mirror of
https://github.com/FirebirdSQL/firebird.git
synced 2025-01-25 02:03:03 +01:00
1177 lines
42 KiB
C++
1177 lines
42 KiB
C++
|
|
//
|
|
// file: rbbiscan.cpp
|
|
//
|
|
// Copyright (C) 2002-2004, International Business Machines Corporation and others.
|
|
// All Rights Reserved.
|
|
//
|
|
// This file contains the Rule Based Break Iterator Rule Builder functions for
|
|
// scanning the rules and assembling a parse tree. This is the first phase
|
|
// of compiling the rules.
|
|
//
|
|
// The overall of the rules is managed by class RBBIRuleBuilder, which will
|
|
// create and use an instance of this class as part of the process.
|
|
//
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_BREAK_ITERATION
|
|
|
|
#include "unicode/unistr.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/uchriter.h"
|
|
#include "unicode/parsepos.h"
|
|
#include "unicode/parseerr.h"
|
|
#include "uprops.h"
|
|
#include "cmemory.h"
|
|
#include "cstring.h"
|
|
|
|
#include "rbbirpt.h" // Contains state table for the rbbi rules parser.
|
|
// generated by a Perl script.
|
|
#include "rbbirb.h"
|
|
#include "rbbinode.h"
|
|
#include "rbbiscan.h"
|
|
#include "rbbitblb.h"
|
|
|
|
#include "uassert.h"
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Unicode Set init strings for each of the character classes needed for parsing a rule file.
|
|
// (Initialized with hex values for portability to EBCDIC based machines.
|
|
// Really ugly, but there's no good way to avoid it.)
|
|
//
|
|
// The sets are referred to by name in the rbbirpt.txt, which is the
|
|
// source form of the state transition table for the RBBI rule parser.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
static const UChar gRuleSet_rule_char_pattern[] = {
|
|
// [ ^ [ \ p { Z } \ u 0 0 2 0
|
|
0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
|
|
// - \ u 0 0 7 f ] - [ \ p
|
|
0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
|
|
// { L } ] - [ \ p { N } ] ]
|
|
0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};
|
|
|
|
static const UChar gRuleSet_name_char_pattern[] = {
|
|
// [ _ \ p { L } \ p { N } ]
|
|
0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
|
|
|
|
static const UChar gRuleSet_digit_char_pattern[] = {
|
|
// [ 0 - 9 ]
|
|
0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
|
|
|
|
static const UChar gRuleSet_name_start_char_pattern[] = {
|
|
// [ _ \ p { L } ]
|
|
0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
|
|
|
|
static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
|
|
|
|
|
|
U_CDECL_BEGIN
|
|
static void U_EXPORT2 U_CALLCONV RBBISetTable_deleter(void *p) {
|
|
RBBISetTableEl *px = (RBBISetTableEl *)p;
|
|
delete px->key;
|
|
// Note: px->val is owned by the linked list "fSetsListHead" in scanner.
|
|
// Don't delete the value nodes here.
|
|
uprv_free(px);
|
|
}
|
|
U_CDECL_END
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Constructor.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
|
|
{
|
|
fRB = rb;
|
|
fStackPtr = 0;
|
|
fStack[fStackPtr] = 0;
|
|
fNodeStackPtr = 0;
|
|
fRuleNum = 0;
|
|
fNodeStack[0] = NULL;
|
|
|
|
fRuleSets[kRuleSet_rule_char-128] = NULL;
|
|
fRuleSets[kRuleSet_white_space-128] = NULL;
|
|
fRuleSets[kRuleSet_name_char-128] = NULL;
|
|
fRuleSets[kRuleSet_name_start_char-128] = NULL;
|
|
fRuleSets[kRuleSet_digit_char-128] = NULL;
|
|
fSymbolTable = NULL;
|
|
fSetTable = NULL;
|
|
|
|
fScanIndex = 0;
|
|
fNextIndex = 0;
|
|
|
|
fReverseRule = FALSE;
|
|
fLookAheadRule = FALSE;
|
|
|
|
fLineNum = 1;
|
|
fCharNum = 0;
|
|
fQuoteMode = FALSE;
|
|
|
|
// Do not check status until after all critical fields are sufficiently initialized
|
|
// that the destructor can run cleanly.
|
|
if (U_FAILURE(*rb->fStatus)) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Set up the constant Unicode Sets.
|
|
// Note: These could be made static, lazily initialized, and shared among
|
|
// all instances of RBBIRuleScanners. BUT this is quite a bit simpler,
|
|
// and the time to build these few sets should be small compared to a
|
|
// full break iterator build.
|
|
fRuleSets[kRuleSet_rule_char-128] = new UnicodeSet(gRuleSet_rule_char_pattern, *rb->fStatus);
|
|
fRuleSets[kRuleSet_white_space-128] = (UnicodeSet*) uprv_openRuleWhiteSpaceSet(rb->fStatus);
|
|
fRuleSets[kRuleSet_name_char-128] = new UnicodeSet(gRuleSet_name_char_pattern, *rb->fStatus);
|
|
fRuleSets[kRuleSet_name_start_char-128] = new UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus);
|
|
fRuleSets[kRuleSet_digit_char-128] = new UnicodeSet(gRuleSet_digit_char_pattern, *rb->fStatus);
|
|
if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
|
|
// This case happens if ICU's data is missing. UnicodeSet tries to look up property
|
|
// names from the init string, can't find them, and claims an illegal arguement.
