mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-23 00:03:02 +01:00
861d536fc2
* Int128 support - work in progress * Work in progress * Int128 datatype appears to be mostly OK except sort & index * Fixed divide scaling, added sorting & network (xdr) support * Binding control, aggregate nodes, cleanup and documentation * Fixed VS2017 AppVeyor build * Next attempt to fix vs2017 build * Next attempt to fix vs2017 build * Next attempt to fix vs2017 build * Update MSVC build. * Set VS architecture correctly * Fixed a number of issues noticed by Mark
2844 lines
53 KiB
C++
2844 lines
53 KiB
C++
/*
|
|
* This file is a part of TTMath Bignum Library
|
|
* and is distributed under the (new) BSD licence.
|
|
* Author: Tomasz Sowa <t.sowa@ttmath.org>
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2006-2012, Tomasz Sowa
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* * Neither the name Tomasz Sowa nor the names of contributors to this
|
|
* project may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef headerfilettmathmathtt
|
|
#define headerfilettmathmathtt
|
|
|
|
/*!
|
|
\file ttmath.h
|
|
\brief Mathematics functions.
|
|
*/
|
|
|
|
#ifdef _MSC_VER
|
|
//warning C4127: conditional expression is constant
|
|
#pragma warning( disable: 4127 )
|
|
//warning C4702: unreachable code
|
|
#pragma warning( disable: 4702 )
|
|
//warning C4800: forcing value to bool 'true' or 'false' (performance warning)
|
|
#pragma warning( disable: 4800 )
|
|
#endif
|
|
|
|
#define TTMATH_DONT_USE_WCHAR
|
|
|
|
#include "ttmathint.h"
|
|
#include "ttmathobjects.h"
|
|
|
|
|
|
namespace ttmath
|
|
{
|
|
/*
|
|
*
|
|
* functions defined here are used only with Big<> types
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
*
|
|
* functions for rounding
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this function skips the fraction from x
|
|
e.g 2.2 = 2
|
|
2.7 = 2
|
|
-2.2 = 2
|
|
-2.7 = 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType SkipFraction(const ValueType & x)
|
|
{
|
|
ValueType result( x );
|
|
result.SkipFraction();
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function rounds to the nearest integer value
|
|
e.g 2.2 = 2
|
|
2.7 = 3
|
|
-2.2 = -2
|
|
-2.7 = -3
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Round(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType result( x );
|
|
uint c = result.Round();
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
this function returns a value representing the smallest integer
|
|
that is greater than or equal to x
|
|
|
|
Ceil(-3.7) = -3
|
|
Ceil(-3.1) = -3
|
|
Ceil(-3.0) = -3
|
|
Ceil(4.0) = 4
|
|
Ceil(4.2) = 5
|
|
Ceil(4.8) = 5
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Ceil(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType result(x);
|
|
uint c = 0;
|
|
|
|
result.SkipFraction();
|
|
|
|
if( result != x )
|
|
{
|
|
// x is with fraction
|
|
// if x is negative we don't have to do anything
|
|
if( !x.IsSign() )
|
|
{
|
|
ValueType one;
|
|
one.SetOne();
|
|
|
|
c += result.Add(one);
|
|
}
|
|
}
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function returns a value representing the largest integer
|
|
that is less than or equal to x
|
|
|
|
Floor(-3.6) = -4
|
|
Floor(-3.1) = -4
|
|
Floor(-3) = -3
|
|
Floor(2) = 2
|
|
Floor(2.3) = 2
|
|
Floor(2.8) = 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Floor(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType result(x);
|
|
uint c = 0;
|
|
|
|
result.SkipFraction();
|
|
|
|
if( result != x )
|
|
{
|
|
// x is with fraction
|
|
// if x is positive we don't have to do anything
|
|
if( x.IsSign() )
|
|
{
|
|
ValueType one;
|
|
one.SetOne();
|
|
|
|
c += result.Sub(one);
|
|
}
|
|
}
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
*
|
|
* logarithms and the exponent
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this function calculates the natural logarithm (logarithm with the base 'e')
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Ln(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType result;
|
|
uint state = result.Ln(x);
|
|
|
|
if( err )
|
|
{
|
|
switch( state )
|
|
{
|
|
case 0:
|
|
*err = err_ok;
|
|
break;
|
|
case 1:
|
|
*err = err_overflow;
|
|
break;
|
|
case 2:
|
|
*err = err_improper_argument;
|
|
break;
|
|
default:
|
|
*err = err_internal_error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the logarithm
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Log(const ValueType & x, const ValueType & base, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err ) *err = err_improper_argument;
|
|
return x;
|
|
}
|
|
|
|
if( base.IsNan() )
|
|
{
|
|
if( err ) *err = err_improper_argument;
|
|
return base;
|
|
}
|
|
|
|
ValueType result;
|
|
uint state = result.Log(x, base);
|
|
|
|
if( err )
|
|
{
|
|
switch( state )
|
|
{
|
|
case 0:
|
|
*err = err_ok;
|
|
break;
|
|
case 1:
|
|
*err = err_overflow;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
*err = err_improper_argument;
|
|
break;
|
|
default:
|
|
*err = err_internal_error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the expression e^x
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Exp(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType result;
|
|
uint c = result.Exp(x);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
*
|
|
* trigonometric functions
|
|
*
|
|
*/
|
|
|
|
|
|
/*
|
|
this namespace consists of auxiliary functions
|
|
(something like 'private' in a class)
|
|
*/
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Sine
|
|
(you don't have to call this function)
|
|
*/
|
|
template<class ValueType>
|
|
uint PrepareSin(ValueType & x, bool & change_sign)
|
|
{
|
|
ValueType temp;
|
|
|
|
change_sign = false;
|
|
|
|
if( x.IsSign() )
|
|
{
|
|
// we're using the formula 'sin(-x) = -sin(x)'
|
|
change_sign = !change_sign;
|
|
x.ChangeSign();
|
|
}
|
|
|
|
// we're reducing the period 2*PI
|
|
// (for big values there'll always be zero)
|
|
temp.Set2Pi();
|
|
|
|
if( x.Mod(temp) )
|
|
return 1;
|
|
|
|
|
|
// we're setting 'x' as being in the range of <0, 0.5PI>
|
|
|
|
temp.SetPi();
|
|
|
|
if( x > temp )
|
|
{
|
|
// x is in (pi, 2*pi>
|
|
x.Sub( temp );
|
|
change_sign = !change_sign;
|
|
}
|
|
|
|
temp.Set05Pi();
|
|
|
|
if( x > temp )
|
|
{
|
|
// x is in (0.5pi, pi>
|
|
x.Sub( temp );
|
|
x = temp - x;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Sine
|
|
(you don't have to call this function)
|
|
|
|
it returns Sin(x) where 'x' is from <0, PI/2>
|
|
we're calculating the Sin with using Taylor series in zero or PI/2
|
|
(depending on which point of these two points is nearer to the 'x')
|
|
|
|
Taylor series:
|
|
sin(x) = sin(a) + cos(a)*(x-a)/(1!)
|
|
- sin(a)*((x-a)^2)/(2!) - cos(a)*((x-a)^3)/(3!)
|
|
+ sin(a)*((x-a)^4)/(4!) + ...
|
|
|
|
when a=0 it'll be:
|
|
sin(x) = (x)/(1!) - (x^3)/(3!) + (x^5)/(5!) - (x^7)/(7!) + (x^9)/(9!) ...
|
|
|
|
and when a=PI/2:
|
|
sin(x) = 1 - ((x-PI/2)^2)/(2!) + ((x-PI/2)^4)/(4!) - ((x-PI/2)^6)/(6!) ...
