == scope)
|
|
scratch.scopeCandidate = true;
|
|
|
|
if (segment->scanType != segmentScanMissing && !(scratch.idx->idx_flags & idx_unique))
|
|
{
|
|
const USHORT iType = scratch.idx->idx_rpt[j].idx_itype;
|
|
|
|
if (iType >= idx_first_intl_string)
|
|
{
|
|
TextType* textType = INTL_texttype_lookup(tdbb, INTL_INDEX_TO_TEXT(iType));
|
|
|
|
if (textType->getFlags() & TEXTTYPE_SEPARATE_UNIQUE)
|
|
{
|
|
// ASF: Order is more precise than equivalence class.
|
|
// We can't use the next segments, and we'll need to use
|
|
// INTL_KEY_PARTIAL to construct the last segment's key.
|
|
scratch.fuzzy = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if this is the last usable segment
|
|
if (!scratch.fuzzy &&
|
|
(segment->scanType == segmentScanEqual ||
|
|
segment->scanType == segmentScanEquivalent ||
|
|
segment->scanType == segmentScanMissing))
|
|
{
|
|
// This is a perfect usable segment thus update root selectivity
|
|
scratch.lowerCount++;
|
|
scratch.upperCount++;
|
|
scratch.selectivity = scratch.idx->idx_rpt[j].idx_selectivity;
|
|
scratch.nonFullMatchedSegments = scratch.idx->idx_count - (j + 1);
|
|
// Add matches for this segment to the main matches list
|
|
matches.join(segment->matches);
|
|
|
|
// An equality scan for any unique index cannot retrieve more
|
|
// than one row. The same is true for an equivalence scan for
|
|
// any primary index.
|
|
const bool single_match =
|
|
(segment->scanType == segmentScanEqual &&
|
|
(scratch.idx->idx_flags & idx_unique)) ||
|
|
(segment->scanType == segmentScanEquivalent &&
|
|
(scratch.idx->idx_flags & idx_primary));
|
|
|
|
// dimitr: IS NULL scan against primary key is guaranteed
|
|
// to return zero rows. Do we need yet another
|
|
// special case here?
|
|
|
|
if (single_match && ((j + 1) == scratch.idx->idx_count))
|
|
{
|
|
// We have found a full equal matching index and it's unique,
|
|
// so we can stop looking further, because this is the best
|
|
// one we can get.
|
|
unique = true;
|
|
break;
|
|
}
|
|
|
|
// dimitr: number of nulls is not reflected by our selectivity,
|
|
// so IS NOT DISTINCT and IS NULL scans may retrieve
|
|
// much bigger bitmap than expected here. I think
|
|
// appropriate reduce selectivity factors are required
|
|
// to be applied here.
|
|
}
|
|
else
|
|
{
|
|
// This is our last segment that we can use,
|
|
// estimate the selectivity
|
|
double selectivity = scratch.selectivity;
|
|
double factor = 1;
|
|
|
|
switch (segment->scanType)
|
|
{
|
|
case segmentScanBetween:
|
|
scratch.lowerCount++;
|
|
scratch.upperCount++;
|
|
selectivity = scratch.idx->idx_rpt[j].idx_selectivity;
|
|
factor = REDUCE_SELECTIVITY_FACTOR_BETWEEN;
|
|
break;
|
|
|
|
case segmentScanLess:
|
|
scratch.upperCount++;
|
|
selectivity = scratch.idx->idx_rpt[j].idx_selectivity;
|
|
factor = REDUCE_SELECTIVITY_FACTOR_LESS;
|
|
break;
|
|
|
|
case segmentScanGreater:
|
|
scratch.lowerCount++;
|
|
selectivity = scratch.idx->idx_rpt[j].idx_selectivity;
|
|
factor = REDUCE_SELECTIVITY_FACTOR_GREATER;
|
|
break;
|
|
|
|
case segmentScanStarting:
|
|
case segmentScanEqual:
|
|
case segmentScanEquivalent:
|
|
scratch.lowerCount++;
|
|
scratch.upperCount++;
|
|
selectivity = scratch.idx->idx_rpt[j].idx_selectivity;
|
|
factor = REDUCE_SELECTIVITY_FACTOR_STARTING;
|
|
break;
|
|
|
|
default:
|
|
fb_assert(segment->scanType == segmentScanNone);
|
|
break;
|
|
}
|
|
|
|
// Adjust the compound selectivity using the reduce factor.
|
|
// It should be better than the previous segment but worse
|
|
// than a full match.
|
|
const double diffSelectivity = scratch.selectivity - selectivity;
|
|
selectivity += (diffSelectivity * factor);
|
|
fb_assert(selectivity <= scratch.selectivity);
|
|
scratch.selectivity = selectivity;
|
|
|
|
if (segment->scanType != segmentScanNone)
|
|
{
|
|
matches.join(segment->matches);
|
|
scratch.nonFullMatchedSegments = scratch.idx->idx_count - j;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (scratch.scopeCandidate)
|
|
{
|
|
// When selectivity is zero the statement is prepared on an
|
|
// empty table or the statistics aren't updated.
|
|
// For an unique index, estimate the selectivity via the stream cardinality.
|
|
// For a non-unique one, assume 1/10 of the maximum selectivity, so that
|
|
// at least some indexes could be chosen by the optimizer.
|
|
double selectivity = scratch.selectivity;
|
|
|
|
if (selectivity <= 0)
|
|
{
|
|
if (unique && cardinality)
|
|
selectivity = 1 / cardinality;
|
|
else
|
|
selectivity = DEFAULT_SELECTIVITY;
|
|
}
|
|
|
|
InversionCandidate* invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
invCandidate->unique = unique;
|
|
invCandidate->selectivity = selectivity;
|
|
// Calculate the cost (only index pages) for this index.
|
|
invCandidate->cost = DEFAULT_INDEX_COST + scratch.selectivity * scratch.cardinality;
|
|
invCandidate->nonFullMatchedSegments = scratch.nonFullMatchedSegments;
|
|
invCandidate->matchedSegments = MAX(scratch.lowerCount, scratch.upperCount);
|
|
invCandidate->indexes = 1;
|
|
invCandidate->scratch = &scratch;
|
|
invCandidate->matches.join(matches);
|
|
|
|
for (FB_SIZE_T k = 0; k < invCandidate->matches.getCount(); k++)
|
|
{
|
|
invCandidate->matches[k]->findDependentFromStreams(this,
|
|
&invCandidate->dependentFromStreams);
|
|
}
|
|
|
|
invCandidate->dependencies = (int) invCandidate->dependentFromStreams.getCount();
|
|
inversions->add(invCandidate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ValueExprNode* OptimizerRetrieval::findDbKey(ValueExprNode* dbkey, SLONG* position) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* f i n d D b K e y
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Search a dbkey (possibly a concatenated one) for
|
|
* a dbkey for specified stream.
|
|
*
|
|
**************************************/
|
|
|
|
const RecordKeyNode* keyNode = dbkey->as<RecordKeyNode>();
|
|
|
|
if (keyNode && keyNode->blrOp == blr_dbkey)
|
|
{
|
|
if (keyNode->recStream == stream)
|
|
return dbkey;
|
|
|
|
++*position;
|
|
return NULL;
|
|
}
|
|
|
|
ConcatenateNode* concatNode = dbkey->as<ConcatenateNode>();
|
|
|
|
if (concatNode)
|
|
{
|
|
ValueExprNode* dbkey_temp = findDbKey(concatNode->arg1, position);
|
|
|
|
if (dbkey_temp)
|
|
return dbkey_temp;
|
|
|
|
dbkey_temp = findDbKey(concatNode->arg2, position);
|
|
|
|
if (dbkey_temp)
|
|
return dbkey_temp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
InversionNode* OptimizerRetrieval::makeIndexScanNode(IndexScratch* indexScratch) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a k e I n d e x S c a n N o d e
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Build node for index scan.
|
|
*
|
|
**************************************/
|
|
|
|
if (!createIndexScanNodes)
|
|
return NULL;
|
|
|
|
index_desc* const idx = indexScratch->idx;
|
|
|
|
// Check whether this is during a compile or during a SET INDEX operation
|
|
if (csb)
|
|
CMP_post_resource(&csb->csb_resources, relation, Resource::rsc_index, idx->idx_id);
|
|
else
|
|
{
|
|
CMP_post_resource(&tdbb->getRequest()->getStatement()->resources, relation,
|
|
Resource::rsc_index, idx->idx_id);
|
|
}
|
|
|
|
// For external requests, determine index name (to be reported in plans)
|
|
MetaName indexName;
|
|
if (!(csb->csb_g_flags & csb_internal))
|
|
MET_lookup_index(tdbb, indexName, relation->rel_name, idx->idx_id + 1);
|
|
|
|
IndexRetrieval* const retrieval =
|
|
FB_NEW_POOL(pool) IndexRetrieval(pool, relation, idx, indexName);
|
|
|
|
// Pick up lower bound segment values
|
|
ValueExprNode** lower = retrieval->irb_value;
|
|
ValueExprNode** upper = retrieval->irb_value + idx->idx_count;
|
|
retrieval->irb_lower_count = indexScratch->lowerCount;
|
|
retrieval->irb_upper_count = indexScratch->upperCount;
|
|
|
|
if (idx->idx_flags & idx_descending)
|
|
{
|
|
// switch upper/lower information
|
|
upper = retrieval->irb_value;
|
|
lower = retrieval->irb_value + idx->idx_count;
|
|
retrieval->irb_lower_count = indexScratch->upperCount;
|
|
retrieval->irb_upper_count = indexScratch->lowerCount;
|
|
retrieval->irb_generic |= irb_descending;
|
|
}
|
|
|
|
int i = 0;
|
|
bool ignoreNullsOnScan = true;
|
|
IndexScratchSegment** segment = indexScratch->segments.begin();
|
|
|
|
for (i = 0; i < MAX(indexScratch->lowerCount, indexScratch->upperCount); i++)
|
|
{
|
|
if (segment[i]->scanType == segmentScanMissing)
|
|
{
|
|
*lower++ = *upper++ = FB_NEW_POOL(*tdbb->getDefaultPool()) NullNode(*tdbb->getDefaultPool());
|
|
ignoreNullsOnScan = false;
|
|
}
|
|
else
|
|
{
|
|
if (i < indexScratch->lowerCount)
|
|
*lower++ = segment[i]->lowerValue;
|
|
|
|
if (i < indexScratch->upperCount)
|
|
*upper++ = segment[i]->upperValue;
|
|
|
|
if (segment[i]->scanType == segmentScanEquivalent)
|
|
ignoreNullsOnScan = false;
|
|
}
|
|
}
|
|
|
|
i = MAX(indexScratch->lowerCount, indexScratch->upperCount) - 1;
|
|
|
|
if (i >= 0)
|
|
{
|
|
if (segment[i]->scanType == segmentScanStarting)
|
|
retrieval->irb_generic |= irb_starting;
|
|
|
|
if (segment[i]->excludeLower)
|
|
retrieval->irb_generic |= irb_exclude_lower;
|
|
|
|
if (segment[i]->excludeUpper)
|
|
retrieval->irb_generic |= irb_exclude_upper;
|
|
}
|
|
|
|
if (indexScratch->fuzzy)
|
|
retrieval->irb_generic |= irb_starting; // Flag the need to use INTL_KEY_PARTIAL in btr.