|
|
// Change the error so that the actual problem will be clearer to users.
|
|
*rb->fStatus = U_BRK_INIT_ERROR;
|
|
}
|
|
if (U_FAILURE(*rb->fStatus)) {
|
|
return;
|
|
}
|
|
|
|
fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
|
|
fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, rb->fStatus);
|
|
uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
|
|
}
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Destructor
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
RBBIRuleScanner::~RBBIRuleScanner() {
|
|
delete fRuleSets[kRuleSet_rule_char-128];
|
|
delete fRuleSets[kRuleSet_white_space-128];
|
|
delete fRuleSets[kRuleSet_name_char-128];
|
|
delete fRuleSets[kRuleSet_name_start_char-128];
|
|
delete fRuleSets[kRuleSet_digit_char-128];
|
|
|
|
delete fSymbolTable;
|
|
if (fSetTable != NULL) {
|
|
uhash_close(fSetTable);
|
|
fSetTable = NULL;
|
|
|
|
}
|
|
|
|
|
|
// Node Stack.
|
|
// Normally has one entry, which is the entire parse tree for the rules.
|
|
// If errors occured, there may be additional subtrees left on the stack.
|
|
while (fNodeStackPtr > 0) {
|
|
delete fNodeStack[fNodeStackPtr];
|
|
fNodeStackPtr--;
|
|
}
|
|
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// doParseAction Do some action during rule parsing.
|
|
// Called by the parse state machine.
|
|
// Actions build the parse tree and Unicode Sets,
|
|
// and maintain the parse stack for nested expressions.
|
|
//
|
|
// TODO: unify EParseAction and RBBI_RuleParseAction enum types.
|
|
// They represent exactly the same thing. They're separate
|
|
// only to work around enum forward declaration restrictions
|
|
// in some compilers, while at the same time avoiding multiple
|
|
// definitions problems. I'm sure that there's a better way.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UBool RBBIRuleScanner::doParseActions(EParseAction action)
|
|
{
|
|
RBBINode *n = NULL;
|
|
|
|
UBool returnVal = TRUE;
|
|
|
|
switch ((RBBI_RuleParseAction)action) {
|
|
|
|
case doExprStart:
|
|
pushNewNode(RBBINode::opStart);
|
|
fRuleNum++;
|
|
break;
|
|
|
|
|
|
case doExprOrOperator:
|
|
{
|
|
fixOpStack(RBBINode::precOpCat);
|
|
RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
|
|
RBBINode *orNode = pushNewNode(RBBINode::opOr);
|
|
orNode->fLeftChild = operandNode;
|
|
operandNode->fParent = orNode;
|
|
}
|
|
break;
|
|
|
|
case doExprCatOperator:
|
|
// concatenation operator.
|
|
// For the implicit concatenation of adjacent terms in an expression that are
|
|
// not separated by any other operator. Action is invoked between the
|
|
// actions for the two terms.
|
|
{
|
|
fixOpStack(RBBINode::precOpCat);
|
|
RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
|
|
RBBINode *catNode = pushNewNode(RBBINode::opCat);
|
|
catNode->fLeftChild = operandNode;
|
|
operandNode->fParent = catNode;
|
|
}
|
|
break;
|
|
|
|
case doLParen:
|
|
// Open Paren.
|
|
// The openParen node is a dummy operation type with a low precedence,
|
|
// which has the affect of ensuring that any real binary op that
|
|
// follows within the parens binds more tightly to the operands than
|
|
// stuff outside of the parens.
|
|
pushNewNode(RBBINode::opLParen);
|
|
break;
|
|
|
|
case doExprRParen:
|
|
fixOpStack(RBBINode::precLParen);
|
|
break;
|
|
|
|
case doNOP:
|
|
break;
|
|
|
|
case doStartAssign:
|
|
// We've just scanned "$variable = "
|
|
// The top of the node stack has the $variable ref node.
|
|
|
|
// Save the start position of the RHS text in the StartExpression node
|
|
// that precedes the $variableReference node on the stack.
|
|
// This will eventually be used when saving the full $variable replacement
|
|
// text as a string.
|
|
n = fNodeStack[fNodeStackPtr-1];
|
|
n->fFirstPos = fNextIndex; // move past the '='
|
|
|
|
// Push a new start-of-expression node; needed to keep parse of the
|
|
// RHS expression happy.
|
|
pushNewNode(RBBINode::opStart);
|
|
break;
|
|
|
|
|
|
|
|
|
|
case doEndAssign:
|
|
{
|
|
// We have reached the end of an assignement statement.
|
|
// Current scan char is the ';' that terminates the assignment.
|
|
|
|
// Terminate expression, leaves expression parse tree rooted in TOS node.