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Sin0pi05(const ValueType & x)
|
|
{
|
|
ValueType result;
|
|
ValueType numerator, denominator;
|
|
ValueType d_numerator, d_denominator;
|
|
ValueType one, temp, old_result;
|
|
|
|
// temp = pi/4
|
|
temp.Set05Pi();
|
|
temp.exponent.SubOne();
|
|
|
|
one.SetOne();
|
|
|
|
if( x < temp )
|
|
{
|
|
// we're using the Taylor series with a=0
|
|
result = x;
|
|
numerator = x;
|
|
denominator = one;
|
|
|
|
// d_numerator = x^2
|
|
d_numerator = x;
|
|
d_numerator.Mul(x);
|
|
|
|
d_denominator = 2;
|
|
}
|
|
else
|
|
{
|
|
// we're using the Taylor series with a=PI/2
|
|
result = one;
|
|
numerator = one;
|
|
denominator = one;
|
|
|
|
// d_numerator = (x-pi/2)^2
|
|
ValueType pi05;
|
|
pi05.Set05Pi();
|
|
|
|
temp = x;
|
|
temp.Sub( pi05 );
|
|
d_numerator = temp;
|
|
d_numerator.Mul( temp );
|
|
|
|
d_denominator = one;
|
|
}
|
|
|
|
uint c = 0;
|
|
bool addition = false;
|
|
|
|
old_result = result;
|
|
for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
{
|
|
// we're starting from a second part of the formula
|
|
c += numerator. Mul( d_numerator );
|
|
c += denominator. Mul( d_denominator );
|
|
c += d_denominator.Add( one );
|
|
c += denominator. Mul( d_denominator );
|
|
c += d_denominator.Add( one );
|
|
temp = numerator;
|
|
c += temp.Div(denominator);
|
|
|
|
if( c )
|
|
// Sin is from <-1,1> and cannot make an overflow
|
|
// but the carry can be from the Taylor series
|
|
// (then we only break our calculations)
|
|
break;
|
|
|
|
if( addition )
|
|
result.Add( temp );
|
|
else
|
|
result.Sub( temp );
|
|
|
|
|
|
addition = !addition;
|
|
|
|
// we're testing whether the result has changed after adding
|
|
// the next part of the Taylor formula, if not we end the loop
|
|
// (it means 'x' is zero or 'x' is PI/2 or this part of the formula
|
|
// is too small)
|
|
if( result == old_result )
|
|
break;
|
|
|
|
old_result = result;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
|
|
/*!
|
|
this function calculates the Sine
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Sin(ValueType x, ErrorCode * err = 0)
|
|
{
|
|
using namespace auxiliaryfunctions;
|
|
|
|
ValueType one, result;
|
|
bool change_sign;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
if( err )
|
|
*err = err_ok;
|
|
|
|
if( PrepareSin( x, change_sign ) )
|
|
{
|
|
// x is too big, we cannnot reduce the 2*PI period
|
|
// prior to version 0.8.5 the result was zero
|
|
|
|
// result has NaN flag set by default
|
|
|
|
if( err )
|
|
*err = err_overflow; // maybe another error code? err_improper_argument?
|
|
|
|
return result; // NaN is set by default
|
|
}
|
|
|
|
result = Sin0pi05( x );
|
|
|
|
one.SetOne();
|
|
|
|
// after calculations there can be small distortions in the result
|
|
if( result > one )
|
|
result = one;
|
|
else
|
|
if( result.IsSign() )
|
|
// we've calculated the sin from <0, pi/2> and the result
|
|
// should be positive
|
|
result.SetZero();
|
|
|
|
if( change_sign )
|
|
result.ChangeSign();
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calulates the Cosine
|
|
we're using the formula cos(x) = sin(x + PI/2)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Cos(ValueType x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType pi05;
|
|
pi05.Set05Pi();
|
|
|
|
uint c = x.Add( pi05 );
|
|
|
|
if( c )
|
|
{
|
|
if( err )
|
|
*err = err_overflow;
|
|
|
|
return ValueType(); // result is undefined (NaN is set by default)
|
|
}
|
|
|
|
return Sin(x, err);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calulates the Tangent
|
|
we're using the formula tan(x) = sin(x) / cos(x)
|
|
|
|
it takes more time than calculating the Tan directly
|
|
from for example Taylor series but should be a bit preciser
|
|
because Tan receives its values from -infinity to +infinity
|
|
and when we calculate it from any series then we can make
|
|
a greater mistake than calculating 'sin/cos'
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Tan(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result = Cos(x, err);
|
|
|
|
if( err && *err != err_ok )
|
|
return result;
|
|
|
|
if( result.IsZero() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
result.SetNan();
|
|
|
|
return result;
|
|
}
|
|
|
|
return Sin(x, err) / result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calulates the Tangent
|
|
look at the description of Tan(...)
|
|
|
|
(the abbreviation of Tangent can be 'tg' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Tg(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return Tan(x, err);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calulates the Cotangent
|
|
we're using the formula tan(x) = cos(x) / sin(x)
|
|
|
|
(why do we make it in this way?
|
|
look at information in Tan() function)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Cot(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result = Sin(x, err);
|
|
|
|
if( err && *err != err_ok )
|
|
return result;
|
|
|
|
if( result.IsZero() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
result.SetNan();
|
|
|
|
return result;
|
|
}
|
|
|
|
return Cos(x, err) / result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calulates the Cotangent
|
|
look at the description of Cot(...)
|
|
|
|
(the abbreviation of Cotangent can be 'ctg' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Ctg(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return Cot(x, err);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* inverse trigonometric functions
|
|
*
|
|
*
|
|
*/
|
|
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Arc Sine
|
|
|
|
we're calculating asin from the following formula:
|
|
asin(x) = x + (1*x^3)/(2*3) + (1*3*x^5)/(2*4*5) + (1*3*5*x^7)/(2*4*6*7) + ...
|
|
where abs(x) <= 1
|
|
|
|
we're using this formula when x is from <0, 1/2>
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ASin_0(const ValueType & x)
|
|
{
|
|
ValueType nominator, denominator, nominator_add, nominator_x, denominator_add, denominator_x;
|
|
ValueType two, result(x), x2(x);
|
|
ValueType nominator_temp, denominator_temp, old_result = result;
|
|
uint c = 0;
|
|
|
|
x2.Mul(x);
|
|
two = 2;
|
|
|
|
nominator.SetOne();
|
|
denominator = two;
|
|
nominator_add = nominator;
|
|
denominator_add = denominator;
|
|
nominator_x = x;
|
|
denominator_x = 3;
|
|
|
|
for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
{
|
|
c += nominator_x.Mul(x2);
|
|
nominator_temp = nominator_x;
|
|
c += nominator_temp.Mul(nominator);
|
|
denominator_temp = denominator;
|
|
c += denominator_temp.Mul(denominator_x);
|
|
c += nominator_temp.Div(denominator_temp);
|
|
|
|
// if there is a carry somewhere we only break the calculating
|
|
// the result should be ok -- it's from <-pi/2, pi/2>
|
|
if( c )
|
|
break;
|
|
|
|
result.Add(nominator_temp);
|
|
|
|
if( result == old_result )
|
|
// there's no sense to calculate more
|
|
break;
|
|
|
|
old_result = result;
|
|
|
|
|
|
c += nominator_add.Add(two);
|
|
c += denominator_add.Add(two);
|
|
c += nominator.Mul(nominator_add);
|
|
c += denominator.Mul(denominator_add);
|
|
c += denominator_x.Add(two);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Arc Sine
|
|
|
|
we're calculating asin from the following formula:
|
|
asin(x) = pi/2 - sqrt(2)*sqrt(1-x) * asin_temp
|
|
asin_temp = 1 + (1*(1-x))/((2*3)*(2)) + (1*3*(1-x)^2)/((2*4*5)*(4)) + (1*3*5*(1-x)^3)/((2*4*6*7)*(8)) + ...