|
|
|
|
// This index is never used for IS NULL, thus we can ignore NULLs
|
|
// already at index scan. But this rule doesn't apply to nod_equiv
|
|
// which requires NULLs to be found in the index.
|
|
// A second exception is when this index is used for navigation.
|
|
if (ignoreNullsOnScan && !(idx->idx_runtime_flags & idx_navigate))
|
|
retrieval->irb_generic |= irb_ignore_null_value_key;
|
|
|
|
// Check to see if this is really an equality retrieval
|
|
if (retrieval->irb_lower_count == retrieval->irb_upper_count)
|
|
{
|
|
retrieval->irb_generic |= irb_equality;
|
|
segment = indexScratch->segments.begin();
|
|
|
|
for (i = 0; i < retrieval->irb_lower_count; i++)
|
|
{
|
|
if (segment[i]->lowerValue != segment[i]->upperValue)
|
|
{
|
|
retrieval->irb_generic &= ~irb_equality;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are matching less than the full index, this is a partial match
|
|
if (idx->idx_flags & idx_descending)
|
|
{
|
|
if (retrieval->irb_lower_count < idx->idx_count)
|
|
retrieval->irb_generic |= irb_partial;
|
|
}
|
|
else
|
|
{
|
|
if (retrieval->irb_upper_count < idx->idx_count)
|
|
retrieval->irb_generic |= irb_partial;
|
|
}
|
|
|
|
// mark the index as utilized for the purposes of this compile
|
|
idx->idx_runtime_flags |= idx_used;
|
|
|
|
const ULONG impure = csb ? CMP_impure(csb, sizeof(impure_inversion)) : 0;
|
|
return FB_NEW_POOL(pool) InversionNode(retrieval, impure);
|
|
}
|
|
|
|
InversionCandidate* OptimizerRetrieval::makeInversion(InversionCandidateList* inversions) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a k e I n v e r s i o n
|
|
*
|
|
**************************************
|
|
*
|
|
* Select best available inversion candidates
|
|
* and compose them to 1 inversion.
|
|
* This was never implemented:
|
|
* If top is true the datapages-cost is
|
|
* also used in the calculation (only needed
|
|
* for top InversionNode generation).
|
|
*
|
|
**************************************/
|
|
|
|
if (inversions->isEmpty() && !navigationCandidate)
|
|
return NULL;
|
|
|
|
const double streamCardinality =
|
|
MAX(csb->csb_rpt[stream].csb_cardinality, MINIMUM_CARDINALITY);
|
|
|
|
// Prepared statements could be optimized against an almost empty table
|
|
// and then cached (such as in the restore process), thus causing slowdown
|
|
// when the table grows. In this case, let's consider all available indices.
|
|
const bool smallTable = (streamCardinality <= THRESHOLD_CARDINALITY);
|
|
|
|
// These flags work around our smart index selection algorithm. Any explicit
|
|
// (i.e. user specified) plan requires all existing indices to be considered
|
|
// for a retrieval. Internal (system) requests used by the engine itself are
|
|
// often optimized using zero or non-actual statistics, so they are processed
|
|
// using somewhat relaxed rules.
|
|
const bool customPlan = csb->csb_rpt[stream].csb_plan;
|
|
const bool sysRequest = (csb->csb_g_flags & csb_internal);
|
|
|
|
double totalSelectivity = MAXIMUM_SELECTIVITY; // worst selectivity
|
|
double totalIndexCost = 0;
|
|
|
|
// The upper limit to use an index based retrieval is five indexes + almost all datapages
|
|
const double maximumCost = (DEFAULT_INDEX_COST * 5) + (streamCardinality * 0.95);
|
|
const double minimumSelectivity = 1 / streamCardinality;
|
|
|
|
double previousTotalCost = maximumCost;
|
|
|
|
// Force to always choose at least one index
|
|
bool firstCandidate = true;
|
|
|
|
FB_SIZE_T i = 0;
|
|
InversionCandidate* invCandidate = NULL;
|
|
InversionCandidate** inversion = inversions->begin();
|
|
for (i = 0; i < inversions->getCount(); i++)
|
|
{
|
|
inversion[i]->used = false;
|
|
const IndexScratch* const indexScratch = inversion[i]->scratch;
|
|
|
|
if (indexScratch && (indexScratch->idx->idx_runtime_flags & idx_plan_dont_use))
|
|
inversion[i]->used = true;
|
|
}
|
|
|
|
// The matches returned in this inversion are always sorted.
|
|
SortedArray<BoolExprNode*> matches;
|
|
|
|
if (navigationCandidate)
|
|
{
|
|
const int matchedSegments =
|
|
MAX(navigationCandidate->lowerCount, navigationCandidate->upperCount);
|
|
|
|
fb_assert(matchedSegments <= (int) navigationCandidate->segments.getCount());
|
|
|
|
for (int segno = 0; segno < matchedSegments; segno++)
|
|
{
|
|
const IndexScratchSegment* const segment = navigationCandidate->segments[segno];
|
|
|
|
for (FB_SIZE_T j = 0; j < segment->matches.getCount(); j++)
|
|
{
|
|
if (!matches.exist(segment->matches[j]))
|
|
matches.add(segment->matches[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < inversions->getCount(); i++)
|
|
{
|
|
// Initialize vars before walking through candidates
|
|
InversionCandidate* bestCandidate = NULL;
|
|
bool restartLoop = false;
|
|
|
|
for (FB_SIZE_T currentPosition = 0; currentPosition < inversions->getCount(); ++currentPosition)
|
|
{
|
|
InversionCandidate* currentInv = inversion[currentPosition];
|
|
if (!currentInv->used)
|
|
{
|
|
// If this is a unique full equal matched inversion we're done, so
|
|
// we can make the inversion and return it.
|
|
if (currentInv->unique && currentInv->dependencies && !currentInv->condition &&
|
|
currentInv->scratch != navigationCandidate)
|
|
{
|
|
if (!invCandidate)
|
|
invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
|
|
if (!currentInv->inversion && currentInv->scratch)
|
|
invCandidate->inversion = makeIndexScanNode(currentInv->scratch);
|
|
else
|
|
invCandidate->inversion = currentInv->inversion;
|
|
|
|
invCandidate->unique = currentInv->unique;
|
|
invCandidate->selectivity = currentInv->selectivity;
|
|
invCandidate->cost = currentInv->cost;
|
|
invCandidate->indexes = currentInv->indexes;
|
|
invCandidate->nonFullMatchedSegments = 0;
|
|
invCandidate->matchedSegments = currentInv->matchedSegments;
|
|
invCandidate->dependencies = currentInv->dependencies;
|
|
matches.clear();
|
|
|
|
for (FB_SIZE_T j = 0; j < currentInv->matches.getCount(); j++)
|
|
{
|
|
if (!matches.exist(currentInv->matches[j]))
|
|
matches.add(currentInv->matches[j]);
|
|
}
|
|
|
|
if (currentInv->boolean)
|
|
{
|
|
if (!matches.exist(currentInv->boolean))
|
|
matches.add(currentInv->boolean);
|
|
}
|
|
|
|
invCandidate->matches.join(matches);
|
|
if (customPlan)
|
|
continue;
|
|
|
|
return invCandidate;
|
|
}
|
|
|
|
// Look if a match is already used by previous matches.
|
|
bool anyMatchAlreadyUsed = false;
|
|
for (FB_SIZE_T k = 0; k < currentInv->matches.getCount(); k++)
|
|
{
|
|
if (matches.exist(currentInv->matches[k]))
|
|
{
|
|
anyMatchAlreadyUsed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (anyMatchAlreadyUsed && !customPlan)
|
|
{
|
|
currentInv->used = true;
|
|
// If a match on this index was already used by another
|
|
// index, add also the other matches from this index.
|
|
for (FB_SIZE_T j = 0; j < currentInv->matches.getCount(); j++)
|
|
{
|
|
if (!matches.exist(currentInv->matches[j]))
|
|
matches.add(currentInv->matches[j]);
|
|
}
|
|
// Restart loop, because other indexes could also be excluded now.
|
|
restartLoop = true;
|
|
break;
|
|
}
|
|
|
|
if (!bestCandidate)
|
|
{
|
|
// The first candidate
|
|
bestCandidate = currentInv;
|
|
}
|
|
else
|
|
{
|
|
// Prefer unconditional inversions
|
|
if (currentInv->condition)
|
|
{
|
|
currentInv->used = true;
|
|
restartLoop = true;
|
|
break;
|
|
}
|
|
|
|
if (bestCandidate->condition)
|
|
{
|
|
bestCandidate = currentInv;
|
|
restartLoop = true;
|
|
break;
|
|
}
|
|
|
|
if (currentInv->unique && !bestCandidate->unique)
|
|
{
|
|
// A unique full equal match is better than anything else.