|
|
fixOpStack(RBBINode::precStart);
|
|
|
|
RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2];
|
|
RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1];
|
|
RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr];
|
|
|
|
// Save original text of right side of assignment, excluding the terminating ';'
|
|
// in the root of the node for the right-hand-side expression.
|
|
RHSExprNode->fFirstPos = startExprNode->fFirstPos;
|
|
RHSExprNode->fLastPos = fScanIndex;
|
|
fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);
|
|
|
|
// Expression parse tree becomes l. child of the $variable reference node.
|
|
varRefNode->fLeftChild = RHSExprNode;
|
|
RHSExprNode->fParent = varRefNode;
|
|
|
|
// Make a symbol table entry for the $variableRef node.
|
|
fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
|
|
|
|
// Clean up the stack.
|
|
delete startExprNode;
|
|
fNodeStackPtr-=3;
|
|
break;
|
|
}
|
|
|
|
case doEndOfRule:
|
|
{
|
|
fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression
|
|
if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node.
|
|
break;
|
|
}
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
|
|
U_ASSERT(fNodeStackPtr == 1);
|
|
|
|
// If this rule includes a look-ahead '/', add a endMark node to the
|
|
// expression tree.
|
|
if (fLookAheadRule) {
|
|
RBBINode *thisRule = fNodeStack[fNodeStackPtr];
|
|
RBBINode *endNode = pushNewNode(RBBINode::endMark);
|
|
RBBINode *catNode = pushNewNode(RBBINode::opCat);
|
|
fNodeStackPtr -= 2;
|
|
catNode->fLeftChild = thisRule;
|
|
catNode->fRightChild = endNode;
|
|
fNodeStack[fNodeStackPtr] = catNode;
|
|
endNode->fVal = fRuleNum;
|
|
endNode->fLookAheadEnd = TRUE;
|
|
}
|
|
|
|
// All rule expressions are ORed together.
|
|
// The ';' that terminates an expression really just functions as a '|' with
|
|
// a low operator prededence.
|
|
//
|
|
// Each of the four sets of rules are collected separately.
|
|
// (forward, reverse, safe_forward, safe_reverse)
|
|
// OR this rule into the appropriate group of them.
|
|
//
|
|
RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree);
|
|
|
|
if (*destRules != NULL) {
|
|
// This is not the first rule encounted.
|
|
// OR previous stuff (from *destRules)
|
|
// with the current rule expression (on the Node Stack)
|
|
// with the resulting OR expression going to *destRules
|
|
//
|
|
RBBINode *thisRule = fNodeStack[fNodeStackPtr];
|
|
RBBINode *prevRules = *destRules;
|
|
RBBINode *orNode = pushNewNode(RBBINode::opOr);
|
|
orNode->fLeftChild = prevRules;
|
|
prevRules->fParent = orNode;
|
|
orNode->fRightChild = thisRule;
|
|
thisRule->fParent = orNode;
|
|
*destRules = orNode;
|
|
}
|
|
else
|
|
{
|
|
// This is the first rule encountered (for this direction).
|
|
// Just move its parse tree from the stack to *destRules.
|
|
*destRules = fNodeStack[fNodeStackPtr];
|
|
}
|
|
fReverseRule = FALSE; // in preparation for the next rule.
|
|
fLookAheadRule = FALSE;
|
|
fNodeStackPtr = 0;
|
|
}
|
|
break;
|
|
|
|
|
|
case doRuleError:
|
|
error(U_BRK_RULE_SYNTAX);
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
|
|
case doVariableNameExpectedErr:
|
|
error(U_BRK_RULE_SYNTAX);
|
|
break;
|
|
|
|
|
|
//
|
|
// Unary operands + ? *
|
|
// These all appear after the operand to which they apply.
|
|
// When we hit one, the operand (may be a whole sub expression)
|
|
// will be on the top of the stack.
|
|
// Unary Operator becomes TOS, with the old TOS as its one child.
|
|
case doUnaryOpPlus:
|
|
{
|
|
RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
|
|
RBBINode *plusNode = pushNewNode(RBBINode::opPlus);
|
|
plusNode->fLeftChild = operandNode;
|
|
operandNode->fParent = plusNode;
|
|
}
|
|
break;
|
|
|
|
case doUnaryOpQuestion:
|
|
{
|
|
RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
|
|
RBBINode *qNode = pushNewNode(RBBINode::opQuestion);
|
|
qNode->fLeftChild = operandNode;
|
|
operandNode->fParent = qNode;
|
|
}
|
|
break;
|
|
|
|
case doUnaryOpStar:
|
|
{
|
|
RBBINode *operandNode = fNodeStack[fNodeStackPtr--];
|
|
RBBINode *starNode = pushNewNode(RBBINode::opStar);
|
|
starNode->fLeftChild = operandNode;
|
|
operandNode->fParent = starNode;
|
|
}
|
|
break;
|
|
|
|
case doRuleChar:
|
|
// A "Rule Character" is any single character that is a literal part
|
|
// of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]"
|
|
// These are pretty uncommon in break rules; the terms are more commonly
|
|
// sets. To keep things uniform, treat these characters like as
|
|
// sets that just happen to contain only one character.