|
|
|
|
where abs(x) <= 1
|
|
|
|
we're using this formula when x is from (1/2, 1>
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ASin_1(const ValueType & x)
|
|
{
|
|
ValueType nominator, denominator, nominator_add, nominator_x, nominator_x_add, denominator_add, denominator_x;
|
|
ValueType denominator2;
|
|
ValueType one, two, result;
|
|
ValueType nominator_temp, denominator_temp, old_result;
|
|
uint c = 0;
|
|
|
|
two = 2;
|
|
|
|
one.SetOne();
|
|
nominator = one;
|
|
result = one;
|
|
old_result = result;
|
|
denominator = two;
|
|
nominator_add = nominator;
|
|
denominator_add = denominator;
|
|
nominator_x = one;
|
|
nominator_x.Sub(x);
|
|
nominator_x_add = nominator_x;
|
|
denominator_x = 3;
|
|
denominator2 = two;
|
|
|
|
|
|
for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
{
|
|
nominator_temp = nominator_x;
|
|
c += nominator_temp.Mul(nominator);
|
|
denominator_temp = denominator;
|
|
c += denominator_temp.Mul(denominator_x);
|
|
c += denominator_temp.Mul(denominator2);
|
|
c += nominator_temp.Div(denominator_temp);
|
|
|
|
// if there is a carry somewhere we only break the calculating
|
|
// the result should be ok -- it's from <-pi/2, pi/2>
|
|
if( c )
|
|
break;
|
|
|
|
result.Add(nominator_temp);
|
|
|
|
if( result == old_result )
|
|
// there's no sense to calculate more
|
|
break;
|
|
|
|
old_result = result;
|
|
|
|
c += nominator_x.Mul(nominator_x_add);
|
|
c += nominator_add.Add(two);
|
|
c += denominator_add.Add(two);
|
|
c += nominator.Mul(nominator_add);
|
|
c += denominator.Mul(denominator_add);
|
|
c += denominator_x.Add(two);
|
|
c += denominator2.Mul(two);
|
|
}
|
|
|
|
|
|
nominator_x_add.exponent.AddOne(); // *2
|
|
one.exponent.SubOne(); // =0.5
|
|
nominator_x_add.Pow(one); // =sqrt(nominator_x_add)
|
|
result.Mul(nominator_x_add);
|
|
|
|
one.Set05Pi();
|
|
one.Sub(result);
|
|
|
|
return one;
|
|
}
|
|
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Sine
|
|
x is from <-1,1>
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ASin(ValueType x, ErrorCode * err = 0)
|
|
{
|
|
using namespace auxiliaryfunctions;
|
|
|
|
ValueType result, one;
|
|
one.SetOne();
|
|
bool change_sign = false;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
if( x.GreaterWithoutSignThan(one) )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return result; // NaN is set by default
|
|
}
|
|
|
|
if( x.IsSign() )
|
|
{
|
|
change_sign = true;
|
|
x.Abs();
|
|
}
|
|
|
|
one.exponent.SubOne(); // =0.5
|
|
|
|
// asin(-x) = -asin(x)
|
|
if( x.GreaterWithoutSignThan(one) )
|
|
result = ASin_1(x);
|
|
else
|
|
result = ASin_0(x);
|
|
|
|
if( change_sign )
|
|
result.ChangeSign();
|
|
|
|
if( err )
|
|
*err = err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Cosine
|
|
|
|
we're using the formula:
|
|
acos(x) = pi/2 - asin(x)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACos(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType temp;
|
|
|
|
temp.Set05Pi();
|
|
temp.Sub(ASin(x, err));
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Arc Tangent
|
|
|
|
arc tan (x) where x is in <0; 0.5)
|
|
(x can be in (-0.5 ; 0.5) too)
|
|
|
|
we're using the Taylor series expanded in zero:
|
|
atan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATan0(const ValueType & x)
|
|
{
|
|
ValueType nominator, denominator, nominator_add, denominator_add, temp;
|
|
ValueType result, old_result;
|
|
bool adding = false;
|
|
uint c = 0;
|
|
|
|
result = x;
|
|
old_result = result;
|
|
nominator = x;
|
|
nominator_add = x;
|
|
nominator_add.Mul(x);
|
|
|
|
denominator.SetOne();
|
|
denominator_add = 2;
|
|
|
|
for(uint i=1 ; i<=TTMATH_ARITHMETIC_MAX_LOOP ; ++i)
|
|
{
|
|
c += nominator.Mul(nominator_add);
|
|
c += denominator.Add(denominator_add);
|
|
|
|
temp = nominator;
|
|
c += temp.Div(denominator);
|
|
|
|
if( c )
|
|
// the result should be ok
|
|
break;
|
|
|
|
if( adding )
|
|
result.Add(temp);
|
|
else
|
|
result.Sub(temp);
|
|
|
|
if( result == old_result )
|
|
// there's no sense to calculate more
|
|
break;
|
|
|
|
old_result = result;
|
|
adding = !adding;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Arc Tangent
|
|
|
|
where x is in <0 ; 1>
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATan01(const ValueType & x)
|
|
{
|
|
ValueType half;
|
|
half.Set05();
|
|
|
|
/*
|
|
it would be better if we chose about sqrt(2)-1=0.41... instead of 0.5 here
|
|
|
|
because as you can see below:
|
|
when x = sqrt(2)-1
|
|
abs(x) = abs( (x-1)/(1+x) )
|
|
so when we're calculating values around x
|
|
then they will be better converged to each other
|
|
|
|
for example if we have x=0.4999 then during calculating ATan0(0.4999)
|
|
we have to make about 141 iterations but when we have x=0.5
|
|
then during calculating ATan0( (x-1)/(1+x) ) we have to make
|
|
only about 89 iterations (both for Big<3,9>)
|
|
|
|
in the future this 0.5 can be changed
|
|
*/
|
|
if( x.SmallerWithoutSignThan(half) )
|
|
return ATan0(x);
|
|
|
|
|
|
/*
|
|
x>=0.5 and x<=1
|
|
(x can be even smaller than 0.5)
|
|
|
|
y = atac(x)
|
|
x = tan(y)
|
|
|
|
tan(y-b) = (tan(y)-tab(b)) / (1+tan(y)*tan(b))
|
|
y-b = atan( (tan(y)-tab(b)) / (1+tan(y)*tan(b)) )
|
|
y = b + atan( (x-tab(b)) / (1+x*tan(b)) )
|
|
|
|
let b = pi/4
|
|
tan(b) = tan(pi/4) = 1
|
|
y = pi/4 + atan( (x-1)/(1+x) )
|
|
|
|
so
|
|
atac(x) = pi/4 + atan( (x-1)/(1+x) )
|
|
when x->1 (x converges to 1) the (x-1)/(1+x) -> 0
|
|
and we can use ATan0() function here
|
|
*/
|
|
|
|
ValueType n(x),d(x),one,result;
|
|
|
|
one.SetOne();
|
|
n.Sub(one);
|
|
d.Add(one);
|
|
n.Div(d);
|
|
|
|
result = ATan0(n);
|
|
|
|
n.Set05Pi();
|
|
n.exponent.SubOne(); // =pi/4
|
|
result.Add(n);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function for calculating the Arc Tangent
|
|
where x > 1
|
|
|
|
we're using the formula:
|
|
atan(x) = pi/2 - atan(1/x) for x>0
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATanGreaterThanPlusOne(const ValueType & x)
|
|
{
|
|
ValueType temp, atan;
|
|
|
|
temp.SetOne();
|
|
|
|
if( temp.Div(x) )
|
|
{
|
|
// if there was a carry here that means x is very big
|
|
// and atan(1/x) fast converged to 0
|
|
atan.SetZero();
|
|
}
|
|
else
|
|
atan = ATan01(temp);
|
|
|
|
temp.Set05Pi();
|
|
temp.Sub(atan);
|
|
|
|
return temp;
|
|
}
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Tangent
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATan(ValueType x)
|
|
{
|
|
using namespace auxiliaryfunctions;
|
|
|
|
ValueType one, result;
|
|
one.SetOne();
|
|
bool change_sign = false;
|
|
|
|
if( x.IsNan() )
|
|
return x;
|
|
|
|
// if x is negative we're using the formula:
|
|
// atan(-x) = -atan(x)
|
|
if( x.IsSign() )
|
|
{
|
|
change_sign = true;
|
|
x.Abs();
|
|
}
|
|
|
|
if( x.GreaterWithoutSignThan(one) )
|
|
result = ATanGreaterThanPlusOne(x);
|
|
else
|
|
result = ATan01(x);
|
|
|
|
if( change_sign )
|
|
result.ChangeSign();
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Tangent
|
|
look at the description of ATan(...)