|
|
bestCandidate = currentInv;
|
|
}
|
|
else if (currentInv->unique == bestCandidate->unique)
|
|
{
|
|
if (currentInv->dependencies > bestCandidate->dependencies)
|
|
{
|
|
// Index used for a relationship must be always prefered to
|
|
// the filtering ones, otherwise the nested loop join has
|
|
// no chances to be better than a sort merge.
|
|
// An alternative (simplified) condition might be:
|
|
// currentInv->dependencies > 0
|
|
// && bestCandidate->dependencies == 0
|
|
// but so far I tend to think that the current one is better.
|
|
bestCandidate = currentInv;
|
|
}
|
|
else if (currentInv->dependencies == bestCandidate->dependencies)
|
|
{
|
|
|
|
const double bestCandidateCost =
|
|
bestCandidate->cost + (bestCandidate->selectivity * streamCardinality);
|
|
const double currentCandidateCost =
|
|
currentInv->cost + (currentInv->selectivity * streamCardinality);
|
|
|
|
// Do we have very similar costs?
|
|
double diffCost = currentCandidateCost;
|
|
if (!diffCost && !bestCandidateCost)
|
|
{
|
|
// Two zero costs should be handled as being the same
|
|
// (other comparison criteria should be applied, see below).
|
|
diffCost = 1;
|
|
}
|
|
else if (diffCost)
|
|
{
|
|
// Calculate the difference.
|
|
diffCost = bestCandidateCost / diffCost;
|
|
}
|
|
else {
|
|
diffCost = 0;
|
|
}
|
|
|
|
if ((diffCost >= 0.98) && (diffCost <= 1.02))
|
|
{
|
|
// If the "same" costs then compare with the nr of unmatched segments,
|
|
// how many indexes and matched segments. First compare number of indexes.
|
|
int compareSelectivity = (currentInv->indexes - bestCandidate->indexes);
|
|
if (compareSelectivity == 0)
|
|
{
|
|
// For the same number of indexes compare number of matched segments.
|
|
// Note the inverted condition: the more matched segments the better.
|
|
compareSelectivity =
|
|
(bestCandidate->matchedSegments - currentInv->matchedSegments);
|
|
if (compareSelectivity == 0)
|
|
{
|
|
// For the same number of matched segments
|
|
// compare ones that aren't full matched
|
|
compareSelectivity =
|
|
(currentInv->nonFullMatchedSegments - bestCandidate->nonFullMatchedSegments);
|
|
}
|
|
}
|
|
if (compareSelectivity < 0) {
|
|
bestCandidate = currentInv;
|
|
}
|
|
}
|
|
else if (currentCandidateCost < bestCandidateCost)
|
|
{
|
|
// How lower the cost the better.
|
|
bestCandidate = currentInv;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (restartLoop)
|
|
continue;
|
|
|
|
// If we have a candidate which is interesting build the inversion
|
|
// else we're done.
|
|
if (bestCandidate)
|
|
{
|
|
// AB: Here we test if our new candidate is interesting enough to be added for
|
|
// index retrieval.
|
|
|
|
// AB: For now i'll use the calculation that's often used for and-ing selectivities (S1 * S2).
|
|
// I think this calculation is not right for many cases.
|
|
// For example two "good" selectivities will result in a very good selectivity, but
|
|
// mostly a filter is made by adding criteria's where every criteria is an extra filter
|
|
// compared to the previous one. Thus with the second criteria in _most_ cases still
|
|
// records are returned. (Think also on the segment-selectivity in compound indexes)
|
|
// Assume a table with 100000 records and two selectivities of 0.001 (100 records) which
|
|
// are both AND-ed (with S1 * S2 => 0.001 * 0.001 = 0.000001 => 0.1 record).
|
|
//
|
|
// A better formula could be where the result is between "Sbest" and "Sbest * factor"
|
|
// The reducing factor should be between 0 and 1 (Sbest = best selectivity)
|
|
//
|
|
// Example:
|
|
/*
|
|
double newTotalSelectivity = 0;
|
|
double bestSel = bestCandidate->selectivity;
|
|
double worstSel = totalSelectivity;
|
|
if (bestCandidate->selectivity > totalSelectivity)
|
|
{
|
|
worstSel = bestCandidate->selectivity;
|
|
bestSel = totalSelectivity;
|
|
}
|
|
|
|
if (bestSel >= MAXIMUM_SELECTIVITY) {
|
|
newTotalSelectivity = MAXIMUM_SELECTIVITY;
|
|
}
|
|
else if (bestSel == 0) {
|
|
newTotalSelectivity = 0;
|
|
}
|
|
else {
|
|
newTotalSelectivity = bestSel - ((1 - worstSel) * (bestSel - (bestSel * 0.01)));
|
|
}
|
|
*/
|
|
|
|
const double newTotalSelectivity = bestCandidate->selectivity * totalSelectivity;
|
|
const double newTotalDataCost = newTotalSelectivity * streamCardinality;
|
|
const double newTotalIndexCost = totalIndexCost + bestCandidate->cost;
|
|
const double totalCost = newTotalDataCost + newTotalIndexCost;
|
|
|
|
// Test if the new totalCost will be higher than the previous totalCost
|
|
// and if the current selectivity (without the bestCandidate) is already good enough.
|
|
if (customPlan || sysRequest || smallTable || firstCandidate ||
|
|
(totalCost < previousTotalCost && totalSelectivity > minimumSelectivity))
|
|
{
|
|
// Exclude index from next pass
|
|
bestCandidate->used = true;
|
|
|
|
firstCandidate = false;
|
|
|
|
previousTotalCost = totalCost;
|
|
totalIndexCost = newTotalIndexCost;
|
|
totalSelectivity = newTotalSelectivity;
|
|
|
|
if (!invCandidate)
|
|
{
|
|
invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
if (!bestCandidate->inversion && bestCandidate->scratch) {
|
|
invCandidate->inversion = makeIndexScanNode(bestCandidate->scratch);
|
|
}
|
|
else {
|
|
invCandidate->inversion = bestCandidate->inversion;
|
|
}
|
|
invCandidate->unique = bestCandidate->unique;
|
|
invCandidate->selectivity = bestCandidate->selectivity;
|
|
invCandidate->cost = bestCandidate->cost;
|
|
invCandidate->indexes = bestCandidate->indexes;
|
|
invCandidate->nonFullMatchedSegments = 0;
|
|
invCandidate->matchedSegments = bestCandidate->matchedSegments;
|
|
invCandidate->dependencies = bestCandidate->dependencies;
|
|
invCandidate->condition = bestCandidate->condition;
|
|
|
|
for (FB_SIZE_T j = 0; j < bestCandidate->matches.getCount(); j++)
|
|
{
|
|
if (!matches.exist(bestCandidate->matches[j]))
|
|
matches.add(bestCandidate->matches[j]);
|
|
}
|
|
if (bestCandidate->boolean)
|
|
{
|
|
if (!matches.exist(bestCandidate->boolean))
|
|
matches.add(bestCandidate->boolean);
|
|
}
|
|
}
|
|
else if (!bestCandidate->condition)
|
|
{
|
|
if (!bestCandidate->inversion && bestCandidate->scratch)
|
|
{
|
|
invCandidate->inversion = composeInversion(invCandidate->inversion,
|
|
makeIndexScanNode(bestCandidate->scratch), InversionNode::TYPE_AND);
|
|
}
|
|
else
|
|
{
|
|
invCandidate->inversion = composeInversion(invCandidate->inversion,
|
|
bestCandidate->inversion, InversionNode::TYPE_AND);
|
|
}
|
|
|
|
invCandidate->unique = (invCandidate->unique || bestCandidate->unique);
|
|
invCandidate->selectivity = totalSelectivity;
|
|
invCandidate->cost += bestCandidate->cost;
|
|
invCandidate->indexes += bestCandidate->indexes;
|
|
invCandidate->nonFullMatchedSegments = 0;
|
|
invCandidate->matchedSegments =
|
|
MAX(bestCandidate->matchedSegments, invCandidate->matchedSegments);
|
|
invCandidate->dependencies += bestCandidate->dependencies;
|
|
|
|
for (FB_SIZE_T j = 0; j < bestCandidate->matches.getCount(); j++)
|
|
{
|
|
if (!matches.exist(bestCandidate->matches[j]))
|
|
matches.add(bestCandidate->matches[j]);
|
|
}
|
|
|
|
if (bestCandidate->boolean)
|
|
{
|
|
if (!matches.exist(bestCandidate->boolean))
|
|
matches.add(bestCandidate->boolean);
|
|
}
|
|
}
|
|
|
|
if (invCandidate->unique)
|
|
{
|
|
// Single unique full equal match is enough
|
|
if (!customPlan)
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We're done
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we have no index used for filtering, but there's a navigational walk,
|
|
// set up the inversion candidate appropriately.
|
|
if (navigationCandidate)
|
|
{
|
|
if (!invCandidate)
|
|
invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
|
|
invCandidate->selectivity *= navigationCandidate->selectivity;
|
|
invCandidate->cost += DEFAULT_INDEX_COST +
|
|
navigationCandidate->cardinality * navigationCandidate->selectivity;
|
|
++invCandidate->indexes;
|
|
invCandidate->navigated = true;
|
|
}
|
|
|
|
if (invCandidate && matches.getCount())
|
|
invCandidate->matches.join(matches);
|
|
|
|
return invCandidate;
|
|
}
|
|
|
|
bool OptimizerRetrieval::matchBoolean(IndexScratch* indexScratch, BoolExprNode* boolean,
|
|
USHORT scope) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a t c h B o o l e a n
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
if (boolean->nodFlags & ExprNode::FLAG_DEOPTIMIZE)
|
|
return false;
|
|
|
|
ComparativeBoolNode* cmpNode = boolean->as<ComparativeBoolNode>();
|
|
MissingBoolNode* missingNode = boolean->as<MissingBoolNode>();
|
|
NotBoolNode* notNode = boolean->as<NotBoolNode>();
|
|
RseBoolNode* rseNode = boolean->as<RseBoolNode>();
|
|
bool forward = true;
|
|
ValueExprNode* value = NULL;
|
|
ValueExprNode* match = NULL;
|
|
|
|
if (cmpNode)
|
|
{
|
|
match = cmpNode->arg1;
|
|
value = cmpNode->arg2;
|
|
}
|
|
else if (missingNode)
|
|
match = missingNode->arg;
|
|
else if (notNode || rseNode)
|
|
return false;
|
|
else
|
|
{
|
|
fb_assert(false);
|
|
return false;
|
|
}
|
|
|
|
ValueExprNode* value2 = (cmpNode && cmpNode->blrOp == blr_between) ?