|
|
{
|
|
n = pushNewNode(RBBINode::setRef);
|
|
findSetFor(fC.fChar, n);
|
|
n->fFirstPos = fScanIndex;
|
|
n->fLastPos = fNextIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
|
|
break;
|
|
}
|
|
|
|
case doDotAny:
|
|
// scanned a ".", meaning match any single character.
|
|
{
|
|
n = pushNewNode(RBBINode::setRef);
|
|
findSetFor(kAny, n);
|
|
n->fFirstPos = fScanIndex;
|
|
n->fLastPos = fNextIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case doSlash:
|
|
// Scanned a '/', which identifies a look-ahead break position in a rule.
|
|
n = pushNewNode(RBBINode::lookAhead);
|
|
n->fVal = fRuleNum;
|
|
n->fFirstPos = fScanIndex;
|
|
n->fLastPos = fNextIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
|
|
fLookAheadRule = TRUE;
|
|
break;
|
|
|
|
|
|
case doStartTagValue:
|
|
// Scanned a '{', the opening delimiter for a tag value within a rule.
|
|
n = pushNewNode(RBBINode::tag);
|
|
n->fVal = 0;
|
|
n->fFirstPos = fScanIndex;
|
|
n->fLastPos = fNextIndex;
|
|
break;
|
|
|
|
case doTagDigit:
|
|
// Just scanned a decimal digit that's part of a tag value
|
|
{
|
|
n = fNodeStack[fNodeStackPtr];
|
|
uint32_t v = u_charDigitValue(fC.fChar);
|
|
U_ASSERT(v < 10);
|
|
n->fVal = n->fVal*10 + v;
|
|
break;
|
|
}
|
|
|
|
case doTagValue:
|
|
n = fNodeStack[fNodeStackPtr];
|
|
n->fLastPos = fNextIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
|
|
break;
|
|
|
|
case doTagExpectedError:
|
|
error(U_BRK_MALFORMED_RULE_TAG);
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
case doOptionStart:
|
|
// Scanning a !!option. At the start of string.
|
|
fOptionStart = fScanIndex;
|
|
break;
|
|
|
|
case doOptionEnd:
|
|
{
|
|
UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
|
|
if (opt == "chain") {
|
|
fRB->fChainRules = TRUE;
|
|
} else if (opt == "LBCMNoChain") {
|
|
fRB->fLBCMNoChain = TRUE;
|
|
} else if (opt == "forward") {
|
|
fRB->fDefaultTree = &fRB->fForwardTree;
|
|
} else if (opt == "reverse") {
|
|
fRB->fDefaultTree = &fRB->fReverseTree;
|
|
} else if (opt == "safe_forward") {
|
|
fRB->fDefaultTree = &fRB->fSafeFwdTree;
|
|
} else if (opt == "safe_reverse") {
|
|
fRB->fDefaultTree = &fRB->fSafeRevTree;
|
|
} else if (opt == "lookAheadHardBreak") {
|
|
fRB->fLookAheadHardBreak = TRUE;
|
|
} else {
|
|
error(U_BRK_UNRECOGNIZED_OPTION);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case doReverseDir:
|
|
fReverseRule = TRUE;
|
|
break;
|
|
|
|
case doStartVariableName:
|
|
n = pushNewNode(RBBINode::varRef);
|
|
if (U_FAILURE(*fRB->fStatus)) {
|
|
break;
|
|
}
|
|
n->fFirstPos = fScanIndex;
|
|
break;
|
|
|
|
case doEndVariableName:
|
|
n = fNodeStack[fNodeStackPtr];
|
|
if (n==NULL || n->fType != RBBINode::varRef) {
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
break;
|
|
}
|
|
n->fLastPos = fScanIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
|
|
// Look the newly scanned name up in the symbol table
|
|
// If there's an entry, set the l. child of the var ref to the replacement expression.
|
|
// (We also pass through here when scanning assignments, but no harm is done, other
|
|
// than a slight wasted effort that seems hard to avoid. Lookup will be null)
|
|
n->fLeftChild = fSymbolTable->lookupNode(n->fText);
|
|
break;
|
|
|
|
case doCheckVarDef:
|
|
n = fNodeStack[fNodeStackPtr];
|
|
if (n->fLeftChild == NULL) {
|
|
error(U_BRK_UNDEFINED_VARIABLE);
|
|
returnVal = FALSE;
|
|
}
|
|
break;
|
|
|
|
case doExprFinished:
|
|
break;
|
|
|
|
case doRuleErrorAssignExpr:
|
|
error(U_BRK_ASSIGN_ERROR);
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
case doExit:
|
|
returnVal = FALSE;
|
|
break;
|
|
|
|
case doScanUnicodeSet:
|
|
scanSet();
|
|
break;
|
|
|
|
default:
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
returnVal = FALSE;
|
|
break;
|
|
}
|
|
return returnVal;
|
|
}
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// Error Report a rule parse error.