|
|
|
|
(the abbreviation of Arc Tangent can be 'atg' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATg(const ValueType & x)
|
|
{
|
|
return ATan(x);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Cotangent
|
|
|
|
we're using the formula:
|
|
actan(x) = pi/2 - atan(x)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACot(const ValueType & x)
|
|
{
|
|
ValueType result;
|
|
|
|
result.Set05Pi();
|
|
result.Sub(ATan(x));
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Arc Cotangent
|
|
look at the description of ACot(...)
|
|
|
|
(the abbreviation of Arc Cotangent can be 'actg' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACtg(const ValueType & x)
|
|
{
|
|
return ACot(x);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* hyperbolic functions
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Sine
|
|
|
|
we're using the formula sinh(x)= ( e^x - e^(-x) ) / 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Sinh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType ex, emx;
|
|
uint c = 0;
|
|
|
|
c += ex.Exp(x);
|
|
c += emx.Exp(-x);
|
|
|
|
c += ex.Sub(emx);
|
|
c += ex.exponent.SubOne();
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return ex;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Cosine
|
|
|
|
we're using the formula cosh(x)= ( e^x + e^(-x) ) / 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Cosh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType ex, emx;
|
|
uint c = 0;
|
|
|
|
c += ex.Exp(x);
|
|
c += emx.Exp(-x);
|
|
|
|
c += ex.Add(emx);
|
|
c += ex.exponent.SubOne();
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return ex;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Tangent
|
|
|
|
we're using the formula tanh(x)= ( e^x - e^(-x) ) / ( e^x + e^(-x) )
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Tanh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType ex, emx, nominator, denominator;
|
|
uint c = 0;
|
|
|
|
c += ex.Exp(x);
|
|
c += emx.Exp(-x);
|
|
|
|
nominator = ex;
|
|
c += nominator.Sub(emx);
|
|
denominator = ex;
|
|
c += denominator.Add(emx);
|
|
|
|
c += nominator.Div(denominator);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return nominator;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Tangent
|
|
look at the description of Tanh(...)
|
|
|
|
(the abbreviation of Hyperbolic Tangent can be 'tgh' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Tgh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return Tanh(x, err);
|
|
}
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Cotangent
|
|
|
|
we're using the formula coth(x)= ( e^x + e^(-x) ) / ( e^x - e^(-x) )
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Coth(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
if( x.IsZero() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return ValueType(); // NaN is set by default
|
|
}
|
|
|
|
ValueType ex, emx, nominator, denominator;
|
|
uint c = 0;
|
|
|
|
c += ex.Exp(x);
|
|
c += emx.Exp(-x);
|
|
|
|
nominator = ex;
|
|
c += nominator.Add(emx);
|
|
denominator = ex;
|
|
c += denominator.Sub(emx);
|
|
|
|
c += nominator.Div(denominator);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return nominator;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Hyperbolic Cotangent
|
|
look at the description of Coth(...)
|
|
|
|
(the abbreviation of Hyperbolic Cotangent can be 'ctgh' as well)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Ctgh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return Coth(x, err);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
* inverse hyperbolic functions
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic sine
|
|
|
|
asinh(x) = ln( x + sqrt(x^2 + 1) )
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ASinh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType xx(x), one, result;
|
|
uint c = 0;
|
|
one.SetOne();
|
|
|
|
c += xx.Mul(x);
|
|
c += xx.Add(one);
|
|
one.exponent.SubOne(); // one=0.5
|
|
// xx is >= 1
|
|
c += xx.PowFrac(one); // xx=sqrt(xx)
|
|
c += xx.Add(x);
|
|
c += result.Ln(xx); // xx > 0
|
|
|
|
// here can only be a carry
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic cosine
|
|
|
|
acosh(x) = ln( x + sqrt(x^2 - 1) ) x in <1, infinity)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACosh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType xx(x), one, result;
|
|
uint c = 0;
|
|
one.SetOne();
|
|
|
|
if( x < one )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return result; // NaN is set by default
|
|
}
|
|
|
|
c += xx.Mul(x);
|
|
c += xx.Sub(one);
|
|
// xx is >= 0
|
|
// we can't call a PowFrac when the 'x' is zero
|
|
// if x is 0 the sqrt(0) is 0
|
|
if( !xx.IsZero() )
|
|
{
|
|
one.exponent.SubOne(); // one=0.5
|
|
c += xx.PowFrac(one); // xx=sqrt(xx)
|
|
}
|
|
c += xx.Add(x);
|
|
c += result.Ln(xx); // xx >= 1
|
|
|
|
// here can only be a carry
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic tangent
|
|
|
|
atanh(x) = 0.5 * ln( (1+x) / (1-x) ) x in (-1, 1)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATanh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType nominator(x), denominator, one, result;
|
|
uint c = 0;
|
|
one.SetOne();
|
|
|
|
if( !x.SmallerWithoutSignThan(one) )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return result; // NaN is set by default
|
|
}
|
|
|
|
c += nominator.Add(one);
|
|
denominator = one;
|
|
c += denominator.Sub(x);
|
|
c += nominator.Div(denominator);
|
|
c += result.Ln(nominator);
|
|
c += result.exponent.SubOne();
|
|
|
|
// here can only be a carry
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic tantent
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ATgh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return ATanh(x, err);
|
|
}
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic cotangent
|
|
|
|
acoth(x) = 0.5 * ln( (x+1) / (x-1) ) x in (-infinity, -1) or (1, infinity)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACoth(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x; // NaN
|
|
}
|
|
|
|
ValueType nominator(x), denominator(x), one, result;
|
|
uint c = 0;
|
|
one.SetOne();
|
|
|
|
if( !x.GreaterWithoutSignThan(one) )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return result; // NaN is set by default
|
|
}
|
|
|
|
c += nominator.Add(one);
|
|
c += denominator.Sub(one);
|
|
c += nominator.Div(denominator);
|
|
c += result.Ln(nominator);
|
|
c += result.exponent.SubOne();
|
|
|
|
// here can only be a carry
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
inverse hyperbolic cotantent
|
|
*/
|
|
template<class ValueType>
|
|
ValueType ACtgh(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return ACoth(x, err);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
*
|
|
* functions for converting between degrees, radians and gradians
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this function converts degrees to radians
|
|
|
|
it returns: x * pi / 180
|
|
*/
|
|
template<class ValueType>
|
|
ValueType DegToRad(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, temp;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = x;
|
|
|
|
// it is better to make division first and then multiplication
|
|
// the result is more accurate especially when x is: 90,180,270 or 360
|
|
temp = 180;
|
|
c += result.Div(temp);
|
|
|
|
temp.SetPi();
|
|