|
|
cmpNode->arg3 : NULL;
|
|
|
|
if (indexScratch->idx->idx_flags & idx_expressn)
|
|
{
|
|
// see if one side or the other is matchable to the index expression
|
|
|
|
fb_assert(indexScratch->idx->idx_expression != NULL);
|
|
|
|
if (!checkExpressionIndex(indexScratch->idx, match, stream) ||
|
|
(value && !value->computable(csb, stream, false)))
|
|
{
|
|
if ((!cmpNode || cmpNode->blrOp != blr_starting) && value &&
|
|
checkExpressionIndex(indexScratch->idx, value, stream) &&
|
|
match->computable(csb, stream, false))
|
|
{
|
|
ValueExprNode* temp = match;
|
|
match = value;
|
|
value = temp;
|
|
forward = false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If left side is not a field, swap sides.
|
|
// If left side is still not a field, give up
|
|
|
|
FieldNode* fieldNode;
|
|
|
|
if (!(fieldNode = match->as<FieldNode>()) ||
|
|
fieldNode->fieldStream != stream ||
|
|
(value && !value->computable(csb, stream, false)))
|
|
{
|
|
ValueExprNode* temp = match;
|
|
match = value;
|
|
value = temp;
|
|
|
|
if ((!match || !(fieldNode = match->as<FieldNode>())) ||
|
|
fieldNode->fieldStream != stream ||
|
|
!value->computable(csb, stream, false))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
forward = false;
|
|
}
|
|
}
|
|
|
|
// check datatypes to ensure that the index scan is guaranteed
|
|
// to deliver correct results
|
|
|
|
bool excludeBound = cmpNode && (cmpNode->blrOp == blr_gtr || cmpNode->blrOp == blr_lss);
|
|
|
|
if (value)
|
|
{
|
|
dsc desc1, desc2;
|
|
match->getDesc(tdbb, csb, &desc1);
|
|
value->getDesc(tdbb, csb, &desc2);
|
|
|
|
if (!BTR_types_comparable(desc1, desc2))
|
|
return false;
|
|
|
|
// if the indexed column is of type int64, we need to inject an
|
|
// extra cast to deliver the scale value to the BTR level
|
|
|
|
if (desc1.dsc_dtype == dtype_int64)
|
|
{
|
|
CastNode* cast = FB_NEW_POOL(*tdbb->getDefaultPool()) CastNode(*tdbb->getDefaultPool());
|
|
cast->source = value;
|
|
cast->castDesc = desc1;
|
|
cast->impureOffset = CMP_impure(csb, sizeof(impure_value));
|
|
|
|
value = cast;
|
|
|
|
if (value2)
|
|
{
|
|
cast = FB_NEW_POOL(*tdbb->getDefaultPool()) CastNode(*tdbb->getDefaultPool());
|
|
cast->source = value2;
|
|
cast->castDesc = desc1;
|
|
cast->impureOffset = CMP_impure(csb, sizeof(impure_value));
|
|
|
|
value2 = cast;
|
|
}
|
|
}
|
|
else if (desc1.dsc_dtype == dtype_sql_date && desc2.dsc_dtype == dtype_timestamp)
|
|
{
|
|
// for "DATE <op> TIMESTAMP" we need <op> to include the boundary value
|
|
excludeBound = false;
|
|
}
|
|
}
|
|
|
|
// match the field to an index, if possible, and save the value to be matched
|
|
// as either the lower or upper bound for retrieval, or both
|
|
|
|
const bool isDesc = (indexScratch->idx->idx_flags & idx_descending);
|
|
int count = 0;
|
|
IndexScratchSegment** segment = indexScratch->segments.begin();
|
|
|
|
for (int i = 0; i < indexScratch->idx->idx_count; i++)
|
|
{
|
|
FieldNode* fieldNode = match->as<FieldNode>();
|
|
|
|
if (!(indexScratch->idx->idx_flags & idx_expressn))
|
|
{
|
|
fb_assert(fieldNode);
|
|
}
|
|
|
|
if ((indexScratch->idx->idx_flags & idx_expressn) ||
|
|
fieldNode->fieldId == indexScratch->idx->idx_rpt[i].idx_field)
|
|
{
|
|
if (cmpNode)
|
|
{
|
|
switch (cmpNode->blrOp)
|
|
{
|
|
case blr_between:
|
|
if (!forward || !value2->computable(csb, stream, false))
|
|
return false;
|
|
segment[i]->matches.add(boolean);
|
|
// AB: If we have already an exact match don't
|
|
// override it with worser matches.
|
|
if (!((segment[i]->scanType == segmentScanEqual) ||
|
|
(segment[i]->scanType == segmentScanEquivalent)))
|
|
{
|
|
segment[i]->lowerValue = value;
|
|
segment[i]->upperValue = value2;
|
|
segment[i]->scanType = segmentScanBetween;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
}
|
|
break;
|
|
|
|
case blr_equiv:
|
|
segment[i]->matches.add(boolean);
|
|
// AB: If we have already an exact match don't
|
|
// override it with worser matches.
|
|
if (!(segment[i]->scanType == segmentScanEqual))
|
|
{
|
|
segment[i]->lowerValue = segment[i]->upperValue = value;
|
|
segment[i]->scanType = segmentScanEquivalent;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
}
|
|
break;
|
|
|
|
case blr_eql:
|
|
segment[i]->matches.add(boolean);
|
|
segment[i]->lowerValue = segment[i]->upperValue = value;
|
|
segment[i]->scanType = segmentScanEqual;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
break;
|
|
|
|
// ASF: Make "NOT boolean" work with indices.
|
|
case blr_neq:
|
|
{
|
|
dsc desc;
|
|
value->getDesc(tdbb, csb, &desc);
|
|
|
|
if (desc.dsc_dtype != dtype_boolean)
|
|
return false;
|
|
|
|
// Let's make a compare with FALSE so we invert the value.
|
|
|
|
static const UCHAR falseValue = '\0';
|
|
LiteralNode* falseLiteral = FB_NEW_POOL(*tdbb->getDefaultPool())
|
|
LiteralNode(*tdbb->getDefaultPool());
|
|
falseLiteral->litDesc.makeBoolean(const_cast<UCHAR*>(&falseValue));
|
|
|
|
ComparativeBoolNode* newCmp = FB_NEW_POOL(*tdbb->getDefaultPool())
|
|
ComparativeBoolNode(*tdbb->getDefaultPool(), blr_eql);
|
|
newCmp->arg1 = value;
|
|
newCmp->arg2 = falseLiteral;
|
|
|
|
// Recreate the boolean expression as a value.
|
|
BoolAsValueNode* newValue = FB_NEW_POOL(*tdbb->getDefaultPool())
|
|
BoolAsValueNode(*tdbb->getDefaultPool());
|
|
newValue->boolean = newCmp;
|
|
|
|
newValue->impureOffset = CMP_impure(csb, sizeof(impure_value));
|
|
|
|
// We have the value inverted. Then use it with a segmentScanEqual for the
|
|
// index lookup.
|
|
segment[i]->matches.add(boolean);
|
|
segment[i]->lowerValue = segment[i]->upperValue = newValue;
|
|
segment[i]->scanType = segmentScanEqual;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
break;
|
|
}
|
|
|
|
case blr_gtr:
|
|
case blr_geq:
|
|
segment[i]->matches.add(boolean);
|
|
if (!((segment[i]->scanType == segmentScanEqual) ||
|
|
(segment[i]->scanType == segmentScanEquivalent) ||
|
|
(segment[i]->scanType == segmentScanBetween)))
|
|
{
|
|
if (forward != isDesc) // (forward && !isDesc || !forward && isDesc)
|
|
segment[i]->excludeLower = excludeBound;
|
|
else
|
|
segment[i]->excludeUpper = excludeBound;
|
|
|
|
if (forward)
|
|
{
|
|
segment[i]->lowerValue = value;
|
|
if (segment[i]->scanType == segmentScanLess)
|
|
segment[i]->scanType = segmentScanBetween;
|
|
else
|
|
segment[i]->scanType = segmentScanGreater;
|
|
}
|
|
else
|
|
{
|
|
segment[i]->upperValue = value;
|
|
if (segment[i]->scanType == segmentScanGreater)
|
|
segment[i]->scanType = segmentScanBetween;
|
|
else
|
|
segment[i]->scanType = segmentScanLess;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case blr_lss:
|
|
case blr_leq:
|
|
segment[i]->matches.add(boolean);
|
|
if (!((segment[i]->scanType == segmentScanEqual) ||
|
|
(segment[i]->scanType == segmentScanEquivalent) ||
|
|
(segment[i]->scanType == segmentScanBetween)))
|
|
{
|
|
if (forward != isDesc)
|
|
segment[i]->excludeUpper = excludeBound;
|
|
else
|
|
segment[i]->excludeLower = excludeBound;
|
|
|
|
if (forward)
|
|
{
|
|
segment[i]->upperValue = value;
|
|
if (segment[i]->scanType == segmentScanGreater)
|
|
segment[i]->scanType = segmentScanBetween;
|
|
else
|
|
segment[i]->scanType = segmentScanLess;
|
|
}
|
|
else
|
|
{
|
|
segment[i]->lowerValue = value;
|
|
if (segment[i]->scanType == segmentScanLess)
|
|
segment[i]->scanType = segmentScanBetween;
|
|
else
|
|
segment[i]->scanType = segmentScanGreater;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case blr_starting:
|
|
// Check if validate for using index
|
|
if (!forward || !validateStarts(indexScratch, cmpNode, i))
|
|
return false;
|
|
segment[i]->matches.add(boolean);
|
|
if (!((segment[i]->scanType == segmentScanEqual) ||
|
|
(segment[i]->scanType == segmentScanEquivalent)))
|
|
{
|
|
segment[i]->lowerValue = segment[i]->upperValue = value;
|
|
segment[i]->scanType = segmentScanStarting;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
else if (missingNode)
|
|
{
|
|
segment[i]->matches.add(boolean);
|
|
if (!((segment[i]->scanType == segmentScanEqual) ||
|
|
(segment[i]->scanType == segmentScanEquivalent)))
|
|
{
|
|
segment[i]->lowerValue = segment[i]->upperValue = value;
|
|
segment[i]->scanType = segmentScanMissing;
|
|
segment[i]->excludeLower = false;
|
|
segment[i]->excludeUpper = false;
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
|
|
// A match could be made
|
|
if (segment[i]->scope < scope)
|
|
segment[i]->scope = scope;
|
|
|
|
++count;
|
|
|
|
if (i == 0)
|
|
{
|
|
// If this is the first segment, then this index is a candidate.