|
|
// Only report it if no previous error has been recorded.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::error(UErrorCode e) {
|
|
if (U_SUCCESS(*fRB->fStatus)) {
|
|
*fRB->fStatus = e;
|
|
fRB->fParseError->line = fLineNum;
|
|
fRB->fParseError->offset = fCharNum;
|
|
fRB->fParseError->preContext[0] = 0;
|
|
fRB->fParseError->preContext[0] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// fixOpStack The parse stack holds partially assembled chunks of the parse tree.
|
|
// An entry on the stack may be as small as a single setRef node,
|
|
// or as large as the parse tree
|
|
// for an entire expression (this will be the one item left on the stack
|
|
// when the parsing of an RBBI rule completes.
|
|
//
|
|
// This function is called when a binary operator is encountered.
|
|
// It looks back up the stack for operators that are not yet associated
|
|
// with a right operand, and if the precedence of the stacked operator >=
|
|
// the precedence of the current operator, binds the operand left,
|
|
// to the previously encountered operator.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
|
|
RBBINode *n;
|
|
// printNodeStack("entering fixOpStack()");
|
|
for (;;) {
|
|
n = fNodeStack[fNodeStackPtr-1]; // an operator node
|
|
if (n->fPrecedence == 0) {
|
|
RBBIDebugPrintf("RBBIRuleScanner::fixOpStack, bad operator node\n");
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
return;
|
|
}
|
|
|
|
if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
|
|
// The most recent operand goes with the current operator,
|
|
// not with the previously stacked one.
|
|
break;
|
|
}
|
|
// Stack operator is a binary op ( '|' or concatenation)
|
|
// TOS operand becomes right child of this operator.
|
|
// Resulting subexpression becomes the TOS operand.
|
|
n->fRightChild = fNodeStack[fNodeStackPtr];
|
|
fNodeStack[fNodeStackPtr]->fParent = n;
|
|
fNodeStackPtr--;
|
|
// printNodeStack("looping in fixOpStack() ");
|
|
}
|
|
|
|
if (p <= RBBINode::precLParen) {
|
|
// Scan is at a right paren or end of expression.
|
|
// The scanned item must match the stack, or else there was an error.
|
|
// Discard the left paren (or start expr) node from the stack,
|
|
// leaving the completed (sub)expression as TOS.
|
|
if (n->fPrecedence != p) {
|
|
// Right paren encountered matched start of expression node, or
|
|
// end of expression matched with a left paren node.
|
|
error(U_BRK_MISMATCHED_PAREN);
|
|
}
|
|
fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
|
|
fNodeStackPtr--;
|
|
// Delete the now-discarded LParen or Start node.
|
|
delete n;
|
|
}
|
|
// printNodeStack("leaving fixOpStack()");
|
|
}
|
|
|
|
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// findSetFor given a UnicodeString,
|
|
// - find the corresponding Unicode Set (uset node)
|
|
// (create one if necessary)
|
|
// - Set fLeftChild of the caller's node (should be a setRef node)
|
|
// to the uset node
|
|
// Maintain a hash table of uset nodes, so the same one is always used
|
|
// for the same string.
|
|
// If a "to adopt" set is provided and we haven't seen this key before,
|
|
// add the provided set to the hash table.
|
|
// If the string is one (32 bit) char in length, the set contains
|
|
// just one element which is the char in question.
|
|
// If the string is "any", return a set containing all chars.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {
|
|
|
|
RBBISetTableEl *el;
|
|
|
|
// First check whether we've already cached a set for this string.
|
|
// If so, just use the cached set in the new node.
|
|
// delete any set provided by the caller, since we own it.
|
|
el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
|
|
if (el != NULL) {
|
|
delete setToAdopt;
|
|
node->fLeftChild = el->val;
|
|
U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
|
|
return;
|
|
}
|
|
|
|
// Haven't seen this set before.
|
|
// If the caller didn't provide us with a prebuilt set,
|
|
// create a new UnicodeSet now.
|
|
if (setToAdopt == NULL) {
|
|
if (s.compare(kAny, -1) == 0) {
|
|
setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
|
|
} else {
|
|
UChar32 c;
|
|
c = s.char32At(0);
|
|
setToAdopt = new UnicodeSet(c, c);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Make a new uset node to refer to this UnicodeSet
|
|
// This new uset node becomes the child of the caller's setReference node.
|
|
//
|
|
RBBINode *usetNode = new RBBINode(RBBINode::uset);
|
|
usetNode->fInputSet = setToAdopt;
|
|
usetNode->fParent = node;
|
|
node->fLeftChild = usetNode;
|
|
usetNode->fText = s;
|
|
|
|
|
|
//
|
|
// Add the new uset node to the list of all uset nodes.
|
|
//
|
|
fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);
|
|
|
|
|
|
//
|
|
// Add the new set to the set hash table.
|
|
//
|
|
el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
|
|
UnicodeString *tkey = new UnicodeString(s);
|
|
if (tkey == NULL || el == NULL || setToAdopt == NULL) {
|
|
error(U_MEMORY_ALLOCATION_ERROR);
|
|
return;
|
|
}
|
|
el->key = tkey;
|
|
el->val = usetNode;
|
|
uhash_put(fSetTable, el->key, el, fRB->fStatus);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// Assorted Unicode character constants.