c += result.Mul(temp);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts radians to degrees
|
|
|
|
it returns: x * 180 / pi
|
|
*/
|
|
template<class ValueType>
|
|
ValueType RadToDeg(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, delimiter;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = 180;
|
|
c += result.Mul(x);
|
|
|
|
delimiter.SetPi();
|
|
c += result.Div(delimiter);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts degrees in the long format into one value
|
|
|
|
long format: (degrees, minutes, seconds)
|
|
minutes and seconds must be greater than or equal zero
|
|
|
|
result:
|
|
if d>=0 : result= d + ((s/60)+m)/60
|
|
if d<0 : result= d - ((s/60)+m)/60
|
|
|
|
((s/60)+m)/60 = (s+60*m)/3600 (second version is faster because
|
|
there's only one division)
|
|
|
|
for example:
|
|
DegToDeg(10, 30, 0) = 10.5
|
|
DegToDeg(10, 24, 35.6)=10.4098(8)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType DegToDeg( const ValueType & d, const ValueType & m, const ValueType & s,
|
|
ErrorCode * err = 0)
|
|
{
|
|
ValueType delimiter, multipler;
|
|
uint c = 0;
|
|
|
|
if( d.IsNan() || m.IsNan() || s.IsNan() || m.IsSign() || s.IsSign() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
delimiter.SetZeroNan(); // not needed, only to get rid of GCC warning about an uninitialized variable
|
|
|
|
return delimiter;
|
|
}
|
|
|
|
multipler = 60;
|
|
delimiter = 3600;
|
|
|
|
c += multipler.Mul(m);
|
|
c += multipler.Add(s);
|
|
c += multipler.Div(delimiter);
|
|
|
|
if( d.IsSign() )
|
|
multipler.ChangeSign();
|
|
|
|
c += multipler.Add(d);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return multipler;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts degrees in the long format to radians
|
|
*/
|
|
template<class ValueType>
|
|
ValueType DegToRad( const ValueType & d, const ValueType & m, const ValueType & s,
|
|
ErrorCode * err = 0)
|
|
{
|
|
ValueType temp_deg = DegToDeg(d,m,s,err);
|
|
|
|
if( err && *err!=err_ok )
|
|
return temp_deg;
|
|
|
|
return DegToRad(temp_deg, err);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts gradians to radians
|
|
|
|
it returns: x * pi / 200
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GradToRad(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, temp;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = x;
|
|
|
|
// it is better to make division first and then multiplication
|
|
// the result is more accurate especially when x is: 100,200,300 or 400
|
|
temp = 200;
|
|
c += result.Div(temp);
|
|
|
|
temp.SetPi();
|
|
c += result.Mul(temp);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts radians to gradians
|
|
|
|
it returns: x * 200 / pi
|
|
*/
|
|
template<class ValueType>
|
|
ValueType RadToGrad(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, delimiter;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = 200;
|
|
c += result.Mul(x);
|
|
|
|
delimiter.SetPi();
|
|
c += result.Div(delimiter);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts degrees to gradians
|
|
|
|
it returns: x * 200 / 180
|
|
*/
|
|
template<class ValueType>
|
|
ValueType DegToGrad(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, temp;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = x;
|
|
|
|
temp = 200;
|
|
c += result.Mul(temp);
|
|
|
|
temp = 180;
|
|
c += result.Div(temp);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts degrees in the long format to gradians
|
|
*/
|
|
template<class ValueType>
|
|
ValueType DegToGrad( const ValueType & d, const ValueType & m, const ValueType & s,
|
|
ErrorCode * err = 0)
|
|
{
|
|
ValueType temp_deg = DegToDeg(d,m,s,err);
|
|
|
|
if( err && *err!=err_ok )
|
|
return temp_deg;
|
|
|
|
return DegToGrad(temp_deg, err);
|
|
}
|
|
|
|
|
|
/*!
|
|
this function converts degrees to gradians
|
|
|
|
it returns: x * 180 / 200
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GradToDeg(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
ValueType result, temp;
|
|
uint c = 0;
|
|
|
|
if( x.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return x;
|
|
}
|
|
|
|
result = x;
|
|
|
|
temp = 180;
|
|
c += result.Mul(temp);
|
|
|
|
temp = 200;
|
|
c += result.Div(temp);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
*
|
|
* another functions
|
|
*
|
|
*
|
|
*/
|
|
|
|
|
|
/*!
|
|
this function calculates the square root
|
|
|
|
Sqrt(9) = 3
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Sqrt(ValueType x, ErrorCode * err = 0)
|
|
{
|
|
if( x.IsNan() || x.IsSign() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return x;
|
|
}
|
|
|
|
uint c = x.Sqrt();
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndexSign(ValueType & x, const ValueType & index, ErrorCode * err)
|
|
{
|
|
if( index.IsSign() )
|
|
{
|
|
// index cannot be negative
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndexZero(ValueType & x, const ValueType & index, ErrorCode * err)
|
|
{
|
|
if( index.IsZero() )
|
|
{
|
|
if( x.IsZero() )
|
|
{
|
|
// there isn't root(0;0) - we assume it's not defined
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return true;
|
|
}
|
|
|
|
// root(x;0) is 1 (if x!=0)
|
|
x.SetOne();
|
|
|
|
if( err )
|
|
*err = err_ok;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndexOne(const ValueType & index, ErrorCode * err)
|
|
{
|
|
ValueType one;
|
|
one.SetOne();
|
|
|
|
if( index == one )
|
|
{
|
|
//root(x;1) is x
|
|
// we do it because if we used the PowFrac function
|
|
// we would lose the precision
|
|
if( err )
|
|
*err = err_ok;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndexTwo(ValueType & x, const ValueType & index, ErrorCode * err)
|
|
{
|
|
if( index == 2 )
|
|
{
|
|
x = Sqrt(x, err);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndexFrac(ValueType & x, const ValueType & index, ErrorCode * err)
|
|
{
|
|
if( !index.IsInteger() )
|
|
{
|
|
// index must be integer
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckXZero(ValueType & x, ErrorCode * err)
|
|
{
|
|
if( x.IsZero() )
|
|
{
|
|
// root(0;index) is zero (if index!=0)
|
|
// RootCheckIndexZero() must be called beforehand
|
|
x.SetZero();
|
|
|
|
if( err )
|
|
*err = err_ok;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
bool RootCheckIndex(ValueType & x, const ValueType & index, ErrorCode * err, bool * change_sign)
|
|
{
|
|
*change_sign = false;
|
|
|
|
if( index.Mod2() )
|
|
{
|
|
// index is odd (1,3,5...)
|
|
if( x.IsSign() )
|
|
{
|
|
*change_sign = true;
|
|
x.Abs();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// index is even
|
|
// x cannot be negative
|
|
if( x.IsSign() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
template<class ValueType>
|
|
uint RootCorrectInteger(ValueType & old_x, ValueType & x, const ValueType & index)
|
|
{
|
|
if( !old_x.IsInteger() || x.IsInteger() || !index.exponent.IsSign() )
|
|
return 0;
|
|
|
|
// old_x is integer,
|
|
// x is not integer,
|
|
// index is relatively small (index.exponent<0 or index.exponent<=0)
|
|
// (because we're using a special powering algorithm Big::PowUInt())
|
|
|
|
uint c = 0;
|
|
|
|
ValueType temp(x);
|
|
c += temp.Round();
|
|
|
|
ValueType temp_round(temp);
|
|
c += temp.PowUInt(index);
|
|
|
|
if( temp == old_x )
|
|
x = temp_round;
|
|
|
|
return (c==0)? 0 : 1;
|
|
}
|
|
|
|
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
|
|
/*!
|
|
indexth Root of x
|
|
index must be integer and not negative <0;1;2;3....)