|
|
indexScratch->candidate = true;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return count >= 1;
|
|
}
|
|
|
|
InversionCandidate* OptimizerRetrieval::matchDbKey(BoolExprNode* boolean) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a t c h D b K e y
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Check whether a boolean is a DB_KEY based comparison.
|
|
*
|
|
**************************************/
|
|
// If this isn't an equality, it isn't even interesting
|
|
|
|
ComparativeBoolNode* cmpNode = boolean->as<ComparativeBoolNode>();
|
|
|
|
if (!cmpNode || cmpNode->blrOp != blr_eql)
|
|
return NULL;
|
|
|
|
// Find the side of the equality that is potentially a dbkey. If
|
|
// neither, make the obvious deduction
|
|
|
|
ValueExprNode* dbkey = cmpNode->arg1;
|
|
ValueExprNode* value = cmpNode->arg2;
|
|
|
|
const RecordKeyNode* keyNode = dbkey->as<RecordKeyNode>();
|
|
|
|
if (!(keyNode && keyNode->blrOp == blr_dbkey && keyNode->recStream == stream) &&
|
|
!dbkey->is<ConcatenateNode>())
|
|
{
|
|
keyNode = value->as<RecordKeyNode>();
|
|
|
|
if (!(keyNode && keyNode->blrOp == blr_dbkey && keyNode->recStream == stream) &&
|
|
!value->is<ConcatenateNode>())
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
dbkey = value;
|
|
value = cmpNode->arg1;
|
|
}
|
|
|
|
// If the value isn't computable, this has been a waste of time
|
|
|
|
if (!value->computable(csb, stream, false))
|
|
return NULL;
|
|
|
|
// If this is a concatenation, find an appropriate dbkey
|
|
|
|
SLONG n = 0;
|
|
if (dbkey->is<ConcatenateNode>())
|
|
{
|
|
dbkey = findDbKey(dbkey, &n);
|
|
if (!dbkey)
|
|
return NULL;
|
|
}
|
|
|
|
// Make sure we have the correct stream
|
|
|
|
keyNode = dbkey->as<RecordKeyNode>();
|
|
|
|
if (!keyNode || keyNode->blrOp != blr_dbkey || keyNode->recStream != stream)
|
|
return NULL;
|
|
|
|
// If this is a dbkey for the appropriate stream, it's invertable
|
|
|
|
const double cardinality = csb->csb_rpt[stream].csb_cardinality;
|
|
|
|
InversionCandidate* const invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
invCandidate->unique = true;
|
|
invCandidate->selectivity = cardinality ? 1 / cardinality : DEFAULT_SELECTIVITY;
|
|
invCandidate->cost = 1;
|
|
invCandidate->matches.add(boolean);
|
|
boolean->findDependentFromStreams(this, &invCandidate->dependentFromStreams);
|
|
invCandidate->dependencies = (int) invCandidate->dependentFromStreams.getCount();
|
|
|
|
if (createIndexScanNodes)
|
|
{
|
|
InversionNode* const inversion = FB_NEW_POOL(pool) InversionNode(value, n);
|
|
inversion->impure = CMP_impure(csb, sizeof(impure_inversion));
|
|
invCandidate->inversion = inversion;
|
|
}
|
|
|
|
return invCandidate;
|
|
}
|
|
|
|
InversionCandidate* OptimizerRetrieval::matchOnIndexes(
|
|
IndexScratchList* inputIndexScratches, BoolExprNode* boolean, USHORT scope) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* m a t c h O n I n d e x e s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Try to match boolean on every index.
|
|
* If the boolean is an "OR" node then a
|
|
* inversion candidate could be returned.
|
|
*
|
|
**************************************/
|
|
BinaryBoolNode* binaryNode = boolean->as<BinaryBoolNode>();
|
|
|
|
// Handle the "OR" case up front
|
|
if (binaryNode && binaryNode->blrOp == blr_or)
|
|
{
|
|
InversionCandidateList inversions;
|
|
inversions.shrink(0);
|
|
|
|
// Make list for index matches
|
|
IndexScratchList indexOrScratches;
|
|
|
|
// Copy information from caller
|
|
|
|
FB_SIZE_T i = 0;
|
|
|
|
for (; i < inputIndexScratches->getCount(); i++)
|
|
{
|
|
IndexScratch& scratch = (*inputIndexScratches)[i];
|
|
indexOrScratches.add(scratch);
|
|
}
|
|
|
|
// We use a scope variable to see on how
|
|
// deep we are in a nested or conjunction.
|
|
scope++;
|
|
|
|
InversionCandidate* invCandidate1 =
|
|
matchOnIndexes(&indexOrScratches, binaryNode->arg1, scope);
|
|
|
|
if (invCandidate1)
|
|
inversions.add(invCandidate1);
|
|
|
|
BinaryBoolNode* childBoolNode = binaryNode->arg1->as<BinaryBoolNode>();
|
|
|
|
// Get usable inversions based on indexOrScratches and scope
|
|
if (!childBoolNode || childBoolNode->blrOp != blr_or)
|
|
getInversionCandidates(&inversions, &indexOrScratches, scope);
|
|
|
|
invCandidate1 = makeInversion(&inversions);
|
|
|
|
// Clear list to remove previously matched conjunctions
|
|
indexOrScratches.clear();
|
|
|
|
// Copy information from caller
|
|
|
|
i = 0;
|
|
|
|
for (; i < inputIndexScratches->getCount(); i++)
|
|
{
|
|
IndexScratch& scratch = (*inputIndexScratches)[i];
|
|
indexOrScratches.add(scratch);
|
|
}
|
|
|
|
// Clear inversion list
|
|
inversions.clear();
|
|
|
|
InversionCandidate* invCandidate2 = matchOnIndexes(
|
|
&indexOrScratches, binaryNode->arg2, scope);
|
|
|
|
if (invCandidate2)
|
|
inversions.add(invCandidate2);
|
|
|
|
childBoolNode = binaryNode->arg2->as<BinaryBoolNode>();
|
|
|
|
// Make inversion based on indexOrScratches and scope
|
|
if (!childBoolNode || childBoolNode->blrOp != blr_or)
|
|
getInversionCandidates(&inversions, &indexOrScratches, scope);
|
|
|
|
invCandidate2 = makeInversion(&inversions);
|
|
|
|
if (invCandidate1 && invCandidate2)
|
|
{
|
|
InversionCandidate* invCandidate = FB_NEW_POOL(pool) InversionCandidate(pool);
|
|
invCandidate->inversion = composeInversion(invCandidate1->inversion,
|
|
invCandidate2->inversion, InversionNode::TYPE_OR);
|
|
invCandidate->selectivity = invCandidate1->selectivity + invCandidate2->selectivity -
|
|
invCandidate1->selectivity * invCandidate2->selectivity;
|
|
invCandidate->cost = invCandidate1->cost + invCandidate2->cost;
|
|
invCandidate->indexes = invCandidate1->indexes + invCandidate2->indexes;
|
|
invCandidate->nonFullMatchedSegments = 0;
|
|
invCandidate->matchedSegments =
|
|
MIN(invCandidate1->matchedSegments, invCandidate2->matchedSegments);
|
|
invCandidate->dependencies = invCandidate1->dependencies + invCandidate2->dependencies;
|
|
|
|
if (invCandidate1->condition && invCandidate2->condition)
|
|
{
|
|
BinaryBoolNode* const newNode =
|
|
FB_NEW_POOL(*tdbb->getDefaultPool()) BinaryBoolNode(*tdbb->getDefaultPool(), blr_or);
|
|
newNode->arg1 = invCandidate1->condition;
|
|
newNode->arg2 = invCandidate2->condition;
|
|
invCandidate->condition = newNode;
|
|
}
|
|
else if (invCandidate1->condition)
|
|
{
|
|
invCandidate->condition = invCandidate1->condition;
|
|
}
|
|
else if (invCandidate2->condition)
|
|
{
|
|
invCandidate->condition = invCandidate2->condition;
|
|
}
|
|
|
|
// Add matches conjunctions that exists in both left and right inversion
|
|
if ((invCandidate1->matches.getCount()) && (invCandidate2->matches.getCount()))
|
|
{
|
|
SortedArray<BoolExprNode*> matches;
|
|
|
|
for (FB_SIZE_T j = 0; j < invCandidate1->matches.getCount(); j++)
|
|
matches.add(invCandidate1->matches[j]);
|
|
|
|
for (FB_SIZE_T j = 0; j < invCandidate2->matches.getCount(); j++)
|
|
{
|
|
if (matches.exist(invCandidate2->matches[j]))
|
|
invCandidate->matches.add(invCandidate2->matches[j]);
|
|
}
|
|
}
|
|
|
|
return invCandidate;
|
|
}
|
|
|
|
if (invCandidate1)
|
|
{
|
|
invCandidate1->condition = binaryNode->arg2;
|
|
return invCandidate1;
|
|
}
|
|
|
|
if (invCandidate2)
|
|
{
|
|
invCandidate2->condition = binaryNode->arg1;
|
|
return invCandidate2;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
if (binaryNode && binaryNode->blrOp == blr_and)
|
|
{
|
|
// Recursively call this procedure for every boolean
|
|
// and finally get candidate inversions.