|
|
// Numeric because there is no portable way to enter them as literals.
|
|
// (Think EBCDIC).
|
|
//
|
|
static const UChar chCR = 0x0d; // New lines, for terminating comments.
|
|
static const UChar chLF = 0x0a;
|
|
static const UChar chNEL = 0x85; // NEL newline variant
|
|
static const UChar chLS = 0x2028; // Unicode Line Separator
|
|
static const UChar chApos = 0x27; // single quote, for quoted chars.
|
|
static const UChar chPound = 0x23; // '#', introduces a comment.
|
|
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
|
|
static const UChar chLParen = 0x28;
|
|
static const UChar chRParen = 0x29;
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// stripRules Return a rules string without unnecessary
|
|
// characters.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
|
|
UnicodeString strippedRules;
|
|
int rulesLength = rules.length();
|
|
for (int idx = 0; idx < rulesLength; ) {
|
|
UChar ch = rules[idx++];
|
|
if (ch == chPound) {
|
|
while (idx < rulesLength
|
|
&& ch != chCR && ch != chLF && ch != chNEL)
|
|
{
|
|
ch = rules[idx++];
|
|
}
|
|
}
|
|
if (!u_isISOControl(ch)) {
|
|
strippedRules.append(ch);
|
|
}
|
|
}
|
|
// strippedRules = strippedRules.unescape();
|
|
return strippedRules;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------------------
|
|
//
|
|
// nextCharLL Low Level Next Char from rule input source.
|
|
// Get a char from the input character iterator,
|
|
// keep track of input position for error reporting.
|
|
//
|
|
//----------------------------------------------------------------------------------------
|
|
UChar32 RBBIRuleScanner::nextCharLL() {
|
|
UChar32 ch;
|
|
|
|
if (fNextIndex >= fRB->fRules.length()) {
|
|
return (UChar32)-1;
|
|
}
|
|
ch = fRB->fRules.char32At(fNextIndex);
|
|
fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);
|
|
|
|
if (ch == chCR ||
|
|
ch == chNEL ||
|
|
ch == chLS ||
|
|
ch == chLF && fLastChar != chCR) {
|
|
// Character is starting a new line. Bump up the line number, and
|
|
// reset the column to 0.
|
|
fLineNum++;
|
|
fCharNum=0;
|
|
if (fQuoteMode) {
|
|
error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
|
|
fQuoteMode = FALSE;
|
|
}
|
|
}
|
|
else {
|
|
// Character is not starting a new line. Except in the case of a
|
|
// LF following a CR, increment the column position.
|
|
if (ch != chLF) {
|
|
fCharNum++;
|
|
}
|
|
}
|
|
fLastChar = ch;
|
|
return ch;
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// nextChar for rules scanning. At this level, we handle stripping
|
|
// out comments and processing backslash character escapes.
|
|
// The rest of the rules grammar is handled at the next level up.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {
|
|
|
|
// Unicode Character constants needed for the processing done by nextChar(),
|
|
// in hex because literals wont work on EBCDIC machines.
|
|
|
|
fScanIndex = fNextIndex;
|
|
c.fChar = nextCharLL();
|
|
c.fEscaped = FALSE;
|
|
|
|
//
|
|
// check for '' sequence.
|
|
// These are recognized in all contexts, whether in quoted text or not.
|
|
//
|
|
if (c.fChar == chApos) {
|
|
if (fRB->fRules.char32At(fNextIndex) == chApos) {
|
|
c.fChar = nextCharLL(); // get nextChar officially so character counts
|
|
c.fEscaped = TRUE; // stay correct.
|
|
}
|
|
else
|
|
{
|
|
// Single quote, by itself.
|
|
// Toggle quoting mode.
|
|
// Return either '(' or ')', because quotes cause a grouping of the quoted text.
|
|
fQuoteMode = !fQuoteMode;
|
|
if (fQuoteMode == TRUE) {
|
|
c.fChar = chLParen;
|
|
} else {
|
|
c.fChar = chRParen;
|
|
}
|
|
c.fEscaped = FALSE; // The paren that we return is not escaped.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (fQuoteMode) {
|
|
c.fEscaped = TRUE;
|
|
}
|
|
else
|
|
{
|
|
// We are not in a 'quoted region' of the source.
|
|
//
|
|
if (c.fChar == chPound) {
|
|
// Start of a comment. Consume the rest of it.
|
|
// The new-line char that terminates the comment is always returned.
|
|
// It will be treated as white-space, and serves to break up anything
|
|
// that might otherwise incorrectly clump together with a comment in
|
|
// the middle (a variable name, for example.)
|
|
for (;;) {
|
|
c.fChar = nextCharLL();
|
|
if (c.fChar == (UChar32)-1 || // EOF
|
|
c.fChar == chCR ||
|
|
c.fChar == chLF ||
|
|
c.fChar == chNEL ||
|
|
c.fChar == chLS) {break;}
|
|
}
|
|
}
|
|
if (c.fChar == (UChar32)-1) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// check for backslash escaped characters.