|
|
|
|
if index==0 the result is one
|
|
if x==0 the result is zero and we assume root(0;0) is not defined
|
|
|
|
if index is even (2;4;6...) the result is x^(1/index) and x>0
|
|
if index is odd (1;2;3;...) the result is either
|
|
-(abs(x)^(1/index)) if x<0 or
|
|
x^(1/index)) if x>0
|
|
|
|
(for index==1 the result is equal x)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Root(ValueType x, const ValueType & index, ErrorCode * err = 0)
|
|
{
|
|
using namespace auxiliaryfunctions;
|
|
|
|
if( x.IsNan() || index.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return x;
|
|
}
|
|
|
|
if( RootCheckIndexSign(x, index, err) ) return x;
|
|
if( RootCheckIndexZero(x, index, err) ) return x;
|
|
if( RootCheckIndexOne ( index, err) ) return x;
|
|
if( RootCheckIndexTwo (x, index, err) ) return x;
|
|
if( RootCheckIndexFrac(x, index, err) ) return x;
|
|
if( RootCheckXZero (x, err) ) return x;
|
|
|
|
// index integer and index!=0
|
|
// x!=0
|
|
|
|
ValueType old_x(x);
|
|
bool change_sign;
|
|
|
|
if( RootCheckIndex(x, index, err, &change_sign ) ) return x;
|
|
|
|
ValueType temp;
|
|
uint c = 0;
|
|
|
|
// we're using the formula: root(x ; n) = exp( ln(x) / n )
|
|
c += temp.Ln(x);
|
|
c += temp.Div(index);
|
|
c += x.Exp(temp);
|
|
|
|
if( change_sign )
|
|
{
|
|
// x is different from zero
|
|
x.SetSign();
|
|
}
|
|
|
|
c += RootCorrectInteger(old_x, x, index);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
|
|
/*!
|
|
absolute value of x
|
|
e.g. -2 = 2
|
|
2 = 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Abs(const ValueType & x)
|
|
{
|
|
ValueType result( x );
|
|
result.Abs();
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
it returns the sign of the value
|
|
e.g. -2 = -1
|
|
0 = 0
|
|
10 = 1
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Sgn(ValueType x)
|
|
{
|
|
x.Sgn();
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
/*!
|
|
the remainder from a division
|
|
|
|
e.g.
|
|
mod( 12.6 ; 3) = 0.6 because 12.6 = 3*4 + 0.6
|
|
mod(-12.6 ; 3) = -0.6 bacause -12.6 = 3*(-4) + (-0.6)
|
|
mod( 12.6 ; -3) = 0.6
|
|
mod(-12.6 ; -3) = -0.6
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Mod(ValueType a, const ValueType & b, ErrorCode * err = 0)
|
|
{
|
|
if( a.IsNan() || b.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
a.SetNan();
|
|
|
|
return a;
|
|
}
|
|
|
|
uint c = a.Mod(b);
|
|
|
|
if( err )
|
|
*err = c ? err_overflow : err_ok;
|
|
|
|
return a;
|
|
}
|
|
|
|
|
|
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
/*!
|
|
this function is used to store factorials in a given container
|
|
'more' means how many values should be added at the end
|
|
|
|
e.g.
|
|
std::vector<ValueType> fact;
|
|
SetFactorialSequence(fact, 3);
|
|
// now the container has three values: 1 1 2
|
|
|
|
SetFactorialSequence(fact, 2);
|
|
// now the container has five values: 1 1 2 6 24
|
|
*/
|
|
template<class ValueType>
|
|
void SetFactorialSequence(std::vector<ValueType> & fact, uint more = 20)
|
|
{
|
|
if( more == 0 )
|
|
more = 1;
|
|
|
|
uint start = static_cast<uint>(fact.size());
|
|
fact.resize(fact.size() + more);
|
|
|
|
if( start == 0 )
|
|
{
|
|
fact[0] = 1;
|
|
++start;
|
|
}
|
|
|
|
for(uint i=start ; i<fact.size() ; ++i)
|
|
{
|
|
fact[i] = fact[i-1];
|
|
fact[i].MulInt(i);
|
|
}
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate Bernoulli numbers
|
|
|
|
this function returns a sum:
|
|
sum(m) = sum_{k=0}^{m-1} {2^k * (m k) * B(k)} k in [0, m-1] (m k) means binomial coefficient = (m! / (k! * (m-k)!))
|
|
|
|
you should have sufficient factorials in cgamma.fact
|
|
(cgamma.fact should have at least m items)
|
|
|
|
n_ should be equal 2
|
|
*/
|
|
template<class ValueType>
|
|
ValueType SetBernoulliNumbersSum(CGamma<ValueType> & cgamma, const ValueType & n_, uint m,
|
|
const volatile StopCalculating * stop = 0)
|
|
{
|
|
ValueType k_, temp, temp2, temp3, sum;
|
|
|
|
sum.SetZero();
|
|
|
|
for(uint k=0 ; k<m ; ++k) // k<m means k<=m-1
|
|
{
|
|
if( stop && (k & 15)==0 ) // means: k % 16 == 0
|
|
if( stop->WasStopSignal() )
|
|
return ValueType(); // NaN
|
|
|
|
if( k>1 && (k & 1) == 1 ) // for that k the Bernoulli number is zero
|
|
continue;
|
|
|
|
k_ = k;
|
|
|
|
temp = n_; // n_ is equal 2
|
|
temp.Pow(k_);
|
|
// temp = 2^k
|
|
|
|
temp2 = cgamma.fact[m];
|
|
temp3 = cgamma.fact[k];
|
|
temp3.Mul(cgamma.fact[m-k]);
|
|
temp2.Div(temp3);
|
|
// temp2 = (m k) = m! / ( k! * (m-k)! )
|
|
|
|
temp.Mul(temp2);
|
|
temp.Mul(cgamma.bern[k]);
|
|
|
|
sum.Add(temp);
|
|
// sum += 2^k * (m k) * B(k)
|
|
|
|
if( sum.IsNan() )
|
|
break;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate Bernoulli numbers
|
|
start is >= 2
|
|
|
|
we use the recurrence formula:
|
|
B(m) = 1 / (2*(1 - 2^m)) * sum(m)
|
|
where sum(m) is calculated by SetBernoulliNumbersSum()
|
|
*/
|
|
template<class ValueType>
|
|
bool SetBernoulliNumbersMore(CGamma<ValueType> & cgamma, uint start, const volatile StopCalculating * stop = 0)
|
|
{
|
|
ValueType denominator, temp, temp2, temp3, m_, sum, sum2, n_, k_;
|
|
|
|
const uint n = 2;
|
|
n_ = n;
|
|
|
|
// start is >= 2
|
|
for(uint m=start ; m<cgamma.bern.size() ; ++m)
|
|
{
|
|
if( (m & 1) == 1 )
|
|
{
|
|
cgamma.bern[m].SetZero();
|
|
}
|
|
else
|
|
{
|
|
m_ = m;
|
|
|
|
temp = n_; // n_ = 2
|
|
temp.Pow(m_);
|
|
// temp = 2^m
|
|
|
|
denominator.SetOne();
|
|
denominator.Sub(temp);
|
|
if( denominator.exponent.AddOne() ) // it means: denominator.MulInt(2)
|
|
denominator.SetNan();
|
|
|
|
// denominator = 2 * (1 - 2^m)
|
|
|
|
cgamma.bern[m] = SetBernoulliNumbersSum(cgamma, n_, m, stop);
|
|
|
|
if( stop && stop->WasStopSignal() )
|
|
{
|
|
cgamma.bern.resize(m); // valid numbers are in [0, m-1]
|
|
return false;
|
|
}
|
|
|
|
cgamma.bern[m].Div(denominator);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function is used to calculate Bernoulli numbers,
|
|
returns false if there was a stop signal,
|
|
'more' means how many values should be added at the end
|
|
|
|
e.g.