|
|
// Normally we come here from within a OR conjunction.
|
|
InversionCandidateList inversions;
|
|
inversions.shrink(0);
|
|
|
|
InversionCandidate* invCandidate = matchOnIndexes(
|
|
inputIndexScratches, binaryNode->arg1, scope);
|
|
|
|
if (invCandidate)
|
|
inversions.add(invCandidate);
|
|
|
|
invCandidate = matchOnIndexes(inputIndexScratches, binaryNode->arg2, scope);
|
|
|
|
if (invCandidate)
|
|
inversions.add(invCandidate);
|
|
|
|
return makeInversion(&inversions);
|
|
}
|
|
|
|
// Walk through indexes
|
|
for (FB_SIZE_T i = 0; i < inputIndexScratches->getCount(); i++)
|
|
{
|
|
IndexScratch& indexScratch = (*inputIndexScratches)[i];
|
|
|
|
// Try to match the boolean against a index.
|
|
if (!(indexScratch.idx->idx_runtime_flags & idx_plan_dont_use) ||
|
|
(indexScratch.idx->idx_runtime_flags & idx_plan_navigate))
|
|
{
|
|
matchBoolean(&indexScratch, boolean, scope);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
#ifdef OPT_DEBUG_RETRIEVAL
|
|
void OptimizerRetrieval::printCandidate(const InversionCandidate* candidate) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t C a n d i d a t e
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " cost(%1.2f), selectivity(%1.10f), indexes(%d), matched(%d, %d)",
|
|
candidate->cost, candidate->selectivity, candidate->indexes, candidate->matchedSegments,
|
|
candidate->nonFullMatchedSegments);
|
|
if (candidate->unique)
|
|
fprintf(opt_debug_file, ", unique");
|
|
int depFromCount = candidate->dependentFromStreams.getCount();
|
|
if (depFromCount >= 1)
|
|
{
|
|
fprintf(opt_debug_file, ", dependent from ");
|
|
for (int i = 0; i < depFromCount; i++)
|
|
{
|
|
if (i == 0)
|
|
fprintf(opt_debug_file, "%d", candidate->dependentFromStreams[i]);
|
|
else
|
|
fprintf(opt_debug_file, ", %d", candidate->dependentFromStreams[i]);
|
|
}
|
|
}
|
|
fprintf(opt_debug_file, "\n");
|
|
fclose(opt_debug_file);
|
|
}
|
|
|
|
void OptimizerRetrieval::printCandidates(const InversionCandidateList* inversions) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t C a n d i d a t e s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " retrieval candidates:\n");
|
|
fclose(opt_debug_file);
|
|
const InversionCandidate* const* inversion = inversions->begin();
|
|
for (int i = 0; i < inversions->getCount(); i++)
|
|
{
|
|
const InversionCandidate* candidate = inversion[i];
|
|
printCandidate(candidate);
|
|
}
|
|
}
|
|
|
|
void OptimizerRetrieval::printFinalCandidate(const InversionCandidate* candidate) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t F i n a l C a n d i d a t e
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
*
|
|
**************************************/
|
|
|
|
if (candidate)
|
|
{
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " final candidate: ");
|
|
fclose(opt_debug_file);
|
|
printCandidate(candidate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
bool OptimizerRetrieval::validateStarts(IndexScratch* indexScratch, ComparativeBoolNode* cmpNode,
|
|
USHORT segment) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* v a l i d a t e S t a r t s
|
|
*
|
|
**************************************
|
|
*
|
|
* Functional description
|
|
* Check if the boolean is valid for
|
|
* using it against the given index segment.
|
|
*
|
|
**************************************/
|
|
|
|
fb_assert(cmpNode && cmpNode->blrOp == blr_starting);
|
|
if (!cmpNode || cmpNode->blrOp != blr_starting)
|
|
return false;
|
|
|
|
ValueExprNode* field = cmpNode->arg1;
|
|
ValueExprNode* value = cmpNode->arg2;
|
|
|
|
if (indexScratch->idx->idx_flags & idx_expressn)
|
|
{
|
|
// AB: What if the expression contains a number/float etc.. and
|
|
// we use starting with against it? Is that allowed?
|
|
fb_assert(indexScratch->idx->idx_expression != NULL);
|
|
|
|
if (!(checkExpressionIndex(indexScratch->idx, field, stream) ||
|
|
(value && !value->computable(csb, stream, false))))
|
|
{
|
|
// AB: Can we swap de left and right sides by a starting with?
|
|
// X STARTING WITH 'a' that is never the same as 'a' STARTING WITH X
|
|
if (value &&
|
|
checkExpressionIndex(indexScratch->idx, value, stream) &&
|
|
field->computable(csb, stream, false))
|
|
{
|
|
field = value;
|
|
value = cmpNode->arg1;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
FieldNode* fieldNode = field->as<FieldNode>();
|
|
|
|
if (!fieldNode)
|
|
{
|
|
// dimitr: any idea how we can use an index in this case?
|
|
// The code below produced wrong results.
|
|
// AB: I don't think that it would be effective, because
|
|
// this must include many matches (think about empty string)
|
|
return false;
|
|
/*
|
|
if (!value->is<FieldNode>())
|
|
return NULL;
|
|
field = value;
|
|
value = cmpNode->arg1;
|
|
*/
|
|
}
|
|
|
|
// Every string starts with an empty string so don't bother using an index in that case.
|
|
LiteralNode* literal = value->as<LiteralNode>();
|
|
|
|
if (literal)
|
|
{
|
|
if ((literal->litDesc.dsc_dtype == dtype_text && literal->litDesc.dsc_length == 0) ||
|
|
(literal->litDesc.dsc_dtype == dtype_varying &&
|
|
literal->litDesc.dsc_length == sizeof(USHORT)))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// AB: Check if the index-segment is usable for using starts.
|
|
// Thus it should be of type string, etc...
|
|
if (fieldNode->fieldStream != stream ||
|
|
fieldNode->fieldId != indexScratch->idx->idx_rpt[segment].idx_field ||
|
|
!(indexScratch->idx->idx_rpt[segment].idx_itype == idx_string ||
|
|
indexScratch->idx->idx_rpt[segment].idx_itype == idx_byte_array ||
|
|
indexScratch->idx->idx_rpt[segment].idx_itype == idx_metadata ||
|
|
indexScratch->idx->idx_rpt[segment].idx_itype >= idx_first_intl_string) ||
|
|
!value->computable(csb, stream, false))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
IndexRelationship::IndexRelationship()
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n d e x R e l a t i on s h i p
|
|
*
|
|
**************************************
|
|
*
|
|
* Initialize
|
|
*
|
|
**************************************/
|
|
stream = 0;
|
|
unique = false;
|
|
cost = 0;
|
|
cardinality = 0;
|
|
}
|
|
|
|
|
|
InnerJoinStreamInfo::InnerJoinStreamInfo(MemoryPool& p) :
|
|
indexedRelationships(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* I n n e r J o i n S t r e a m I n f o
|
|
*
|
|
**************************************
|
|
*
|
|
* Initialize
|
|
*
|
|
**************************************/
|
|
stream = 0;
|
|
baseUnique = false;
|
|
baseCost = 0;
|
|
baseIndexes = 0;
|
|
baseConjunctionMatches = 0;
|
|
baseNavigated = false;
|
|
used = false;
|
|
previousExpectedStreams = 0;
|
|
}
|
|
|
|
bool InnerJoinStreamInfo::independent() const
|
|
{
|
|
/**************************************
|
|
*
|
|
* i n d e p e n d e n t
|
|
*
|
|
**************************************
|
|
*
|
|
* Return true if this stream can't be
|
|
* used by other streams and it can't
|
|
* use index retrieval based on other
|
|
* streams.
|
|
*
|
|
**************************************/
|
|
return (indexedRelationships.getCount() == 0) && (previousExpectedStreams == 0);
|
|
}
|
|
|
|
|
|
OptimizerInnerJoin::OptimizerInnerJoin(MemoryPool& p, OptimizerBlk* opt, const StreamList& streams,
|
|
SortNode* sort_clause, PlanNode* plan_clause)
|
|
: pool(p), innerStreams(p)
|
|
{
|
|
/**************************************
|
|
*
|
|
* O p t i m i z e r I n n e r J o i n
|
|
*
|
|
**************************************
|
|
*
|
|
* Initialize
|
|
*
|
|
**************************************/
|
|
tdbb = NULL;
|
|
SET_TDBB(tdbb);
|
|
this->database = tdbb->getDatabase();
|
|
this->optimizer = opt;
|
|
this->csb = this->optimizer->opt_csb;
|
|
this->sort = sort_clause;
|
|
this->plan = plan_clause;
|
|
this->remainingStreams = 0;
|
|
|
|
innerStreams.grow(streams.getCount());
|
|
InnerJoinStreamInfo** innerStream = innerStreams.begin();
|
|
for (FB_SIZE_T i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
innerStream[i] = FB_NEW_POOL(p) InnerJoinStreamInfo(p);
|
|
innerStream[i]->stream = streams[i];
|
|
}
|
|
|
|
calculateStreamInfo();
|
|
}
|
|
|
|
OptimizerInnerJoin::~OptimizerInnerJoin()
|
|
{
|
|
/**************************************
|
|
*
|
|
* ~O p t i m i z e r I n n e r J o i n
|
|
*
|
|
**************************************
|
|
*
|
|
* Finish with giving back memory.
|
|
*
|
|
**************************************/
|
|
|
|
for (FB_SIZE_T i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
for (FB_SIZE_T j = 0; j < innerStreams[i]->indexedRelationships.getCount(); j++)
|
|
delete innerStreams[i]->indexedRelationships[j];
|
|
|
|
delete innerStreams[i];
|
|
}
|
|
}
|
|
|
|
void OptimizerInnerJoin::calculateStreamInfo()
|
|
{
|
|
/**************************************
|
|
*
|
|
* c a l c u l a t e S t r e a m I n f o
|
|
*
|
|
**************************************
|
|
*
|
|
* Calculate the needed information for
|
|
* all streams.