|
|
// Use UnicodeString::unescapeAt() to handle them.
|
|
//
|
|
if (c.fChar == chBackSlash) {
|
|
c.fEscaped = TRUE;
|
|
int32_t startX = fNextIndex;
|
|
c.fChar = fRB->fRules.unescapeAt(fNextIndex);
|
|
if (fNextIndex == startX) {
|
|
error(U_BRK_HEX_DIGITS_EXPECTED);
|
|
}
|
|
fCharNum += fNextIndex-startX;
|
|
}
|
|
}
|
|
// putc(c.fChar, stdout);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// Parse RBBI rules. The state machine for rules parsing is here.
|
|
// The state tables are hand-written in the file rbbirpt.txt,
|
|
// and converted to the form used here by a perl
|
|
// script rbbicst.pl
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::parse() {
|
|
uint16_t state;
|
|
const RBBIRuleTableEl *tableEl;
|
|
|
|
if (U_FAILURE(*fRB->fStatus)) {
|
|
return;
|
|
}
|
|
|
|
state = 1;
|
|
nextChar(fC);
|
|
//
|
|
// Main loop for the rule parsing state machine.
|
|
// Runs once per state transition.
|
|
// Each time through optionally performs, depending on the state table,
|
|
// - an advance to the the next input char
|
|
// - an action to be performed.
|
|
// - pushing or popping a state to/from the local state return stack.
|
|
//
|
|
for (;;) {
|
|
// Bail out if anything has gone wrong.
|
|
// RBBI rule file parsing stops on the first error encountered.
|
|
if (U_FAILURE(*fRB->fStatus)) {
|
|
break;
|
|
}
|
|
|
|
// Quit if state == 0. This is the normal way to exit the state machine.
|
|
//
|
|
if (state == 0) {
|
|
break;
|
|
}
|
|
|
|
// Find the state table element that matches the input char from the rule, or the
|
|
// class of the input character. Start with the first table row for this
|
|
// state, then linearly scan forward until we find a row that matches the
|
|
// character. The last row for each state always matches all characters, so
|
|
// the search will stop there, if not before.
|
|
//
|
|
tableEl = &gRuleParseStateTable[state];
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
|
|
RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ",
|
|
fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
|
|
}
|
|
|
|
for (;;) {
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");}
|
|
if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) {
|
|
// Table row specified an individual character, not a set, and
|
|
// the input character is not escaped, and
|
|
// the input character matched it.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 255) {
|
|
// Table row specified default, match anything character class.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 254 && fC.fEscaped) {
|
|
// Table row specified "escaped" and the char was escaped.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 253 && fC.fEscaped &&
|
|
(fC.fChar == 0x50 || fC.fChar == 0x70 )) {
|
|
// Table row specified "escaped P" and the char is either 'p' or 'P'.
|
|
break;
|
|
}
|
|
if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
|
|
// Table row specified eof and we hit eof on the input.
|
|
break;
|
|
}
|
|
|
|
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
|
|
fC.fEscaped == FALSE && // char is not escaped &&
|
|
fC.fChar != (UChar32)-1) { // char is not EOF
|
|
UnicodeSet *uniset = fRuleSets[tableEl->fCharClass-128];
|
|
if (uniset->contains(fC.fChar)) {
|
|
// Table row specified a character class, or set of characters,
|
|
// and the current char matches it.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No match on this row, advance to the next row for this state,
|
|
tableEl++;
|
|
}
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("\n");}
|
|
|
|
//
|
|
// We've found the row of the state table that matches the current input
|
|
// character from the rules string.
|
|
// Perform any action specified by this row in the state table.
|
|
if (doParseActions((EParseAction)tableEl->fAction) == FALSE) {
|
|
// Break out of the state machine loop if the
|
|
// the action signalled some kind of error, or
|
|
// the action was to exit, occurs on normal end-of-rules-input.
|
|
break;
|
|
}
|
|
|
|
if (tableEl->fPushState != 0) {
|
|
fStackPtr++;
|
|
if (fStackPtr >= kStackSize) {
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
RBBIDebugPrintf("RBBIRuleScanner::parse() - state stack overflow.\n");
|
|
fStackPtr--;
|
|
}
|
|
fStack[fStackPtr] = tableEl->fPushState;
|
|
}
|
|
|
|
if (tableEl->fNextChar) {
|
|
nextChar(fC);
|
|
}
|
|
|
|
// Get the next state from the table entry, or from the
|
|
// state stack if the next state was specified as "pop".
|
|
if (tableEl->fNextState != 255) {
|
|
state = tableEl->fNextState;
|
|
} else {
|
|
state = fStack[fStackPtr];
|
|
fStackPtr--;
|
|
if (fStackPtr < 0) {
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
RBBIDebugPrintf("RBBIRuleScanner::parse() - state stack underflow.\n");
|
|
fStackPtr++;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// If there were NO user specified reverse rules, set up the equivalent of ".*;"
|
|
//
|
|
if (fRB->fReverseTree == NULL) {
|
|
fRB->fReverseTree = pushNewNode(RBBINode::opStar);
|
|
RBBINode *operand = pushNewNode(RBBINode::setRef);
|
|
findSetFor(kAny, operand);
|
|
fRB->fReverseTree->fLeftChild = operand;
|
|
operand->fParent = fRB->fReverseTree;
|
|
fNodeStackPtr -= 2;
|
|
}
|
|
|
|
|
|
//
|
|
// Parsing of the input RBBI rules is complete.