|
|
typedef Big<1,2> MyBig;
|
|
CGamma<MyBig> cgamma;
|
|
SetBernoulliNumbers(cgamma, 3);
|
|
// now we have three first Bernoulli numbers: 1 -0.5 0.16667
|
|
|
|
SetBernoulliNumbers(cgamma, 4);
|
|
// now we have 7 Bernoulli numbers: 1 -0.5 0.16667 0 -0.0333 0 0.0238
|
|
*/
|
|
template<class ValueType>
|
|
bool SetBernoulliNumbers(CGamma<ValueType> & cgamma, uint more = 20, const volatile StopCalculating * stop = 0)
|
|
{
|
|
if( more == 0 )
|
|
more = 1;
|
|
|
|
uint start = static_cast<uint>(cgamma.bern.size());
|
|
cgamma.bern.resize(cgamma.bern.size() + more);
|
|
|
|
if( start == 0 )
|
|
{
|
|
cgamma.bern[0].SetOne();
|
|
++start;
|
|
}
|
|
|
|
if( cgamma.bern.size() == 1 )
|
|
return true;
|
|
|
|
if( start == 1 )
|
|
{
|
|
cgamma.bern[1].Set05();
|
|
cgamma.bern[1].ChangeSign();
|
|
++start;
|
|
}
|
|
|
|
// we should have sufficient factorials in cgamma.fact
|
|
if( cgamma.fact.size() < cgamma.bern.size() )
|
|
SetFactorialSequence(cgamma.fact, static_cast<uint>(cgamma.bern.size() - cgamma.fact.size()));
|
|
|
|
|
|
return SetBernoulliNumbersMore(cgamma, start, stop);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
we calculate a sum:
|
|
sum(n) = sum_{m=2} { B(m) / ( (m^2 - m) * n^(m-1) ) } = 1/(12*n) - 1/(360*n^3) + 1/(1260*n^5) + ...
|
|
B(m) means a mth Bernoulli number
|
|
the sum starts from m=2, we calculate as long as the value will not change after adding a next part
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaFactorialHighSum(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err,
|
|
const volatile StopCalculating * stop)
|
|
{
|
|
ValueType temp, temp2, denominator, sum, oldsum;
|
|
|
|
sum.SetZero();
|
|
|
|
for(uint m=2 ; m<TTMATH_ARITHMETIC_MAX_LOOP ; m+=2)
|
|
{
|
|
if( stop && (m & 3)==0 ) // (m & 3)==0 means: (m % 4)==0
|
|
if( stop->WasStopSignal() )
|
|
{
|
|
err = err_interrupt;
|
|
return ValueType(); // NaN
|
|
}
|
|
|
|
temp = (m-1);
|
|
denominator = n;
|
|
denominator.Pow(temp);
|
|
// denominator = n ^ (m-1)
|
|
|
|
temp = m;
|
|
temp2 = temp;
|
|
temp.Mul(temp2);
|
|
temp.Sub(temp2);
|
|
// temp = m^2 - m
|
|
|
|
denominator.Mul(temp);
|
|
// denominator = (m^2 - m) * n ^ (m-1)
|
|
|
|
if( m >= cgamma.bern.size() )
|
|
{
|
|
if( !SetBernoulliNumbers(cgamma, m - cgamma.bern.size() + 1 + 3, stop) ) // 3 more than needed
|
|
{
|
|
// there was the stop signal
|
|
err = err_interrupt;
|
|
return ValueType(); // NaN
|
|
}
|
|
}
|
|
|
|
temp = cgamma.bern[m];
|
|
temp.Div(denominator);
|
|
|
|
oldsum = sum;
|
|
sum.Add(temp);
|
|
|
|
if( sum.IsNan() || oldsum==sum )
|
|
break;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
we calculate a helper function GammaFactorialHigh() by using Stirling's series:
|
|
n! = (n/e)^n * sqrt(2*pi*n) * exp( sum(n) )
|
|
where n is a real number (not only an integer) and is sufficient large (greater than TTMATH_GAMMA_BOUNDARY)
|
|
and sum(n) is calculated by GammaFactorialHighSum()
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaFactorialHigh(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err,
|
|
const volatile StopCalculating * stop)
|
|
{
|
|
ValueType temp, temp2, temp3, denominator, sum;
|
|
|
|
temp.Set2Pi();
|
|
temp.Mul(n);
|
|
temp2 = Sqrt(temp);
|
|
// temp2 = sqrt(2*pi*n)
|
|
|
|
temp = n;
|
|
temp3.SetE();
|
|
temp.Div(temp3);
|
|
temp.Pow(n);
|
|
// temp = (n/e)^n
|
|
|
|
sum = GammaFactorialHighSum(n, cgamma, err, stop);
|
|
temp3.Exp(sum);
|
|
// temp3 = exp(sum)
|
|
|
|
temp.Mul(temp2);
|
|
temp.Mul(temp3);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
Gamma(x) = GammaFactorialHigh(x-1)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaPlusHigh(ValueType n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
|
|
{
|
|
ValueType one;
|
|
|
|
one.SetOne();
|
|
n.Sub(one);
|
|
|
|
return GammaFactorialHigh(n, cgamma, err, stop);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
we use this function when n is integer and a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
|
|
we use the formula:
|
|
gamma(n) = (n-1)! = 1 * 2 * 3 * ... * (n-1)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaPlusLowIntegerInt(uint n, CGamma<ValueType> & cgamma)
|
|
{
|
|
TTMATH_ASSERT( n > 0 )
|
|
|
|
if( n - 1 < static_cast<uint>(cgamma.fact.size()) )
|
|
return cgamma.fact[n - 1];
|
|
|
|
ValueType res;
|
|
uint start = 2;
|
|
|
|
if( cgamma.fact.size() < 2 )
|
|
{
|
|
res.SetOne();
|
|
}
|
|
else
|
|
{
|
|
start = static_cast<uint>(cgamma.fact.size());
|
|
res = cgamma.fact[start-1];
|
|
}
|
|
|
|
for(uint i=start ; i<n ; ++i)
|
|
res.MulInt(i);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
we use this function when n is integer and a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaPlusLowInteger(const ValueType & n, CGamma<ValueType> & cgamma)
|
|
{
|
|
sint n_;
|
|
|
|
n.ToInt(n_);
|
|
|
|
return GammaPlusLowIntegerInt(n_, cgamma);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
we use this function when n is a small value (from 0 to TTMATH_GAMMA_BOUNDARY]
|
|
we use a recurrence formula:
|
|
gamma(z+1) = z * gamma(z)
|
|
then: gamma(z) = gamma(z+1) / z
|
|
|
|
e.g.
|
|
gamma(3.89) = gamma(2001.89) / ( 3.89 * 4.89 * 5.89 * ... * 1999.89 * 2000.89 )
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaPlusLow(ValueType n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
|
|
{
|
|
ValueType one, denominator, temp, boundary;
|
|
|
|
if( n.IsInteger() )
|
|
return GammaPlusLowInteger(n, cgamma);
|
|
|
|
one.SetOne();
|
|
denominator = n;
|
|
boundary = TTMATH_GAMMA_BOUNDARY;
|
|
|
|
while( n < boundary )
|
|
{
|
|
n.Add(one);
|
|
denominator.Mul(n);
|
|
}
|
|
|
|
n.Add(one);
|
|
|
|
// now n is sufficient big
|
|
temp = GammaPlusHigh(n, cgamma, err, stop);
|
|
temp.Div(denominator);
|
|
|
|
return temp;
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaPlus(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
|
|
{
|
|
if( n > TTMATH_GAMMA_BOUNDARY )
|
|
return GammaPlusHigh(n, cgamma, err, stop);
|
|
|
|
return GammaPlusLow(n, cgamma, err, stop);
|
|
}
|
|
|
|
|
|
/*!