|
|
*
|
|
**************************************/
|
|
|
|
FB_SIZE_T i = 0;
|
|
// First get the base cost without any relation to an other inner join stream.
|
|
for (i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[innerStreams[i]->stream];
|
|
csb_tail->activate();
|
|
|
|
OptimizerRetrieval optimizerRetrieval(pool, optimizer, innerStreams[i]->stream,
|
|
false, false, sort);
|
|
AutoPtr<InversionCandidate> candidate(optimizerRetrieval.getCost());
|
|
|
|
innerStreams[i]->baseCost = candidate->cost;
|
|
innerStreams[i]->baseIndexes = candidate->indexes;
|
|
innerStreams[i]->baseUnique = candidate->unique;
|
|
innerStreams[i]->baseConjunctionMatches = (int) candidate->matches.getCount();
|
|
innerStreams[i]->baseNavigated = candidate->navigated;
|
|
|
|
csb_tail->deactivate();
|
|
}
|
|
|
|
for (i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[innerStreams[i]->stream];
|
|
csb_tail->activate();
|
|
|
|
// Find streams that have a indexed relationship to this
|
|
// stream and add the information.
|
|
for (FB_SIZE_T j = 0; j < innerStreams.getCount(); j++)
|
|
{
|
|
if (innerStreams[j]->stream != innerStreams[i]->stream)
|
|
getIndexedRelationship(innerStreams[i], innerStreams[j]);
|
|
}
|
|
|
|
csb_tail->deactivate();
|
|
}
|
|
|
|
// Sort the streams based on independecy and cost.
|
|
// Except when a PLAN was forced.
|
|
if (!plan && (innerStreams.getCount() > 1))
|
|
{
|
|
StreamInfoList tempStreams(pool);
|
|
|
|
for (i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
FB_SIZE_T index = 0;
|
|
for (; index < tempStreams.getCount(); index++)
|
|
{
|
|
// First those streams which can't be used by other streams
|
|
// or can't depend on a stream.
|
|
if (innerStreams[i]->independent() && !tempStreams[index]->independent())
|
|
break;
|
|
|
|
// Next those with the lowest previous expected streams
|
|
const int compare = innerStreams[i]->previousExpectedStreams -
|
|
tempStreams[index]->previousExpectedStreams;
|
|
|
|
if (compare < 0)
|
|
break;
|
|
|
|
if (compare == 0)
|
|
{
|
|
// Next those with the cheapest base cost
|
|
if (innerStreams[i]->baseCost < tempStreams[index]->baseCost)
|
|
break;
|
|
}
|
|
}
|
|
tempStreams.insert(index, innerStreams[i]);
|
|
}
|
|
|
|
// Finally update the innerStreams with the sorted streams
|
|
innerStreams.clear();
|
|
innerStreams.join(tempStreams);
|
|
}
|
|
}
|
|
|
|
bool OptimizerInnerJoin::cheaperRelationship(IndexRelationship* checkRelationship,
|
|
IndexRelationship* withRelationship) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* c h e a p e r R e l a t i o n s h i p
|
|
*
|
|
**************************************
|
|
*
|
|
* Return true if checking relationship
|
|
* is cheaper as withRelationship.
|
|
*
|
|
**************************************/
|
|
if (checkRelationship->cost == 0)
|
|
return true;
|
|
|
|
if (withRelationship->cost == 0)
|
|
return false;
|
|
|
|
const double compareValue = checkRelationship->cost / withRelationship->cost;
|
|
if (compareValue >= 0.98 && compareValue <= 1.02)
|
|
{
|
|
// cost is nearly the same, now check uniqueness and cardinality
|
|
|
|
if (checkRelationship->unique == withRelationship->unique)
|
|
{
|
|
if (checkRelationship->cardinality < withRelationship->cardinality)
|
|
return true;
|
|
}
|
|
else if (checkRelationship->unique)
|
|
return true;
|
|
else if (withRelationship->unique)
|
|
return false;
|
|
}
|
|
else if (checkRelationship->cost < withRelationship->cost)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void OptimizerInnerJoin::estimateCost(StreamType stream, double* cost,
|
|
double* resulting_cardinality, bool start) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* e s t i m a t e C o s t
|
|
*
|
|
**************************************
|
|
*
|
|
* Estimate the cost for the stream.
|
|
*
|
|
**************************************/
|
|
// Create the optimizer retrieval generation class and calculate
|
|
// which indexes will be used and the total estimated selectivity will be returned
|
|
OptimizerRetrieval optimizerRetrieval(pool, optimizer, stream, false, false,
|
|
(start ? sort : NULL));
|
|
AutoPtr<const InversionCandidate> candidate(optimizerRetrieval.getCost());
|
|
|
|
*cost = candidate->cost;
|
|
|
|
// Calculate cardinality
|
|
const CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[stream];
|
|
const double cardinality = csb_tail->csb_cardinality * candidate->selectivity;
|
|
|
|
*resulting_cardinality = MAX(cardinality, MINIMUM_CARDINALITY);
|
|
}
|
|
|
|
StreamType OptimizerInnerJoin::findJoinOrder()
|
|
{
|
|
/**************************************
|
|
*
|
|
* f i n d J o i n O r d e r
|
|
*
|
|
**************************************
|
|
*
|
|
* Find the best order out of the streams.
|
|
* First return a stream if it can't use
|
|
* an index based on a previous stream and
|
|
* it can't be used by another stream.
|
|
* Next loop through the remaining streams
|
|
* and find the best order.
|
|
*
|
|
**************************************/
|
|
|
|
optimizer->opt_best_count = 0;
|
|
|
|
#ifdef OPT_DEBUG
|
|
// Debug
|
|
printStartOrder();
|
|
#endif
|
|
|
|
unsigned navigations = 0;
|
|
|
|
FB_SIZE_T i = 0;
|
|
remainingStreams = 0;
|
|
|
|
for (i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
if (!innerStreams[i]->used)
|
|
{
|
|
remainingStreams++;
|
|
|
|
if (innerStreams[i]->baseNavigated)
|
|
navigations++;
|
|
|
|
if (innerStreams[i]->independent())
|
|
{
|
|
if (!optimizer->opt_best_count || innerStreams[i]->baseCost < optimizer->opt_best_cost)
|
|
{
|
|
optimizer->opt_streams[0].opt_best_stream = innerStreams[i]->stream;
|
|
optimizer->opt_best_count = 1;
|
|
optimizer->opt_best_cost = innerStreams[i]->baseCost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (optimizer->opt_best_count == 0)
|
|
{
|
|
IndexedRelationships indexedRelationships(pool);
|
|
|
|
for (i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
if (!innerStreams[i]->used)
|
|
{
|
|
// If optimization for first rows has been requested and index navigations are possible,
|
|
// then consider only join orders starting with a navigational stream
|
|
|
|
if (!optimizer->optimizeFirstRows || !navigations || innerStreams[i]->baseNavigated)
|
|
{
|
|
indexedRelationships.clear();
|
|
findBestOrder(0, innerStreams[i], &indexedRelationships, 0.0, 1.0);
|
|
|
|
if (plan)
|
|
{
|
|
// If a explicit PLAN was specified we should be ready;
|
|
break;
|
|
}
|
|
}
|
|
#ifdef OPT_DEBUG
|
|
// Debug
|
|
printProcessList(&indexedRelationships, innerStreams[i]->stream);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark streams as used
|
|
for (StreamType stream = 0; stream < optimizer->opt_best_count; stream++)
|
|
{
|
|
InnerJoinStreamInfo* streamInfo = getStreamInfo(optimizer->opt_streams[stream].opt_best_stream);
|
|
streamInfo->used = true;
|
|
}
|
|
|
|
#ifdef OPT_DEBUG
|
|
// Debug
|
|
printBestOrder();
|
|
#endif
|
|
|
|
return optimizer->opt_best_count;
|
|
}
|
|
|
|
void OptimizerInnerJoin::findBestOrder(StreamType position, InnerJoinStreamInfo* stream,
|
|
IndexedRelationships* processList, double cost, double cardinality)
|
|
{
|
|
/**************************************
|
|
*
|
|
* f i n d B e s t O r d e r
|
|
*
|
|
**************************************
|
|
* Make different combinations to find
|
|
* out the join order.
|
|
* For every position we start with the
|
|
* stream that has the best selectivity
|
|
* for that position. If we've have
|
|
* used up all our streams after that
|
|
* we assume we're done.
|
|
*
|
|
**************************************/
|
|
|
|
fb_assert(processList);
|
|
|
|
const bool start = (position == 0);
|
|
|
|
// do some initializations.
|
|
csb->csb_rpt[stream->stream].activate();
|
|
optimizer->opt_streams[position].opt_stream_number = stream->stream;
|
|
position++;
|
|
const OptimizerBlk::opt_stream* order_end = optimizer->opt_streams.begin() + position;
|
|
|
|
// Save the various flag bits from the optimizer block to reset its
|
|
// state after each test.
|
|
HalfStaticArray<bool, OPT_STATIC_ITEMS> streamFlags(pool);
|
|
streamFlags.grow(innerStreams.getCount());
|
|
for (FB_SIZE_T i = 0; i < streamFlags.getCount(); i++)
|
|
streamFlags[i] = innerStreams[i]->used;
|
|
|
|
// Compute delta and total estimate cost to fetch this stream.
|
|
double position_cost, position_cardinality, new_cost = 0, new_cardinality = 0;
|
|
|
|
if (!plan)
|
|
{
|
|
estimateCost(stream->stream, &position_cost, &position_cardinality, start);
|
|
new_cost = cost + cardinality * position_cost;
|
|
new_cardinality = position_cardinality * cardinality;
|
|
}
|
|
|
|
// If the partial order is either longer than any previous partial order,
|
|
// or the same length and cheap, save order as "best".