|
|
// We now have a parse tree for the rule expressions
|
|
// and a list of all UnicodeSets that are referenced.
|
|
//
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
|
|
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree"))
|
|
{
|
|
RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
|
|
fRB->fForwardTree->printTree(TRUE);
|
|
RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
|
|
fRB->fReverseTree->printTree(TRUE);
|
|
RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
|
|
fRB->fSafeFwdTree->printTree(TRUE);
|
|
RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
|
|
fRB->fSafeRevTree->printTree(TRUE);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// printNodeStack for debugging...
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::printNodeStack(const char *title) {
|
|
int i;
|
|
RBBIDebugPrintf("%s. Dumping node stack...\n", title);
|
|
for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);}
|
|
}
|
|
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// pushNewNode create a new RBBINode of the specified type and push it
|
|
// onto the stack of nodes.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) {
|
|
fNodeStackPtr++;
|
|
if (fNodeStackPtr >= kStackSize) {
|
|
error(U_BRK_INTERNAL_ERROR);
|
|
RBBIDebugPrintf("RBBIRuleScanner::pushNewNode - stack overflow.\n");
|
|
*fRB->fStatus = U_BRK_INTERNAL_ERROR;
|
|
return NULL;
|
|
}
|
|
fNodeStack[fNodeStackPtr] = new RBBINode(t);
|
|
if (fNodeStack[fNodeStackPtr] == NULL) {
|
|
*fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
|
|
}
|
|
return fNodeStack[fNodeStackPtr];
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------------------
|
|
//
|
|
// scanSet Construct a UnicodeSet from the text at the current scan
|
|
// position. Advance the scan position to the first character
|
|
// after the set.
|
|
//
|
|
// A new RBBI setref node referring to the set is pushed onto the node
|
|
// stack.
|
|
//
|
|
// The scan position is normally under the control of the state machine
|
|
// that controls rule parsing. UnicodeSets, however, are parsed by
|
|
// the UnicodeSet constructor, not by the RBBI rule parser.
|
|
//
|
|
//---------------------------------------------------------------------------------
|
|
void RBBIRuleScanner::scanSet() {
|
|
UnicodeSet *uset;
|
|
ParsePosition pos;
|
|
int startPos;
|
|
int i;
|
|
|
|
if (U_FAILURE(*fRB->fStatus)) {
|
|
return;
|
|
}
|
|
|
|
pos.setIndex(fScanIndex);
|
|
startPos = fScanIndex;
|
|
UErrorCode localStatus = U_ZERO_ERROR;
|
|
uset = new UnicodeSet(fRB->fRules, pos, USET_IGNORE_SPACE,
|
|
fSymbolTable,
|
|
localStatus);
|
|
if (U_FAILURE(localStatus)) {
|
|
// TODO: Get more accurate position of the error from UnicodeSet's return info.
|
|
// UnicodeSet appears to not be reporting correctly at this time.
|
|
RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
|
|
error(localStatus);
|
|
delete uset;
|
|
return;
|
|
}
|
|
|
|
// Verify that the set contains at least one code point.
|
|
//
|
|
if (uset->charAt(0) == -1) {
|
|
// This set is empty.
|
|
// Make it an error, because it almost certainly is not what the user wanted.
|
|
// Also, avoids having to think about corner cases in the tree manipulation code
|
|
// that occurs later on.
|
|
error(U_BRK_RULE_EMPTY_SET);
|
|
delete uset;
|
|
return;
|
|
}
|
|
|
|
|
|
// Advance the RBBI parse postion over the UnicodeSet pattern.
|
|
// Don't just set fScanIndex because the line/char positions maintained
|
|
// for error reporting would be thrown off.
|
|
i = pos.getIndex();
|
|
for (;;) {
|
|
if (fNextIndex >= i) {
|
|
break;
|
|
}
|
|
nextCharLL();
|
|
}
|
|
|
|
if (U_SUCCESS(*fRB->fStatus)) {
|
|
RBBINode *n;
|
|
|
|
n = pushNewNode(RBBINode::setRef);
|
|
n->fFirstPos = startPos;
|
|
n->fLastPos = fNextIndex;
|
|
fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
|
|
// findSetFor() serves several purposes here:
|
|
// - Adopts storage for the UnicodeSet, will be responsible for deleting.
|
|
// - Mantains collection of all sets in use, needed later for establishing
|
|
// character categories for run time engine.
|
|
// - Eliminates mulitiple instances of the same set.
|
|
// - Creates a new uset node if necessary (if this isn't a duplicate.)
|
|
findSetFor(n->fText, n, uset);
|
|
}
|
|
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|