|
|
an auxiliary function used to calculate the Gamma() function
|
|
|
|
this function is used when n is negative
|
|
we use the reflection formula:
|
|
gamma(1-z) * gamma(z) = pi / sin(pi*z)
|
|
then: gamma(z) = pi / (sin(pi*z) * gamma(1-z))
|
|
|
|
*/
|
|
template<class ValueType>
|
|
ValueType GammaMinus(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode & err, const volatile StopCalculating * stop)
|
|
{
|
|
ValueType pi, denominator, temp, temp2;
|
|
|
|
if( n.IsInteger() )
|
|
{
|
|
// gamma function is not defined when n is negative and integer
|
|
err = err_improper_argument;
|
|
return temp; // NaN
|
|
}
|
|
|
|
pi.SetPi();
|
|
|
|
temp = pi;
|
|
temp.Mul(n);
|
|
temp2 = Sin(temp);
|
|
// temp2 = sin(pi * n)
|
|
|
|
temp.SetOne();
|
|
temp.Sub(n);
|
|
temp = GammaPlus(temp, cgamma, err, stop);
|
|
// temp = gamma(1 - n)
|
|
|
|
temp.Mul(temp2);
|
|
pi.Div(temp);
|
|
|
|
return pi;
|
|
}
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
|
|
/*!
|
|
this function calculates the Gamma function
|
|
|
|
it's multithread safe, you should create a CGamma<> object and use it whenever you call the Gamma()
|
|
e.g.
|
|
typedef Big<1,2> MyBig;
|
|
MyBig x=234, y=345.53;
|
|
CGamma<MyBig> cgamma;
|
|
std::cout << Gamma(x, cgamma) << std::endl;
|
|
std::cout << Gamma(y, cgamma) << std::endl;
|
|
in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers),
|
|
and they will be reused in next calls to the function
|
|
|
|
each thread should have its own CGamma<> object, and you can use these objects with Factorial() function too
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Gamma(const ValueType & n, CGamma<ValueType> & cgamma, ErrorCode * err = 0,
|
|
const volatile StopCalculating * stop = 0)
|
|
{
|
|
using namespace auxiliaryfunctions;
|
|
|
|
ValueType result;
|
|
ErrorCode err_tmp;
|
|
|
|
if( n.IsNan() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
return n;
|
|
}
|
|
|
|
if( cgamma.history.Get(n, result, err_tmp) )
|
|
{
|
|
if( err )
|
|
*err = err_tmp;
|
|
|
|
return result;
|
|
}
|
|
|
|
err_tmp = err_ok;
|
|
|
|
if( n.IsSign() )
|
|
{
|
|
result = GammaMinus(n, cgamma, err_tmp, stop);
|
|
}
|
|
else
|
|
if( n.IsZero() )
|
|
{
|
|
err_tmp = err_improper_argument;
|
|
result.SetNan();
|
|
}
|
|
else
|
|
{
|
|
result = GammaPlus(n, cgamma, err_tmp, stop);
|
|
}
|
|
|
|
if( result.IsNan() && err_tmp==err_ok )
|
|
err_tmp = err_overflow;
|
|
|
|
if( err )
|
|
*err = err_tmp;
|
|
|
|
if( stop && !stop->WasStopSignal() )
|
|
cgamma.history.Add(n, result, err_tmp);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/*!
|
|
this function calculates the Gamma function
|
|
|
|
note: this function should be used only in a single-thread environment
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Gamma(const ValueType & n, ErrorCode * err = 0)
|
|
{
|
|
// warning: this static object is not thread safe
|
|
static CGamma<ValueType> cgamma;
|
|
|
|
return Gamma(n, cgamma, err);
|
|
}
|
|
|
|
|
|
|
|
namespace auxiliaryfunctions
|
|
{
|
|
|
|
/*!
|
|
an auxiliary function for calculating the factorial function
|
|
|
|
we use the formula:
|
|
x! = gamma(x+1)
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Factorial2(ValueType x,
|
|
CGamma<ValueType> * cgamma = 0,
|
|
ErrorCode * err = 0,
|
|
const volatile StopCalculating * stop = 0)
|
|
{
|
|
ValueType result, one;
|
|
|
|
if( x.IsNan() || x.IsSign() || !x.IsInteger() )
|
|
{
|
|
if( err )
|
|
*err = err_improper_argument;
|
|
|
|
x.SetNan();
|
|
|
|
return x;
|
|
}
|
|
|
|
one.SetOne();
|
|
x.Add(one);
|
|
|
|
if( cgamma )
|
|
return Gamma(x, *cgamma, err, stop);
|
|
|
|
return Gamma(x, err);
|
|
}
|
|
|
|
} // namespace auxiliaryfunctions
|
|
|
|
|
|
|
|
/*!
|
|
the factorial from given 'x'
|
|
e.g.
|
|
Factorial(4) = 4! = 1*2*3*4
|
|
|
|
it's multithread safe, you should create a CGamma<> object and use it whenever you call the Factorial()
|
|
e.g.
|
|
typedef Big<1,2> MyBig;
|
|
MyBig x=234, y=54345;
|
|
CGamma<MyBig> cgamma;
|
|
std::cout << Factorial(x, cgamma) << std::endl;
|
|
std::cout << Factorial(y, cgamma) << std::endl;
|
|
in the CGamma<> object the function stores some coefficients (factorials, Bernoulli numbers),
|
|
and they will be reused in next calls to the function
|
|
|
|
each thread should have its own CGamma<> object, and you can use these objects with Gamma() function too
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Factorial(const ValueType & x, CGamma<ValueType> & cgamma, ErrorCode * err = 0,
|
|
const volatile StopCalculating * stop = 0)
|
|
{
|
|
return auxiliaryfunctions::Factorial2(x, &cgamma, err, stop);
|
|
}
|
|
|
|
|
|
/*!
|
|
the factorial from given 'x'
|
|
e.g.
|
|
Factorial(4) = 4! = 1*2*3*4
|
|
|
|
note: this function should be used only in a single-thread environment
|
|
*/
|
|
template<class ValueType>
|
|
ValueType Factorial(const ValueType & x, ErrorCode * err = 0)
|
|
{
|
|
return auxiliaryfunctions::Factorial2(x, (CGamma<ValueType>*)0, err, 0);
|
|
}
|
|
|
|
|
|
/*!
|
|
this method prepares some coefficients: factorials and Bernoulli numbers
|
|
stored in 'fact' and 'bern' objects
|
|
|
|
we're defining the method here because we're using Gamma() function which
|
|
is not available in ttmathobjects.h
|
|
|
|
read the doc info in ttmathobjects.h file where CGamma<> struct is declared
|
|
*/
|
|
template<class ValueType>
|
|
void CGamma<ValueType>::InitAll()
|
|
{
|
|
ValueType x = TTMATH_GAMMA_BOUNDARY + 1;
|
|
|
|
// history.Remove(x) removes only one object
|
|
// we must be sure that there are not others objects with the key 'x'
|
|
while( history.Remove(x) )
|
|
{
|
|
}
|
|
|
|
// the simplest way to initialize is to call the Gamma function with (TTMATH_GAMMA_BOUNDARY + 1)
|
|
// when x is larger then fewer coefficients we need
|
|
Gamma(x, *this);
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
//warning C4127: conditional expression is constant
|
|
#pragma warning( default: 4127 )
|
|
//warning C4702: unreachable code
|
|
#pragma warning( default: 4702 )
|
|
//warning C4800: forcing value to bool 'true' or 'false' (performance warning)
|
|
#pragma warning( default: 4800 )
|
|
#endif
|
|
|
|
#endif
|