|
|
if (position > optimizer->opt_best_count ||
|
|
(position == optimizer->opt_best_count && new_cost < optimizer->opt_best_cost))
|
|
{
|
|
optimizer->opt_best_count = position;
|
|
optimizer->opt_best_cost = new_cost;
|
|
for (OptimizerBlk::opt_stream* tail = optimizer->opt_streams.begin(); tail < order_end; tail++)
|
|
tail->opt_best_stream = tail->opt_stream_number;
|
|
}
|
|
|
|
#ifdef OPT_DEBUG
|
|
// Debug information
|
|
printFoundOrder(position, position_cost, position_cardinality, new_cost, new_cardinality);
|
|
#endif
|
|
|
|
// mark this stream as "used" in the sense that it is already included
|
|
// in this particular proposed stream ordering.
|
|
stream->used = true;
|
|
bool done = false;
|
|
|
|
// if we've used up all the streams there's no reason to go any further.
|
|
if (position == remainingStreams)
|
|
done = true;
|
|
|
|
// If we know a combination with all streams used and the
|
|
// current cost is higher as the one from the best we're done.
|
|
if ((optimizer->opt_best_count == remainingStreams) && (optimizer->opt_best_cost < new_cost))
|
|
done = true;
|
|
|
|
if (!done && !plan)
|
|
{
|
|
// Add these relations to the processing list
|
|
for (FB_SIZE_T j = 0; j < stream->indexedRelationships.getCount(); j++)
|
|
{
|
|
IndexRelationship* relationship = stream->indexedRelationships[j];
|
|
InnerJoinStreamInfo* relationStreamInfo = getStreamInfo(relationship->stream);
|
|
if (!relationStreamInfo->used)
|
|
{
|
|
bool found = false;
|
|
IndexRelationship** processRelationship = processList->begin();
|
|
FB_SIZE_T index;
|
|
for (index = 0; index < processList->getCount(); index++)
|
|
{
|
|
if (relationStreamInfo->stream == processRelationship[index]->stream)
|
|
{
|
|
// If the cost of this relationship is cheaper then remove the
|
|
// old relationship and add this one.
|
|
if (cheaperRelationship(relationship, processRelationship[index]))
|
|
{
|
|
processList->remove(index);
|
|
break;
|
|
}
|
|
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
{
|
|
// Add relationship sorted on cost (cheapest as first)
|
|
IndexRelationship** relationships = processList->begin();
|
|
for (index = 0; index < processList->getCount(); index++)
|
|
{
|
|
if (cheaperRelationship(relationship, relationships[index]))
|
|
break;
|
|
}
|
|
processList->insert(index, relationship);
|
|
}
|
|
}
|
|
}
|
|
|
|
IndexRelationship** nextRelationship = processList->begin();
|
|
for (FB_SIZE_T j = 0; j < processList->getCount(); j++)
|
|
{
|
|
InnerJoinStreamInfo* relationStreamInfo = getStreamInfo(nextRelationship[j]->stream);
|
|
if (!relationStreamInfo->used)
|
|
{
|
|
findBestOrder(position, relationStreamInfo, processList, new_cost, new_cardinality);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (plan)
|
|
{
|
|
// If a explicit PLAN was specific pick the next relation.
|
|
// The order in innerStreams is expected to be exactly the order as
|
|
// specified in the explicit PLAN.
|
|
for (FB_SIZE_T j = 0; j < innerStreams.getCount(); j++)
|
|
{
|
|
InnerJoinStreamInfo* nextStream = innerStreams[j];
|
|
if (!nextStream->used)
|
|
{
|
|
findBestOrder(position, nextStream, processList, new_cost, new_cardinality);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clean up from any changes made for compute the cost for this stream
|
|
csb->csb_rpt[stream->stream].deactivate();
|
|
for (FB_SIZE_T i = 0; i < streamFlags.getCount(); i++)
|
|
innerStreams[i]->used = streamFlags[i];
|
|
}
|
|
|
|
void OptimizerInnerJoin::getIndexedRelationship(InnerJoinStreamInfo* baseStream,
|
|
InnerJoinStreamInfo* testStream)
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e t I n d e x e d R e l a t i o n s h i p
|
|
*
|
|
**************************************
|
|
*
|
|
* Check if the testStream can use a index
|
|
* when the baseStream is active. If so
|
|
* then we create a indexRelationship
|
|
* and fill it with the needed information.
|
|
* The reference is added to the baseStream
|
|
* and the baseStream is added as previous
|
|
* expected stream to the testStream.
|
|
*
|
|
**************************************/
|
|
|
|
CompilerScratch::csb_repeat* csb_tail = &csb->csb_rpt[testStream->stream];
|
|
csb_tail->activate();
|
|
|
|
OptimizerRetrieval optimizerRetrieval(pool, optimizer, testStream->stream, false, false, NULL);
|
|
AutoPtr<InversionCandidate> candidate(optimizerRetrieval.getCost());
|
|
|
|
if (candidate->dependentFromStreams.exist(baseStream->stream))
|
|
{
|
|
// If we could use more conjunctions on the testing stream
|
|
// with the base stream active as without the base stream
|
|
// then the test stream has a indexed relationship with the base stream.
|
|
IndexRelationship* indexRelationship = FB_NEW_POOL(pool) IndexRelationship();
|
|
indexRelationship->stream = testStream->stream;
|
|
indexRelationship->unique = candidate->unique;
|
|
indexRelationship->cost = candidate->cost;
|
|
indexRelationship->cardinality = candidate->unique ?
|
|
csb_tail->csb_cardinality : csb_tail->csb_cardinality * candidate->selectivity;
|
|
|
|
// indexRelationship are kept sorted on cost and unique in the indexRelations array.
|
|
// The unique and cheapest indexed relatioships are on the first position.
|
|
FB_SIZE_T index = 0;
|
|
for (; index < baseStream->indexedRelationships.getCount(); index++)
|
|
{
|
|
if (cheaperRelationship(indexRelationship, baseStream->indexedRelationships[index]))
|
|
break;
|
|
}
|
|
baseStream->indexedRelationships.insert(index, indexRelationship);
|
|
testStream->previousExpectedStreams++;
|
|
}
|
|
|
|
csb_tail->deactivate();
|
|
}
|
|
|
|
InnerJoinStreamInfo* OptimizerInnerJoin::getStreamInfo(StreamType stream)
|
|
{
|
|
/**************************************
|
|
*
|
|
* g e t S t r e a m I n f o
|
|
*
|
|
**************************************
|
|
*
|
|
* Return stream information based on
|
|
* the stream number.
|
|
*
|
|
**************************************/
|
|
|
|
for (FB_SIZE_T i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
if (innerStreams[i]->stream == stream)
|
|
return innerStreams[i];
|
|
}
|
|
|
|
// We should never come here
|
|
fb_assert(false);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef OPT_DEBUG
|
|
void OptimizerInnerJoin::printBestOrder() const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t B e s t O r d e r
|
|
*
|
|
**************************************
|
|
*
|
|
* Dump finally selected stream order.
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " best order, streams: ");
|
|
for (StreamType i = 0; i < optimizer->opt_best_count; i++)
|
|
{
|
|
if (i == 0)
|
|
fprintf(opt_debug_file, "%d", optimizer->opt_streams[i].opt_best_stream);
|
|
else
|
|
fprintf(opt_debug_file, ", %d", optimizer->opt_streams[i].opt_best_stream);
|
|
}
|
|
fprintf(opt_debug_file, "\n");
|
|
fclose(opt_debug_file);
|
|
}
|
|
|
|
void OptimizerInnerJoin::printFoundOrder(StreamType position, double positionCost,
|
|
double positionCardinality, double cost, double cardinality) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t F o u n d O r d e r
|
|
*
|
|
**************************************
|
|
*
|
|
* Dump currently passed streams to a
|
|
* debug file.
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " position %2.2d:", position);
|
|
fprintf(opt_debug_file, " pos. cardinality(%10.2f) pos. cost(%10.2f)", positionCardinality, positionCost);
|
|
fprintf(opt_debug_file, " cardinality(%10.2f) cost(%10.2f)", cardinality, cost);
|
|
fprintf(opt_debug_file, ", streams: ", position);
|
|
const OptimizerBlk::opt_stream* tail = optimizer->opt_streams.begin();
|
|
const OptimizerBlk::opt_stream* const order_end = tail + position;
|
|
for (; tail < order_end; tail++)
|
|
{
|
|
if (tail == optimizer->opt_streams.begin())
|
|
fprintf(opt_debug_file, "%d", tail->opt_stream_number);
|
|
else
|
|
fprintf(opt_debug_file, ", %d", tail->opt_stream_number);
|
|
}
|
|
fprintf(opt_debug_file, "\n");
|
|
fclose(opt_debug_file);
|
|
}
|
|
|
|
void OptimizerInnerJoin::printProcessList(const IndexedRelationships* processList,
|
|
StreamType stream) const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t P r o c e s s L i s t
|
|
*
|
|
**************************************
|
|
*
|
|
* Dump the processlist to a debug file.
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, " basestream %d, relationships: stream(cost)", stream);
|
|
const IndexRelationship* const* relationships = processList->begin();
|
|
for (int i = 0; i < processList->getCount(); i++)
|
|
fprintf(opt_debug_file, ", %d (%1.2f)", relationships[i]->stream, relationships[i]->cost);
|
|
fprintf(opt_debug_file, "\n");
|
|
fclose(opt_debug_file);
|
|
}
|
|
|
|
void OptimizerInnerJoin::printStartOrder() const
|
|
{
|
|
/**************************************
|
|
*
|
|
* p r i n t B e s t O r d e r
|
|
*
|
|
**************************************
|
|
*
|
|
* Dump finally selected stream order.
|
|
*
|
|
**************************************/
|
|
|
|
FILE *opt_debug_file = os_utils::fopen(OPTIMIZER_DEBUG_FILE, "a");
|
|
fprintf(opt_debug_file, "Start join order: with stream(baseCost)");
|
|
bool firstStream = true;
|
|
for (int i = 0; i < innerStreams.getCount(); i++)
|
|
{
|
|
if (!innerStreams[i]->used)
|
|
fprintf(opt_debug_file, ", %d (%1.2f)", innerStreams[i]->stream, innerStreams[i]->baseCost);
|
|
}
|
|
fprintf(opt_debug_file, "\n");
|
|
fclose(opt_debug_file);
|
|
}
|
|
#endif
|
|
|
|
|
|
} // namespace
|